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On Outer Bounds to the Capacity Region of Wireless
Networks
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Abstract—In this correspondence, we study the capacity region of a gen-
eral wireless network by deriving fundamental upper bounds on a class of
linear functionals of the rate tuples at which joint reliable communication
can take place. The widely studied transport capacity is a specific linear
functional: the coefficient of the rate between a pair of nodes is equal to
the Euclidean distance between them. The upper bound on the linear func-
tionals of the capacity region is used to derive upper bounds to scaling laws
for generalized transport capacity: the coefficient of the rate between a pair
of nodes is equal to some arbitrary function of the Euclidean distance be-
tween them, for a class of minimum distance networks. This upper bound
to the scaling law meets that achievable by multihop communication over
these networks for a wide class of channel conditions; this shows the opti-
mality, in the scaling-law sense, of multihop communication when studying
generalized transport capacity of wireless networks.

Index Terms—Ad hoc wireless networks, capacity region, cut-set bounds,
isometric embedding, multihop, transport capacity.

I. INTRODUCTION

A characterization of the capacity region of wireless networks is one
of the long standing open problems in information theory. Progress in
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this direction has recently come by relaxing the questions asked: focus
has been on the transport capacity [3], a specific linear functional of
rate tuples at which jointly reliable communication is possible. The co-
efficient of the rate between a pair of nodes in this linear functional is
equal to the Euclidean distance between the two nodes. Further, much
emphasis is on the scaling law of the transport capacity as a function
of the number of nodes in the network. Recent results have shown that
multihop communication is scaling-law optimal for a class of minimum
distance networks provided the wireless channel decays fast enough
[4], [7], [8]. A study of the sum capacity of the wireless network ap-
pears in [5].
In an effort to understand the entire capacity region of the wireless

network, we shift the focus from transport or sum capacity to studying
arbitrary linear functionals of the rate tuples in the capacity region. The
capacity region is a compact convex set. Thus, understanding the ex-
tremum of linear functionals of the rate tuples in the capacity region
is an alternative but equivalent characterization (the convex dual in the
language of convex analysis; see [6]) of the capacity region. In this
correspondence, we derive simple and robust upper bounds to a class
of linear functionals: the upper bound simply depends on the distance
between the nodes, channel attenuation conditions and the coefficients
of the linear functional. The key technique is a combination of the re-
sults of isometric embeddability of an arbitrary metric space into the
l1 metric space and the familiar information-theoretic cut-set upper
bounds to the capacity region.
We use this simple upper bound to exactly characterize the scaling

law behavior over arbitrary linear and planar networks of generalized
transport capacity

Cf
def
= max

(R ) in the capacity region

n

i;j=1

Rijf(rij) (1)

where and Rij and rij denote, respectively, the rate of reliable com-
munication and the Euclidean distance between a pair of nodes (i; j).
When f(�) is the identity function, i.e., f(x) = x, we get back the
transport capacity. The scaling law of generalized transport capacity
depends crucially on the long range behavior of the function f(�); of
particular interest is the parameter

�f
def
= lim

x!1

log f(x)

log x
: (2)

To be able to state the scaling law precisely, we briefly describe our
wireless channel model adopted from [4]: the received signal at node
j at time m is

yj [m] =
i6=j

hsij [m]

(1 + rij)�
xi[m] + zj [m]: (3)

Here xi[m] is the signal transmitted by node i at timem and zj [m] is
i.i.d. white Gaussian noise. Each node j has an average transmit power
constraint (denoted by Pj ). The fading channel hsij [m]

m
is a sta-

tionary and ergodic zero-mean stochastic process that is independent
for each pair of nodes (i; j) and models the small scale fluctuations of
frequency flat fading. For simplicity, we assume that jhsij [m]j2 =
1 for all i, j, m. The large scale variations are modeled explicitly1

through the decay of signal level: a factor of 1
(1+r )

from node i to
node j. In free space � = 1, with a single reflected path along with the

1The far field signal decay is usually denoted by r . Here, we have written
(1 + r ) to ensure that our model makes sense when nodes get close; i.e.,
the average received power is not more than the average transmit power.
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line of sight it becomes equal to two and it can be larger than 2:5 in
crowded urban environments.
As in [4], we consider two (disparate) models of the wireless fading

channel. If the channel variations are “slow” enough so that coherent
communication is possible, we model this scenario by allowing full
knowledge at each node of the fading channels from all the other nodes.
This is also known as the full-CSI scenario (channel state information
at both the transmitter and receiver nodes). In the scenario where the
channel is changing rapidly enough so that coherent communication is
not feasible, our model is to assume complete ignorance of the channel
realizations by all the nodes. This is the no CSI model. Clearly these
are two extreme models but they serve to cover the ranges of channel
fluctuations and allow us to make simple statements about the network
communication problem.
Our main results are as follows.

1) The generalized transport capacity of minimum distance net-
works with n nodes on a line is upper bounded by K1n for
� > 1 + 0:25�f , as long as �f � 1. With no CSI, the same
bound holds when � > 0:5 + 0:5�f and �f � 1.

2) The generalized transport capacity of minimum distance net-
works with n nodes on a plane is upper bounded by K2n for
� > 2 + 0:25�f , as long as �f � 1. With no CSI, the same
bound holds with � > 1 + 0:5�f and �f � 1.

With multihop communication, the generalized transport capacity is
lower bounded by K0n [8], so the upper bounds to the scaling law
we derive are actually tight. This shows the optimality, in the sense of
the scaling-law of the generalized transport capacity, of operating the
wireless network in the multihop communication mode. These results
also strictly strengthen the scaling law characterization of the transport
capacity in [4] and [7], when f(r) = r: the bounds therein require at
least � > 1:5 for linear networks and � > 2:5 for planar networks
with full CSI for linear scaling to hold. Further, our result is robust to
power fluctuations in the network: in particular, the result continues to
hold even when only the total power in the network is allowed to grow
linearly with the number of nodes.
Finally, when the function f(�) is superlinear, if �f > � then the

generalized transport capacity of minimum distance linear networks
grows superlinearly with the number of nodes.
We have organized the results into two parts. First, we derive an

upper bound to a class of linear functionals (where the coefficients of
the linear functional constitute a metric space) of rate tuples in the ca-
pacity region of an arbitrary wireless network; this is done in Section II.
Second, we use this upper bound to derive the optimal scaling law of
the generalized transport capacity of minimum distance wireless net-
works; this is done in Section III.

II. UPPER BOUNDS TO LINEAR FUNCTIONALS OVER THE

CAPACITY REGION

We are interested in the extremum of linear functionals over the ca-
pacity region

Cfa g
def
= max

(R )2 capacity region

n

i;j=1

aijRij ; aij � 0 (4)

where there are n nodes in the networkN
def
= f1; . . . ; ng. Our interest

stems from the fact that the collection of the extremum values Cfa g

for all aij � 0 is a precise representation (the convex dual) of the
capacity region. Here, we derive upper bounds to Cfa g for a class of
linear functionals represented by faijg. There are two key ideas that
we use.

1) Given any disjoint partition (or cut) of the network (i.e., C+,
C� � N , such that C+ \ C� = ; and N = C+ [ C�), we can

bound the sum-rate at which the nodes in C+ can reliably com-
municate to the nodes in C� by the well-known cut-set bound
([1, Theorem 14.10.1]).

2) We weight the different cuts appropriately: we want the prob-
ability that a pair of nodes (i; j) gets cut to be proportional to
aij . Then, we can average the bound on the sum-rate over all the
possible cuts to arrive at an upper bound to the linear functional
of interest.

The first step can be achieved for any cut of the network. However, the
second step can be achieved only for a certain specific set of coefficients
faijg. In particular, the set of coefficients needs to satisfy a geometric
property: there has to be some dimensionm such that n points can be
positioned in m with the property that the set of l1 distances2 between
every pair of points exactly coincides with the set of coefficients faijg.
Mathematically, this requirement is stated as the following. The set of
faijg is isometrically embeddable in l1. This is an important result
from the theory of metric spaces and we state this as a lemma.

Lemma 2.1 ([2, Proposition 4.2.2 ]): The set of distances
faij ; i; j 2 Ng is isometrically embeddable in l1 if and only if there
exist nonnegative numbers

PfC ;C g; C
+ � N and C� = N � C+

such that

aij =

C �N :i2C ;j2C

PfC ;C g:

One implication of this result is that any nonnegative linear com-
bination of isometrically l1-embeddable coefficent sets faijg is also
isometrically l1-embeddable. Apart from this general observation, the
embeddability condition imposes some obvious conditions on the coef-
ficients faijg; in particular, they must be the distances of some n-point
metric space. In other words

1) aii = 0; this is, however, not a serious limitation since we do not
intend to allow communication from a node to itself and there
is no loss in generality in supposing the coefficient of Rii to be
zero.

2) aij = aji; so we are weighting the rate from node i to j equally
with the rate from node j to i.

3) aij + aik � ajk; the triangle inequality.

For n � 4 nodes, the above three conditions are sufficient as well for
the set faijg to be isometrically embeddable in l1. For large n, the
problem of determining when a set of distances is isometrically em-
beddable in l1 is computationally hard: it is NP-complete ([2, p. 49]).
For values of n � 7, closed form necessary and sufficient conditions
are available in [2, pp. 503–506]. Our interest, however, is to use this
result only as an intermediary step in deriving an upper bound to the
linear functional Cfa g; thus the computational issues are hardly of
any concern here.
Nowwe are ready to state and prove themain theorem of this section:

an upper bound to Cfa g. Suppose each node i in the network N =
f1; . . . ; ng is power limited to Pi.

Theorem 2.2: Consider an arbitrary configuration N of n nodes in
the plane. Assume that the set faijg is isometrically l1-embeddable.
With no channel state information (CSI) at the nodes

Cfa g <

n

i;j=1

Pi
aij

(1 + rij)2�
: (5)

2The l distance between a pair of points in is the sum of the absolute
value of the distances between the pair of points in each of them dimensions.
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With full CSI at the nodes

Cfa g <

n p
PiPk

n

j=1

min(aij ; akj)
2

(1 + rij)2�(1 + rkj)2�
;

+

n

i;j=1

Pi
aij

(1 + rij)2�
: (6)

Remark: Since the second term in (6) is exactly the no-CSI bound in
(5), the significance of the first term in (6) is that it is a bound on the
communication gain of having CSI at all the nodes.
The proof of Theorem 2.2 is relegated to Appendix I.

A. Examples of Linear Functionals

1) Rate Coefficients as Functions of Distance: If we substitute
aij = rij , the Euclidean distance (l2 distance) between the pair of
nodes (i; j), we see that (6) is a strengthening of (6) in [4, The-
orem 2.1]: the improvement in the bound comes from using a single
fixed distribution of network inputs for all possible cuts of the network
(see Appendix I). The bound given in (5) remains the same as (5) in
[4, Theorem 2.1].
For this special choice of coefficients, aij = rij , we can then use a

random line, as in [4], to geographically partition the network so that
the probability that any pair of nodes is cut by the line is proportional to
the Euclidean distance between the nodes. Since a set of distances that
are embeddable in the l2 metric space are isometrically embeddable
in the l1 metric space ([2, Proposition 6.4.12]), we can cast the utility
of the random line construction in [4] as a special case of Lemma 2.1.
In particular, the probability that a pair of nodes (i; j) is cut using the
random line is (cf. [4, eq. 10])

[i 2 C+; j 2 C�] = rij

2�dn
(7)

where dn is the radius of a circle that contains all the n points in the
network. To arrive at the statement of Theorem 2.2 we choose the prob-
abilities of the cuts explicitly so that (7) is replaced by the implication
from Lemma 2.1

[i 2 C+; j 2 C�] = aij

A
(8)

for some constant A chosen such that the quantity on the left side of
the equation above, summed over all possible cuts, sums to unity. The
proof of (6) in Theorem 2.2 uses these observations and is given in
Appendix I.
An important class of coefficients faijg that is isometrically l1-em-

beddable is the following ([2, p. 114]):

aij = r
�
ij ; 0 � � � 1: (9)

In particular, � = 0 corresponds to aij = 1 for each pair of nodes
(i; j) and thus the corresponding linear functional is simply the sum
capacity of the network.
Further, for any density function g(�)

aij =
1

0

r
�
ij g(�) d�

is also isometrically embeddable; this is a special case of the earlier
observation that nonnegative linear combinations of isometrically l1
embeddable coefficients also are isometrically l1 embeddable. We use

this result to study the scaling law behavior of generalized transport
capacity in Section III.

2) Extension to an Arbitrary Metric Space: Up until now, we have
required that the finite metric space whose distances are given by faijg
be isometrically embeddable into an l1 space, i.e., that the distances
be exactly preserved. However, if we allow embeddings that intro-
duce some relative distortion in the distances, we can extend our upper
bounds to any linear functional as long as its coefficients are distances
in some metric space.

Lemma 2.3 (Bourgain, 1985, See [2, Theorem 10.1.2]): Suppose
faijg is the distance between xi and xj in some n point metric space
N . There exists an embedding f : N ! m such that

kf(xi)� f(xj)k1 � aij � c0 lognkf(xi)� f(xj)k1

for all x; y 2 N , where k k1 denotes the l1 norm and c0 < 92 is a
constant.
This theorem allows us to state the following corollary to The-

orem 2.2.
Corollary 2.1: Consider an arbitrary configuration N of n > 1

nodes in the plane. Assume that the set faijg represents distances in
some metric space. With no channel state information (CSI) at the
nodes

Cfa g

c0 logn
<

n

i;j=1

Pi
aij

(1 + rij)2�
:

With full CSI at the nodes

Cfa g

c0 logn
<

n

i;k=1

p
PiPk

n

j=1

min(aij ; akj)
2

(1 + rij)2�(1 + rkj)2�

+

n

i;j=1

Pi
aij

(1 + rij)2�
:

The proof of this corollary follows the proof of Theorem 2.2 (Ap-
pendix I) along with the following observation: by Lemma 2.3,

ij
Rijaij � c0 logn ij

Rij~aij , where ~aij := kf(xi)� f(xj)k1.
Now, Lemma 2.1 guarantees that there exists a distribution on the
cut-sets (C+; C�) for which [i 2 C+; j 2 C�] is proportional to ~aij .
Averaging over this distribution and using the left-hand inequality in
Lemma 2.3, we obtain the desired result.

3) Metric Spaces Defined on Planar Graphs: Lemma 2.1 states
that it is possible to embed any metric space into l1 with distortion at
mostO(logn). However, if the metric space in question is defined on a
certain type of planar graph, there exist l1 embeddings with distortion
that is independent of n.
In particular, a graphmetric3 defined on any treewidth-2 planar graph

can be embedded into l1 with distortion of at most 14 (see [9, The-
orem 4.1]). Hence, for such metric spaces, we can strengthen the state-
ment of Corollary 2.1 by replacing the logn factor with the constant 14.
The long-standing conjecture is that every metric defined on a planar
graph can be embedded into l1 with constant distortion.
Moreover, the set of all planar graphs whose metrics are isometri-

cally l1 embeddable (i.e., embeddable with unit distortion) is exactly
the set of planar graphs that do not contain K2;3 (Fig. 1) as a minor
(see [9, Proposition 3.1]). For such metric spaces, we can directly apply
Theorem 2.2.

3The distance between any two nodes is the smallest sum of (nonnegative)
weights on any path between them.
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Fig. 1. It can be shown (see [2, Example 6.3.2]) that themetric space generated
by this complete, bipartite graph (also known as K ) is not isometrically
embeddable in l .

III. SCALING LAWS FOR GENERALIZED TRANSPORT CAPACITY

Our upper bound to the extremum of linear functionals of the ca-
pacity region was for arbitrary network topologies. Here we focus on
a specific network topology—minimum distance networks—to study
the scaling law behavior of generalized transport capacity. We consider
both linear and planar networks with minimum distance between the
nodes denoted by rm > 0. Suppose the average power constraint of
each radio is uniformly upper bounded by P . Our main result is the
following: the generalized transport capacity scales linearly with the
number of nodes n, provided:

1) the function f(r) grows sublinearly with the Euclidean distance
r, i.e., �f � 1 (cf. (2)), and

2) the channel decays fast enough, relative to the growth of the
function f(r).

Theorem 3.1: Suppose the nodes lie on a line at a distance of at least
rm > 0 from each other.

1) With no CSI at the nodes the generalized transport capacity is
upper bounded by

Cf <
2P�(2� � �f )

r
2���
m

n

for all � >
1+�

2
and �f � 1.

2) With full CSI at the nodes, the generalized transport capacity is
upper bounded by

Cf <
P

r
2���
m

fG(�f ; �) + 2�(2� � �f )gn

as long as � > 1 +
�

4
and �f � 1.

Here, we have defined the constant

G(�f ; �)
def
= 4 �(2� � �f ) +K1(�f ; �) � 2� � �f � 1

2

+ 2�� � � � �f

4
+K1(�f ; �) c1(�f ; �)

� � � �f

4
� � 2� � �f � 1

2

where �(�)
def
= 1

i=1
i�� is the Riemann–Zeta function (a finite

number for � > 1)

c1(�f ; �)
def
= 1� 2 � �2�+1 1� 2 � ��+

�1

and

K1(�f ; �)
def
= (2� � 3

2
�f � 1)�1:

Theorem 3.2: For planar networkswith a distance of at least rm > 0
between any two nodes, the scaling law is similar

1) with no CSI at the nodes, the generalized transport capacity is
upper bounded by

Cf <
(2� + 12)P�(2� � �f � 1)

r
2���
m

n

for � > 1 +
�

2
and �f � 1;

2) with full CSI at the nodes, the generalized transport capacity is
upper bounded by

Cf <
Pn

r
2���
m

fH(�f ; �) + (2� + 12)� (2� � �f � 1)g

for � > 2 +
�

4
and �f � 1.

Here, we have defined the constant as shown in the equation at the
bottom of the page, where �(�) is as defined in Theorem 3.1

K2(�f ; �)
def
= 2� � 3

2
�f � 2

�1

and

c2(�f ; �)
def
= 1� 2 � �2�+2 1� 2 � ��+1

�1

:

The first step in the proofs of the above two theorems, an upper
bound to the linear functional of interest, has been generalized for a
class of coefficients faijg in Theorem 2.2. Since the choice of coeffi-
cients aij = r�ij for � � 1 is isometrically l1-embeddable [see (9)],
the bound in Theorem 2.2 can be used to evaluate an upper bound to
the generalized transport capacity for functions of the form f(r) = r�

for � � 1. The proof of the full-CSI cases is given in Appendices II
and III. The no-CSI case is treated very similarly to Corollaries 3.1 and
3.2 in [4], except that the conditions on the signal decay parameter �
now depend �f .

Remark 1: For the special case of aij = rij , the result of The-
orem 2.2 is a strict improvement over the previous results on the scaling
behavior of transport capacity, [4], [7]: the bounds therein require at
least � > 1:5 for linear networks and � > 2:5 for planar networks with
full CSI for linear scaling to hold.

H(�f ; �)
def
=
p
2(2�+ 12) � 2� � �f � 3

2
+K2(�f ; �) �(2� � �f � 2) + 2��

� � � � �f

4
� 1 +K2(�f ; �) c2(�f ; �) � � � �f

4
� 1 � �(2� � �f � 2)
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Remark 2: When aij = 1 for all i, j, we establish the optimality
of multihop with respect to sum-capacity of the network, for � > 1
in a linear and � > 2 in a planar network. Sum capacity bounds for a
particular traffic pattern (across a single cut of the network) have been
studied in [5]. Our results hold regardless of the assumptions on the
traffic pattern.

Remark 3: Examining the origin of the constant factors in the bounds
of Theorems 3.1 and 3.2, we observe that it is the communication be-
tween “nearby” nodes that determines the requirement on the path-loss
parameter for linear scaling to hold. This vicinity is quantified in the
proofs.
So far, we have only considered functions f(�) that are sub-linear

in n. What happens when the function is superlinear in n? It turns out
that in this case, the generalized transport capacity can grow faster than
the number of nodes in the network. The communication strategy that
achieves this is coherent multistage relaying and interference cancel-
lation described in [7, Theorem 4.3]. The following statement, based
directly on [7, Theorem 3.6], makes this precise:

Proposition 3.1: The generalized transport capacity for linear min-
imum-distance networks can grow super-linearly with the number of
nodes n, according to 
(n� =�) as long as �f > �. This scaling law
is also optimal when 1

2
< � < 1 and �f > �.

APPENDIX I
PROOF OF THE FULL-CSI CASE IN THEOREM 2.2

The cut-set bound ([1, Theorem 14.10.1 ]) applied to a network N
with the channel model given in (3) and with full CSI at all the nodes
can be stated in the following way: There exists a n � n covariance
matrix Q (with (Q)ii � Pi for all i 2 N ) such that the sum-rate at
which the nodes in C+ can reliably communicate to the nodes in C�
satisfies

i2C ;j2C

Rij < log det(I+HCQCH
y
C)

for every disjoint partition C = (C+; C�) of N , where the jC+j �
jC+j matrix QC is obtained by retaining only the elements lying in
the rows and columns of Q that are indexed by i 2 C+ (i.e., it is a
principal submatrix), and where the jC�j�jC+j matrixHC is obtained
by retaining only the rows and columns ofH that are indexed by j 2

C� and i 2 C+, respectively. The entries (H)ij are independent, zero
mean random variables with variance 1

(1+r )
. Note that the principal

submatrix QC is always positive semidefinite.
We can then further upper-bound the sum-rate by using the

Hadamard bound in the log-det expression, followed by log(1+x) � x

i2C ;j2C

Rij < log det(I+HCQCH
y
C)

�
j2C

log 1 + hj(C)QCh
y
j (C)

=

j2C

log 1 +

i;k2C

hji(Q)ikh
�
jk

�
n

i;k=1

(Q)ik

n

j=1

hjih
�
jk1fi2C ;k2C ;j2C g:

Here we have used hj(C) to denote the j-th row of the submatrixHC ,
and 1fg to denote the indicator function. Thus, we obtain an upper-
bound on Cfa g as shown in (10)–(14) at the bottom of the page,where
we have used H to denote expectation with respect to the channel
statistics and C to denote the expectation with respect to the distri-
bution of the cuts. Observe that (11) follows from (8), and (12) fol-
lows from the fact that (Q)ii(Q)jj � j(Q)ijj2, since every principal
minor of a positive semidefinite matrix is nonnegative. Equality (13)
is obtained by summing over i 6= k and i = k separately. Inequality
(14) is obtained by applying Jensen’s inequality to the concave func-
tion x ! x1=2, and making use of the independence of the fhsijg as
well as their zero-mean property. This concludes the proof of (6) in
Theorem 2.2.

APPENDIX II
PROOF OF THE FULL-CSI CASE IN THEOREM 3.1

Let P = maxi2N Pi. We focus on the case where aij = r�ij , for
� � 1. Then we can express the first term in (6) as

C
CSI gain
fa g � P

n

i;k=1

n

j=1

min(r�ji; r
�
jk)

2

(1 + rji)2�(1 + rjk)2�
:

Cfa g <A H max
Q�0:(Q) �P

C

n

i;k=1

(Q)ik

n

j=1

hjih
�
jk1fi2C ;k2C ;j2C g (10)

=A H max
Q�0:(Q) �P

n

i;k=1

(Q)ik

n

j=1

hjih
�
jk
min(aji; ajk)

A
(11)

� H

n

i;k=1

p
PiPk

n

j=1

hjih
�
jk min(aji; ajk) (12)

=

n

i;k=1
i6=k

p
PiPk H

n

j=1

hjih
�
jk min(aji; ajk) +

n

i=1

Pi H

n

j=1

jhjij2aji (13)

�
n

i;k=1
i6=k

p
PiPk

n

j=1

min(aji; ajk)
2

(1 + rji)2�(1 + rjk)2�
+

n

i;j=1

Pi
aji

(1 + rji)s�
(14)



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006 2775

Observing that i = i� := n�1

2
yields the largest inner sum (over k and

j) in (13), 4 we can upper bound this expression by

Pn

n

k=1 j:r >r
r >r

2

(1 + rji )2�(1 + rjk)2��2�

+

n

k=1 j:r >r
r <r

2

(1 + rji )2�(1 + rjk)2��2�
: (15)

Since the summations over j are symmetric around the midpoint be-
tween node k and node i�, there is a factor of 2 multiplying both of
the inner sums (over j) above. In additon to splitting the above sum-
mations, we have also used (a+ b) � a + b . Henceforth, we will
useB1 andB2 to denote the first and second terms, respectively, in the
square brackets in (15).
We first focus on the term B1 above, and observe that rji > rjk

and rjk > rki imply that rji > rki , so

(1 + rji )2� � (1 + rjk) (1 + rki )2�� ; (16)

as long as � > �
4
. Substituting this calculation and using the fact that

�, � � 0 we upper bound the term B1 by

n

k=1 j:r >r
r >r

2

(1 + rki )2�� (1 + rjk)
2��2�+

(17)

<

n

k=1

p
2

(1 + rki )��
j:r >r

1

(1 + rjk)
2��2�+

:

(18)

Now, let lki := brki =r c and ljk := brjk=rmc. Clearly, for a given
i�, lki � 1 for all k 2 N and for a given k, ljk � 1 for all j 2 N . The
largest number of nodes k which have a common value lki is simply
2 since no two nodes can be closer than rm and they all lie on a line.
Thus, B1 is upper bounded by

1

l =1

2
p
2

(1 + rmlki )��

1

l =l

2

(1 + rmljk)
2�� �

: (19)

Note that the inner summation (over ljk) in the expression is simply a
lower Riemann sum. Thus, we can further upper bound it as follows:

1

l =l

2

(1 + rmljk)
2�� �

<

p
2

r
�� �
m

1

l
2�� �

ki

+
1

l

dx

x2�� �

=

p
2

r
�� �
m

1

l
2�� �

ki

+
K1(�; �)

l
2�� ��1

ki

4Since we are deriving upper bounds we can always add another node to make
n odd

<

p
2

r
�� �
m

1

l
�� �

ki

+
K1(�; �)

l
�� ��

ki

where we have used the notation K1(�; �) := (2� � 3

2
� � 1)�1.

Substituting this calculation in (19), we obtain the bound

B1 <
4

r2���m

� (2� � �) +K1(�; �) � 2� � � � 1

2

where �(�)
def
= 1

i=1 i
�� is the Riemann–Zeta function and is finite

for � > 1. Thus, the above bound on B1 is valid for � > 3

4
+ �

2
.

Now turning to term B2 in (15), we see that rji > rjk and rjk <
rki imply that rji >

r

2
, so (16) becomes

(1 + rji )2� � (1 + rjk)
1 + rki

2

2��

(20)

and the bound on B2 is given by

n

k=1

2

1 + rki

��

�
j:r <r

2

(1 + rjk)
2��2�+

<

1

l =1

21+��

(1 + rmlki )��

�
l

l =1

4

(1 + rmljk)
2�� �

: (21)

Again, upper bounding the lower Riemann sum over ljk by its integral
we get

l

l =1

4

(1 + rmrjk)
2�� �

(22)

� 2

r
�� �
m

1 +
l

1

dx

x2�� �
(23)

=
2

r
�� �
m

1 +
l

��2�+1

ki � 1
3

2
�� 2� + 1

� 2

r
�� �
m

1 +

1� l
��2�+1

ki

2� � 3

2
�� 1

(24)

where the last line holds when � > 1

2
+ 3

4
�. Now we would like to find

a number c1(�; �), independent of l, such that

1� l ��2�+1 � c1(�; �) 1� l ���+

for all l = 1; 2; . . .. Observe that for l = 1, the inequality is satisfied
with c1(�; �) = 1. Also, the function

1� l ��2�+1 1� l ���+
�1

is monotonically decreasing with l. Thus, we can choose

c1(�; �)
def
= 1� 2 ��2�+1 1� 2 ���+

�1

:
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Substituting this calculation in (24) we, hence, upper-bound term B2

in (21) as follows:

B2 <
22+��

r2���m

� � � �

4
+K1(�; �) c1(�; �)

� � � � �

4
� � 2� � � � 1

2
:

We note that the above bound on B2 is valid only for � > 1 + �

4
.

Observe that if � > 1+ �

4
, then � > 1

2
+ 3

4
� thus, (24) is well defined

in this regime.
Combining the two bounds on B1 and B2, we establish the scaling

of the first term in (6). The second term exactly corresponds to the
no-CSI bound of (5), whose scaling law is directly obtained from [4,
Corollary 3.1], . Hence we obtain the scaling law of Cf when f(r) =
r�, � � 1 for linear minimum distance networks.
To extend this to generalized transport capacity, we make the fol-

lowing observation: For any general f(�)with �f < 1we have f(r) �
r� +� for all r sufficiently large for every � > 0. Choosing � small
enough such that �f + � < 1, we can upper bound the generalized
transport capacityCf of a minimum distance network byCr

mul-
tiplied by a constant that does not depend on the number of nodes n.
Since �f +� � 1we can now use the scaling law result for polynomial
functions of the Euclidean distance derived above to upper bound the
scaling law behavior of Cf : the scaling law behavior ofCf is the same
as that when f(r) = r� +�. Since � > 0 can be chosen arbitrarily
small, this completes the proof of Theorem 3.1.

APPENDIX III
PROOF OF THE FULL-CSI CASE IN THEOREM 3.2

As in the proof of Theorem 3.1, we first focus on the case where
aij = r�ij , for � � 1 but we consider arbitrary minimum distance
networks on the plane. We focus on bounding the first term in (6) and
follow exactly the same steps up until (19). Here, we observe that (see
[4, , Corollary 3.2]), since we are dealing with networks on a plane,
there are at most (2� + 12)ljk nodes j that share a common value of
ljk , for fixed k, and similarly there are at most (2� + 12)lki nodes k
that share a common value of lki , for fixed i�.5 Thus, (19), the bound
on B1, now becomes

1

l =1

(2� + 12)lki

(1 + rmlki )��

1

l =l

2(2�+ 12)ljk

(1 + rmljk)
2�� �

: (25)

Following the same steps as in the proof of Theorem 3.1, we obtain

B1<

p
2(2�+12)

r2���m

� 2���� 3

2
+K2(�; �) �(2����2)

where K2(�; �) := 2� � 3

2
� � 2

�1
. The above bound on B1 is

valid for � > 3

2
+ �

2
. We can make similar observations for bounding

the term B2 to obtain

B2 <
2�� + (2� + 12)

r2���m

� � � �

4
� 1

5Similarly to the linear case, i is here set to be the “center” node. We can
always add more nodes to the configuration to make any node we choose the
center node.

+K2(�; �) c2(�; �) � � � �

4
� 1 � �(2� � � � 2)

where

c2(�; �)
def
= 1� 2 ��2�+2 1� 2 ���+1

�1

and the bound is valid for � > 2 + �

4
.

Combining the two bounds onB1 andB2, we establish the scaling of
the first term in (6). The second term exactly corresponds to the no-CSI
bound of (5), whose scaling law is directly obtained from [4], Corollary
3.2. Hence, we obtain the scaling law of Cf when f(r) = r�, � � 1
for planar minimum distance networks. To extend this to generalized
transport capacity, we make the same observation as in the proof of
Theorem 3.1. Hence, we establish Theorem 3.2.
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