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The Optimal Noise-Adding Mechanism
in Differential Privacy

Quan Geng and Pramod Viswanath, Fellow, IEEE

Abstract— Differential privacy is a framework to quantify
to what extent individual privacy in a statistical database is
preserved while releasing useful aggregate information about
the database. In this paper, within the classes of mechanisms
oblivious of the database and the queries beyond the global
sensitivity, we characterize the fundamental tradeoff between
privacy and utility in differential privacy, and derive the
optimal e-differentially private mechanism for a single real-
valued query function under a very general utility-maximization
(or cost-minimization) framework. The class of noise probability
distributions in the optimal mechanism has staircase-shaped
probability density functions which are symmetric (around the
origin), monotonically decreasing and geometrically decaying.
The staircase mechanism can be viewed as a geometric mixture
of uniform probability distributions, providing a simple
algorithmic description for the mechanism. Furthermore, the
staircase mechanism naturally generalizes to discrete query
output settings as well as more abstract settings. We explicitly
derive the parameter of the optimal staircase mechanism for
{1 and £, cost functions. Comparing the optimal performances
with those of the usual Laplacian mechanism, we show that in
the high privacy regime (e is small), the Laplacian mechanism
is asymptotically optimal as € — 0; in the low privacy regime
(e is large), the minimum magnitude and second moment of noise
are O(Ae(~¢/?)) and ©(A%e(~2¢/3) as € — 400, respectively,
while the corresponding figures when using the Laplacian mecha-
nism are A /e and 2A2 /62, where A is the sensitivity of the query
function. We conclude that the gains of the staircase mechanism
are more pronounced in the moderate-low privacy regime.

Index Terms— Data privacy, randomized algorithm.

I. INTRODUCTION

IFFERENTIAL privacy is a formal framework to
quantify to what extent individual privacy in a statis-
tical database is preserved while releasing useful aggregate
information about the database. The key idea of differential
privacy is that the presence or absence of any individual data
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in the database should not affect the final released statistical
information significantly, and thus it can give strong privacy
guarantees against an adversary with arbitrary auxiliary infor-
mation. For motivation and background of differential privacy,
we refer the readers to the survey [1] by Dwork.

Since its introduction in [2] by Dwork et. al., differential
privacy has spawned a large body of research in differentially
private data-releasing mechanism design and performance
analysis in various settings. Differential privacy is a privacy-
preserving constraint imposed on the query output releasing
mechanisms, and to make use of the released information, it
is important to understand the fundamental tradeoff between
utility(accuracy) and privacy.

In many existing works on studying the tradeoff between
accuracy and privacy in differential privacy, the usual metric
of accuracy is in terms of the variance, or magnitude expec-
tation of the noise added to the query output. For example,
Hardt and Talwar [3] study the tradeoff between privacy and
error for answering a set of linear queries over a histogram in
a differentially private way, where the error is defined as the
worst expectation of the £2-norm of the noise among all pos-
sible query output. [3] derives lower and upper bounds on the
error given the differential privacy constraint. Nikolov ef al. [4]
extend the result on the tradeoff between privacy and error to
the case of (e, d)-differential privacy. Li et al. [5] study how
to optimize linear counting queries under differential privacy,
where the error is measured by the mean squared error of
query output estimates, which corresponds to the variance of
the noise added to the query output to preserve differential
privacy.

More generally, the error can be a general function depend-
ing on the additive noise (distortion) to the query output.
Ghosh et al. [6] study a very general utility-maximization
framework for a single count query with sensitivity one under
differential privacy, where the utility (cost) function can be
a general function depending on the noise added to the
query output. [6] shows that there exists a universally optimal
mechanism (adding geometric noise) to preserve differential
privacy for a general class of utility functions under a Bayesian
framework. Brenner and Nissim [7] show that for general
query functions, no universally optimal differential privacy
mechanisms exist. Gupte and Sundararajan [8] generalize the
result of [6] to a minimax setting.

In this work, within the classes of mechanisms oblivious
of the database and the queries beyond the global sensitivity,
we study the fundamental tradeoff between utility and privacy
under differential privacy, and derive the optimal differentially
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private mechanism for a single real-valued query function,
where the utility model is a min-max function which is the
same as the one adopted in [8] and similar to the Bayesian
framework used in [6], and the real-valued query function
can have arbitrary sensitivity. Our results can be viewed as
a generalization of [6] and [8] to general real-valued query
functions with arbitrary sensitivity in a min-max utility frame-
work. We discuss the relations of our work and the existing
works in detail in Section I-D. An early version of this work
has been presented in part in the conference paper [9].

A. Background on Differential Privacy

The basic problem setting in differential privacy for statis-
tical database is as follows: suppose a dataset curator is in
charge of a statistical database which consists of records of
many individuals, and an analyst sends a query request to the
curator to get some aggregate information about the whole
database. Without any privacy concerns, the database curator
can simply apply the query function to the dataset, compute the
query output, and send the result to the analyst. However, to
protect the privacy of individual data in the dataset, the dataset
curator should use a randomized query-answering mechanism
such that the probability distribution of the query output does
not differ too much whether any individual record is in the
database or not.

Formally, consider a real-valued query function

q:D— R, (1)

where D is the set of all possible datasets. The real-valued
query function g will be applied to a dataset, and the query
output is a real number. Two datasets D1, D, € D are called
neighboring datasets if they differ in at most one element,
i.e., one is a proper subset of the other and the larger dataset
contains just one additional element [1]. A randomized query-
answering mechanism K for the query function g will ran-
domly output a number with probability distribution depends
on the query output g(D), where D is the dataset.

Definition 1 (e-Differential Privacy [1]): A randomized
mechanism JC gives e-differential privacy if for all data
sets D1 and Dy differing on at most one element, and all
S C Range(K),

PrlC(Dy) € S] < exp(e) PrK(D») € S], 2)

where IC(D) is the random output of the mechanism IC when
the query function q is applied to the dataset D.

The differential privacy constraint (2) essentially requires
that for all neighboring datasets, the probability distribu-
tions of the output of the randomized mechanism should be
approximately the same. Therefore, for any individual record,
its presence or absence in the dataset will not significantly
affect the output of the mechanism, which makes it hard
for adversaries with arbitrary background knowledge to make
inference on any individual from the released query output
information. The parameter ¢ € (0,+00) quantifies how
private the mechanism is: the smaller € is, the more private
the randomized mechanism is.

1) Operational Meaning of e-Differential Privacy in the
Context of Hypothesis Testing: We first give an operational
interpretation of differential privacy in the context of hypoth-
esis testing. While this interpretation is not directly used for
proving the results in this paper, it is a useful tool for building
the intuition and is useful in other contexts [10].

As shown by [11], one can interpret the differential privacy
constraint (2) in the context of hypothesis testing in terms
of false alarm probability and missing detection probability.
Indeed, consider a binary hypothesis testing problem over
two neighboring datasets, Hy : Dj versus Hj : D>, where
an individual’s record is in D> only. Given a decision rule,
let S be the decision region such that when the released output
lies in S, H; will be rejected, and when the released output lies
in SC (the complement of S), Hy will be rejected. The false
alarm probability Pr4 and the missing detection probability
Py p can be written as

Pra = P(K(Dy) € 59), 3)
Pyp = P(K(Dy) €5). 4

Therefore, from (2) we get
1 — Prg < e“Pup. (5)
Thus
e“Pyp + Pra > 1. (6)

Switch D and D; in (2), and we get

Pr[K(D7) € S] < exp(e) Pr[K(Dy) € S]. (7
Therefore,
1 — Pyp < e Ppa, ®)
and thus
Pyp + e Pra > 1. )

In conclusion, we have

e“Pyp + Pra

> 1, (10)
Pyp + e Ppy > 1.

Y

The e-differential privacy constraint implies that in the
context of hypothesis testing, Pr4 and Py p can not be both
too small.

2) Laplacian Mechanism: The standard approach to pre-
serving e-differential privacy is to perturb the query output by
adding random noise with Laplacian distribution proportional
to the sensitivity A of the query function ¢, where the
sensitivity of a real-valued query function is defined as

Definition 2 (Query Sensitivity [1]): For a real-valued
query function q : D — R, the sensitivity of q is defined as

A= max lg(D1) — q(D2)l, 12)

Dy,Dse

for all Dy, D> differing in at most one element.
Formally, the Laplacian mechanism is:
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Definition 3 (Laplacian Mechanism [2]): For a real-
valued query function gq D — R with sensitivity A,
Laplacian mechanism will output

A
K(D) :=¢q(D) + Lap(?), 13)

where Lap(J) is a random variable with probability density
function

I i
@) =57e7 7,

Consider two neighboring datasets D; and D> where
lg(D1) — q(Dy)] = A. It is easy to compute the tradeoff
between the false alarm probability Pr4 and the missing
detection probability Py p under Laplacian mechanism,
which is

Vx e R. (14)

1 —e“Pra Pra € [0, %e*)
Pyp = % Pra €3¢ D)
e (1 = Pra) Pra €[5.1]

Since its introduction in [2], the Laplacian mechanism has
become the standard tool in differential privacy and has been
used as the basic building block in a number of works on
differential privacy analysis in other more complex problem
settings, e.g., [5], [11]-[47]. Given this near-routine use of
the query-output independent adding of Laplacian noise, the
following two questions are natural:

« Is query-output independent perturbation optimal?

o Assuming query-output independent perturbation, is

Lapacian noise distribution optimal?

In this work we answer the above two questions. Our main
result is that given an e-differential privacy constraint, within
the classes of mechanisms oblivious of the database and the
queries beyond the global sensitivity, under a general utility-
maximization (equivalently, cost-minimization) model:

« adding query-output independent noise is indeed optimal

(under a mild technical condition),’

« the optimal noise distribution is not the Laplacian distri-
bution; instead, the optimal one has a staircase-shaped
probability density function.

These results are derived under the following settings:

o either the mechanism is oblivious of the database, or the
domain of the query output is the entire real line or the
set of integers;

« nothing more about the query function is known beyond
its global sensitivity;

If any of these conditions are violated (the output domain has
sharp boundaries, or the local sensitivity deviates from the
global sensitivity [48], or we are restricted to specific query
functions [23]), then the optimal privacy mechanism need not
be data or query-output dependent.

5)

B. Problem Formulation

We formulate a utility-maximization (cost-minimization)
problem under the differential privacy constraint.

IWe refer the readers to Theorem 3 for the exact technical condition.
We emphasize that this technical condition is distinct from the settings and
assumptions below, and we believe that this technical condition can be done
away with.

1) Differential Privacy Constraint: A general randomized
releasing mechanism /C is a family of noise probability distri-
butions indexed by the query output (denoted by 1), i.e.,

K={P :teR), (16)

and given dataset D, the mechanism K will release the query
output + = ¢g(D) corrupted by additive random noise with
probability distribution P;:

K(D) =t + X,, (17)

where X, is a random variable with probability distribution P;.

In this work we consider the classes of mechanisms which
are oblivious of the database and the queries beyond the global
sensitivity. To satisfy the differential privacy constraint (2),
given any #; € R, the mechanism has to consider the case
there might exist a dataset Dy such that ¢(D;) = ¢, and for
any t, such that |[tj —f2| < A, where A is the global sensitivity
of ¢(-), there might exist a neighboring dataset D, such that
q(D2) = 1r.

Therefore, for any f;, r» € R such that [} — | < A
(corresponding to the query outputs for two neighboring
datasets), we have

Pi (S) < e€Pp,(S+11—12), V measurable set S C R, (18)

where for any t € R, S+ :={s +t|s € S}.

2) Utility Model: The utility model we use in this work is
under a min-max framework, which is also used in the works
Gupte and Sundararajan [8], and Brenner and Nissim [7],
while Ghosh et al. [6] uses a Bayesian utility model.

Consider a cost function £(-) : R — R, which is a
function of the additive noise. Given additive noise x, the cost
is L(x). Given query output t € R, the additive noise is a
random variable with probability distribution Py, and thus the
expectation of the cost is

/ L(x)P;(dx).
xeR

The objective is to minimize the worst case cost among all
possible query output ¢ € R, i.e.,

19)

minimize sup L(x)P:(dx). (20)

teR JxeR

3) Optimization Problem: Combining the differential pri-
vacy constraint (18) and the objective function (20), we
formulate a functional optimization problem:

minimize sup L(x)P;(dx) 21)
{Pihier reR JxeR
s.t. V measurable set S C R, V| —H| <A,
Pi (S) < P (S +1 — ). (22)

C. An Overview of Our Results

1) Optimal Noise Probability Distribution: When the query
output domain is the real line or the set of integers, we show
(subject to some mild technical conditions on the family of
differentially private mechanisms) that adding query-output-
independent noise is optimal. Thus we only need to study what
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Fig. 1. The Staircase-Shaped Probability Density Function fy (x).

the optimal noise probability distribution is. Let P denote the
probability distribution of the noise added to the query output.
Then the optimization problem (21) and (22) is reduced to

minimize L(x)P(dx) (23)
P xeR

s.t. V measurable set S C R, V|d| <A,
P(S) < eP(S +d). (24)

Consider a staircase-shaped probability distribution with
probability density function (p.d.f.) f, (-) defined as

a(y) xe[0,yA)
£ () = e “a(y) x€yA,A)
’ ek f, (x —kA) x e [kA, (k+1)A) fork € N
fy (=x) x <0
(25)
where
1 —e €
a(y) 2 ‘ (26)

2A(y +e (1 —7))

is a normalizing constant to make [ _p fy (x)dx = 1.

Our main result is

Theorem 1: If the cost function L(-) is symmetric and
increasing, and sup,.r Cg(j)l) < +oo for some T > 0, the
optimal noise probability distribution has a staircase-shaped
probability density function f,+(-), where

y* = arg min/ L(x)fy (x)dx. 27)
xeR

7 €l0,1]

Corollary 2: If the cost function L(-) is symmetric and
increasing, and supx>T££L&“)12 < 400 for some T > 0,
among the classes of e-differentially private mechanisms which
are oblivious of the database and the queries beyond the
global sensitivity A, the optimal query-output independent
noise-adding mechanism (minimizing the worse-case cost)
is to add a noise with staircase-shaped probability density
function f,«(-), where y* is defined in (27).

>
(@)
A
>
(b)

Fig. 2. Probability Density Functions of Laplacian Mechanism and Staircase
Mechanism. (a) Laplace Mechanism. (b) Staircase Mechanism.

We plot the probability density functions of Laplace
mechanism and staircase mechanism in Figure 2. Figure 1
in Section III gives a precise description of the staircase
mechanism.

The staircase mechanism is specified by three parameters: €,
A, and y * which is determined by € and the cost function £(-).
For certain classes of cost functions, there are closed-form
expressions for the optimal y *.

2) Applications: Minimum Noise Magnitude and Noise
Power: We apply our main result Theorem 4 to two typical
cost functions £(x) = |x| and £(x) = x2, which measure
noise magnitude and noise power, respectively. We derive the
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closed-form expressions for the optimal parameters y* for
these two cost functions. Comparing the optimal performances
with those of the Laplacian mechanism, we show that in the
high privacy regime (€ is small), the Laplacian mechanism is
asymptotically optimal as € — 0; in the low privacy regime
(e is large), the minimum expectation of noise amplitude
and minimum noise power are ®(Ae_%) and @(Aze_%g) as
€ — 400, while the expectation of noise amplitude and power
using the Laplacian mechanism are % and 2€_A22, respectively,
where A is the sensitivity of the query function. We conclude
that the gains are more pronounced in the low privacy regime.

In certain applications we need to consider the optimal noise
distribution for differential privacy with large value of €. For
instance, in [49] a large e-DP algorithm is running on a random
subsample from a dataset results in an effective value of €
which is much lower. In these settings, the staircase mecha-
nism will improve on the Laplacian mechanism significantly.

3) Extension to the Discrete Setting: Since for many impor-
tant practical applications query functions are integer-valued,
we also derive the optimal differentially private mechanisms
for answering a single integer-valued query function. We show
that adding query-output independent noise is optimal under
a mild technical condition, and the optimal noise probability
distribution has a staircase-shaped probability mass function,
which can be viewed as the discrete variant of the staircase
mechanism in the continuous setting.

This result helps us directly compare our work and the
existing works [6], [8] on integer-valued query functions. Our
result shows that for integer-valued query function, the optimal
noise probability mass function is also staircase-shaped, and
in the case the sensitivity A = 1, the optimal probability mass
function is reduced to the geometric distribution, which was
derived in [6] and [8]. Therefore, this result can be viewed as
a generalization of [6] and [8] in the discrete setting for query
functions with arbitrary sensitivity.

D. Connection to the Literature

In this section, we discuss the relations of our results
and some directly related works in the literature, and the
implications of our results on other works.

1) Laplacian Mechanism vs Staircase Mechanism: The
Laplacian mechanism is specified by two parameters, € and the
query function sensitivity A. € and A completely characterize
the differential privacy constraint. On the other hand, the
staircase mechanism is specified by three parameters, €, A,
and y* which is determined by € and the utility function/cost
function. For certain classes of utility functions/cost functions,
there are closed-form expressions for the optimal y *.

From the two examples given in Section IV, we can see
that although the Laplacian mechanism is not strictly optimal,
in the high privacy regime (¢ — 0), Laplacian mechanism is
asymptotically optimal:

« For the expectation of noise amplitude, the additive gap

from the optimal values goes to 0 as € — O,
« For noise power, the additive gap from the optimal values
is upper bounded by a constant as € — 0.
However, in the low privacy regime (¢ — +00), the multi-
plicative gap from the optimal values can be arbitrarily large.

25, T T T T

—— Ampltude
—— Power

()

(b)

Fig. 3. Multiplicative Gain of the Staircase Mechanism over the Laplacian
Mechanism. (a) 0 < € < 10. (b) 10 < € < 20.

We conclude that in the high privacy regime, the Laplacian
mechanism is nearly optimal, while in the low privacy regime
significant improvement can be achieved by using the stair-
case mechanism. We plot the multiplicative gain of staircase
mechanism over Laplacian mechanism for expectation of noise
amplitude and noise power in Figure 3, where Voptimal is
the optimal (minimum) cost, which is achieved by staircase
mechanism, and Vi, is the cost of Laplacian mechanism.
We can see that for € ~ 10, the staircase mechanism has
about 15-fold and 23-fold improvement, with noise amplitude
and power respectively. While € ~ 10 corresponds to really
low privacy, our results show that low privacy can be had
very cheaply (particularly when compared to the state of the
art Laplacian mechanism).

Since the staircase mechanism is derived under the
same problem setting as Laplacian mechanism, the staircase
mechanism can be applied wherever Laplacian mechanism is
used, and it performs strictly better than Laplacian mechanism
(and significantly better in low privacy scenarios).

2) Relation to Shamai and Verdu, [50]:
Shamai and Verdu [50] consider the minimum variance noise
for a fixed value of the average of false alarm and missed
detection probabilities of binary hypothesis testing. In [50], the
binary hypotheses correspond to the signal being in a binary
set {—A, +A}. Their solution involved the noise being discrete
and, further, having a pmf on the integer lattice (scaled by A).
Our setting is related, but is differentiated via the following
two key distinctions:

o Instead of a constraint on the sum of false alarm and
missed detection probabilities, we have constraints on
symmetric weighted combinations of the two error prob-
abilities (as in Equations (10) and (11)).

o Instead of the binary hypotheses corresponding to the
signal being in a binary set {—A, +A} we consider all
possible binary hypotheses for the signal to be in {x1, x>}
where x1, xo € [—A, A] are arbitrtary.
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3) Relation to Ghosh et al. [6]: Ghosh et al. [6] show that
for a single count query with sensitivity A = 1, for a general
class of utility functions, to minimize the expected cost under
a Bayesian framework the optimal mechanism to preserve
differential privacy is the geometric mechanism, which adds
noise with geometric distribution.

We discuss the relations and differences between [6] and
our work in the following: Both [6] and our work are similar
in that, given the query output, the cost function only depends
on the additive noise magnitude, and is an increasing function
of noise magnitude. On the other hand, there are two main
differences:

o [6] works under a general Bayesian setting where an
analyst holds an arbitrary prior belief about the query
value and the cost function can depend on this true value,
allows for arbitrary post-processing of the released query
answer, and the goal is to minimize the average cost under
the analyst’s prior belief about the true query value. In our
work, we do not impose priors on the true query output,
and our goal is to minimize the worst case cost.

o [6] studies a count query where the query output is
integer-valued, bounded and sensitivity is unity. In our
work, we first study general real-valued query function
where the query output can take any real value, and
then generalize the result to discrete setting where query
output is integer valued. In both cases, the sensitivity of
query functions can be arbitrary, not restricted to one.

4) Relation to  Gupte and  Sundararajan  [8]:
Gupte and Sundararajan [8] derive the optimal noise
probability distributions for a single count query with sen-
sitivity A = 1 for minimax (risk-averse) users. Their model is
the same as the one in [6] except that their objective function
is to minimize the worst case cost, the same as our objective.
[8] shows that although there is no universally optimal solution
to the minimax optimization problem in [8] for a general class
of cost functions, each solution (corresponding to different cost
functions) can be derived from the same geometric mechanism
by randomly remapping.

As in [6] and [8] assumes the query-output is bounded. Our
result shows that when the query sensitivity is one, without any
boundedness knowledge about the query-output, the optimal
mechanism is to add random noise with geometric distribution
to the query output.

5) Relation to Brenner and Nissim [7]: While [6] shows
that for a single count query with sensitivity A = 1,
there is a universally optimal mechanism for a general
class of utility functions under a Bayesian framework,
Brenner and Nissim [7] show that for general query functions
no universally optimal mechanisms exist. Indeed, this follows
directly from our results: under our optimization framework,
the optimal mechanism is adding noise with staircase-shaped
probability distribution which is specified by three
parameters €, A and y*, where in general y* depends
on the cost function. Generally, for different cost functions,
the optimal noise probability distributions have staircase-
shaped probability density functions specified by different
parameters. While [7] allows post-processing (e.g., random
mapping of the released query output) and we do not

explicitly consider post-processing in this work, we believe
that post-processing does not help in terms of improving the
utility in our setting.

6) Relation to Nissim et al. [48]: Nissim et al. [48] show
that for certain nonlinear query functions, one can improve
the accuracy by adding data-dependent noise calibrated to the
smooth sensitivity of the query function, which is based on the
local sensitivity of the query function. In our model, we use
the global sensitivity of the query function only, and assume
that the local sensitivity is the same as the global sensitivity,
which holds for a general class of query functions, e.g., count,
sum.

7) Relation to Hardt and Talwar [3]: Hardt and Talwar [3]
study the tradeoff between privacy and error for answering
a set of linear queries over a histogram in a differentially
private way. The error is defined as the worst expectation
of the ¢2-norm of the noise. The lower bound given in [3]
is Q(e~'d+/d), where d is the number of linear queries.
An immediate consequence of our result is that for fixed d,
when € — 400, an upper bound of @(efﬁd\/g) is
achievable by adding independent staircase-shaped noise with
parameter § to each component.

8) Relation to Other Works: There are many existing works
on studying how to improve the accuracy for answering
more complex queries under differential privacy, in which the
basic building block is the standard Laplacian mechanism.
For example, Hay er al. [51] show that one can improve
the accuracy for a general class of histogram queries, by
exploiting the consistency constraints on the query output, and
Li et al. [5] study how to optimize linear counting queries
under differential privacy by carefully choosing the set of
linear queries to be answered. In these works, the error is
measured by the mean squared error of query output estimates,
which corresponds to the variance of the noise added to the
query output to preserve differential privacy. In terms of ¢, the
error bound in these works scales linearly to Eiz, because of
the use of the Laplacian noise. If the Laplacian distribution
is replaced by staircase distribution in these works, one can
improve the error bound to ©(e~¢€) (for some constant C
which depends on the number of queries) when € — +oco
(corresponding to the low privacy regime).

E. Organization

The paper is organized as follows. We show the optimality
of query-output independent perturbation in Section II, and
present the optimal differentially private mechanism, staircase
mechanism, in Section III. In Section IV, we apply our
main result to derive the optimal noise probability distribution
with minimum expectation of noise amplitude and power,
respectively, and compare the performances with the Laplacian
mechanism. Section V presents the asymptotic properties of y *
in the staircase mechanism for moment cost functions, and
suggests a heuristic choice of y that appears to work well
for a wide class of cost functions. Section VI generalizes
the staircase mechanism for integer-valued query function in
the discrete setting, and Section VII extends the staircase
mechanism to the abstract setting. Section VIII concludes this

paper.
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II. OPTIMALITY OF QUERY-OUTPUT
INDEPENDENT PERTURBATION

Recall that the optimization problem we study in this
work is

minimize sup L(x)P;(dx) (28)
{(Piher  teR JxeR
s.t. V measurable set S C R, V|t; —n]| <A,
P (S) < e“Pp(S+1 —1n). (29)

where P; is the noise probability distribution when the query
output is 7.

Our claim is that in the optimal family of probability
distributions, P; can be independent of ¢, i.e., the probability
distribution of noise is independent of the query output.
We prove this claim under a technical condition which assumes
that the family of probability distributions {P;},cr indexed by
the query output ¢ is “smooth” with respect with the index z.
Specifically, we restrict the family of probability measures
to be piecewise constant (with arbitrarily small width) and
periodic (the period can be arbitrary) in terms of the index
parameter t.

For any positive integer n, and for any positive real
number 7', define

Krn 2 {{Pilier | {Pi}ier satisfies (22),
T T
Py =Pz, fort € [k—, (k+1)—), ke,
n n n

and P1+T = Pt, vVt € R} (30)

Theorem 3: Given any family of probability distribution
{Pilier € Ur=0 Up=1 Kr,n, there exists a probability dis-
tribution 'P* such that the family of probability distributions
{Pilier with PF = P* satisfies the differential privacy
constraint (22) and

sup L(x)P/(dx) < sup
teR teR
Proof: Here we briefly discuss the main proof technique.
For complete proof, see Appendix A. The proof of Theorem 3
uses two properties on the family of probability distributions
satisfying differential privacy constraint (22). First, we show
that for any family of probability distributions satisfying (22),
any translation of the probability distributions will also pre-
serve differential privacy, and the cost is the same. Second,
we show that given a collection of families of probability
distributions each of which satisfies (22), we can take a convex
combination of them to construct a new family of probability
distributions satisfying (22) and the new cost is not worse.
Due to these two properties, given any family of probability
distributions {P; };cr € Ur>0Uu>1Kr.4, One can take a convex
combination of different translations of {P;};cr to construct
{P/}ier with P = P*, and the cost is not worse. [ |
Here we assume the family of noise probability dis-
tributions is piecewise constant in terms of the index ¢
(over arbitrarily small intervals with length %), and periodic
over t (with arbitrarily large period T). These technical
conditions allow our proofs to be mathematically simple,
allowing for finite averaging techniques. We conjecture that
the technical conditions can be done away with.

L(x)P;(dx).
xeR

(31)
xeR

III. OPTIMAL NOISE PROBABILITY DISTRIBUTION

Due to Theorem 3, to derive the optimal randomized
mechanism to preserve differential privacy, we can restrict to
noise-adding mechanisms where the noise probability distrib-
ution does not depend on the query output. In this section
we state our main result Theorem 4 on the optimal noise
probability distribution.

Let P denote the probability distribution of the noise
added to the query output. Then the optimization problem
in (21) and (22) is reduced to

minimize L(x)P(dx) 32)
P xeR

s.t. V measurable set S C R, V|d| <A,
P(S) <eP(S+4d). (33)

We assume that the cost function £(-) satisfies two (natural)
properties.

Property 1: L(x) is a symmetric function, and monotoni-
cally increasing for x > 0, i.e, L(x) satisfies

L(x)=L(—x), VxeR, (34)

and
L(x) < L(y),

In addition, we assume L(x) satisfies a mild technical
condition which essentially says that £(-) does not increase
too fast (while still allowing it to be unbounded).

Property 2: There exists a positive integer T such that
L(T) > 0 and L(x) satisfies

L(x+1)
sup ——
x>T £(x)

Consider a staircase-shaped probability distribution with
probability density function (p.d.f.) f; (-) defined as

VO < x < y. (35)

< 400. (36)

a(y) x e€[0,yA)
_Jeca(y) xelyA,A)
Sy () = ke
e fy(x —kA) x e[kA,(k+1)A)fork e N
Sy (=x) x <0
37
where
1—¢ €
a(y) 2 ‘ (38)

2A(y +e7<(1 =y))

is a normalizing constant to make fxe]R fry(x)dx = 1. It is
easy to check that for any y € [0, 1], the probability
distribution with p.d.f. f, (-) satisfies the differential privacy
constraint (33). Indeed, the probability density function f, (x)
satisfies

fi(x)<efy,(x+d), VxeR,|d <A, (39)

which implies (33).

Let SP denote the set of all probability distributions satis-
fying (33). Our main result on the optimal noise probability
distribution is:
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Algorithm 1 Generation of Random Variable With Staircase
Distribution
Input: ¢, A, and y € [0, 1].
Output: X, a random variable (r.v.) with staircase
distribution specified by €, A and y.
Generate a r.v. S with Pr[§ = 1] =Pr[S = —1] = %
Generate a geometric r.v. G with Pr[G = i] = (1 — b)b" for
integer i > 0, where b = ¢ €.
Generate a r.v. U uniformly distributed in [0, 1].
Generate a binary r.v. B with Pr[B = 0] = m and

_ 11— =y
Pr[B=1] = W{y)b

X <S(A=-B)((G+yU)A) +B{(G+y+(1—=y)U)A)).
Output X.

Theorem 4: If the cost function L(x) satisfies Property 1
and Property 2, then

Piengp/xeR L(x)P(dx) = }'Eil[})f:l]/xe]}{ L(x)f, (x)dx. (40)

Proof: Here we briefly discuss the main proof idea and
technique. First, by deriving several properties on the probabil-
ity distributions satisfying the e-differential privacy constraint,
we show that without loss of generality, one can “discretize”
any valid probability distribution, even for those which do
not have probability density functions. Second, we show that
to minimize the cost, the probability density function of the
discretized probability distribution should be monotonically
and geometrically decaying. Lastly, we show that the optimal
probability density function should be staircase-shaped. For
the complete proof, see Appendix B. [ ]

Therefore, the optimal noise probability distribution to
preserve e-differential privacy for any real-valued query
function has a staircase-shaped probability density function,
which is specified by three parameters ¢, A and
y* =argmin [ _p L£(x) f, (x)dx.

7 €[0,1]
A natural and simple algorithm to generate random noise

with staircase distribution is given in Algorithm 1.
In the formula,

X < S(A=B)(G+yU)A)+B(G+y + (1-y)U)A)),
(41)

o S determines the sign of the noise,

o G determines which interval [GA, (G + 1)A) the noise
lies in,

o B determines which subinterval of [GA, (G +7y)A) and
[(G+y)A, (G + 1)A) the noise lies in,

o U helps to uniformly sample the subinterval.

IV. APPLICATIONS

In this section, we apply our main result Theorem 4 to derive
the parameter y * of the staircase mechanism with minimum
expectation of noise magnitude and noise second moment,
respectively, and then compare the performances with the
Laplacian mechanism.

0.5
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035
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0 0.1 02 03 0.4 05 06 0.7 08 09 1

b=e®

Fig. 4. Optimal y * for cost function L(x) = x2.

A. Optimal Noise Probability Distribution With
Minimum Expectation of Noise Amplitude

To minimize the expectation of amplitude, we have cost
function £(x) = |x|, and it is easy to see that it satisfies
Property 1 and Property 2.

To simplify notation, define b £ o€, and define

V(P) £ / L(x)P(dx). (42)
xeR
for a given probability distribution P.

Theorem 5: To minimize the expectation of the amplitude of
noise, the optimal noise probability distribution has probability
density function f,«(-) with

1

y* = s (43)
1+e2

and the minimum expectation of noise amplitude is

(Sl

e
e€ —

V(Pys)=A (44)
Proof: See Appendix C. |
Next, we compare the performances of the optimal noise
probability distribution and the Laplacian mechanism. The
Laplace distribution has probability density function

1 x|
=—e 7, 45
fl)=5-e (45)
where 4 = %. So the expectation of the amplitude of noise
with Laplace distribution is

+00 A
Vi & / Xl f ()dx = = (46)

- €
By comparing V(P,+) and Vi, it is easy to see that in
the high privacy regime (e is small) the Laplacian mechanism
is asymptotically optimal, and the additive gap from optimal
value goes to 0 as € — 0; in the low privacy regime (€ is
large), Viap = %, while V (P, «) = ©(Ae~ 7). Indeed,
Corollary 6: Consider the cost function L(x) = |x|. In the
high privacy regime (€ is small),
7€

_ g=a(L - 5
Viap — V(Py+) A(24 5760+0(e)), (47)

as € — 0.
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And in the low privacy regime (€ is large),

A
VLap = :, (43)
V(P,+) = @(Ae™2), (49)

as € — +00.

B. Optimal Noise Probability Distribution
With Minimum Power

Given the probability distribution P of the noise, the power
of noise is defined as fx ERx27?(dx). Accordingly, the cost
function £(x) = x2, and it is easy to see it satisfies Property 1
and Property 2.

Recall b £ ¢7¢.

Theorem 7: To minimize the power of noise (accordingly,
L(x) = x?), the optimal noise probability distribution has
probability density function f,=(-) with

b (b—=2b*+2b* — b))/

= 50
/ st sy OV
and the minimum power of noise is
27253p23 (1 +b)*P + b
V(Py+) = A 51
Proof: See Appendix D. [ ]

Next, we compare the performances of the optimal noise
probability distribution and the Laplacian mechanism. The
power of noise with Laplace distribution with A = % is

(52)

By comparing V(P,+) and Vi, it is easy to see that in
the high privacy regime (¢ is small) Laplacian mechanism
is asymptotically optimal, and the additive gap from optimal
value is upper bounded by a constant as € — 0; in the
low privacy regime (e is large), Vi = @(26—%2), while
V(P,+) = ©(A%¥). Indeed,

Corollary 8: Consider the cost function L(x) = x>. In the
high privacy regime (€ is small),

1 €2
— =A== - — 4
Viap — V(Py+) (12 720 + O(e )), (53)

as € — 0.
And in the low privacy regime (€ is large),

2A2
VLap = 6—2, (54)
V(Py+) = ©(A2e ), (55)

as € — +00.

V. PROPERTY OF y*

In this section, we derive some asymptotic properties of the
optimal y* for moment cost functions, and give a heuristic
choice of y which only depends on €.

A. Asymptotic Properties of y*

In Section IV, we have seen that for the cost functions
L(x) = |x| and L£(x) = x2, the optimal y * lies in the interval
[0, %] for all € and is a monotonically decreasing function
of €; and furthermore, y* — % as € goes to 0, and y* — 0
as € goes to 400.

We generalize these asymptotic properties of y as a function
of € to all moment cost functions. More precisely, given m € N
and m > 1,

Theorem 9: Consider the cost function L(x) = |x|™. Let y *
be the optimal y in the staircase mechanism for L(x), i.e.,

y* = arg min/ lx|™ f, (x)dx. (56)
y€l0,1] JxeR
We have
y*—>§, as € — 0, (57)
y* = 0, as € - +o00. (58)
Proof: See Appendix E. |

Corollary 10: For all the cost functions L(-) which can be
written as

Lx) =D ailx|™, (59)
i=1

where n > 1, a; € R, di € N and a;, di > 0 for all i,
the optimal y* in the staircase mechanism has the following
asymptotic properties:

(60)
(61)

y*—>§, as € —> 0,
7" — 0, as € > +o0.

B. A Heuristic Choice of y

We have shown that in general the optimal y * in the stair-
case mechanism depends on both ¢ and the cost function L£(-).
Here we give a heuristic choice of y which depends only on €,
and show that the performance is reasonably good in the low
privacy regime.

Consider a particular choice of y, which is

. b e ¢
yi=g= (62)

It is easy to see that 7 has the same asymptotic properties

as the optimal y * for moment cost functions, i.e.,

7y — 0, as b — 0, (63)

1
)7—>§, as b — 1. (64)

Furthermore, the probability that the noise magnitude is
less than %A is approximately % in the low privacy
regime (€ — +00). Indeed,

—€

Pr[|X| < %A] = Pr[|X| < § A] (65)
=2a(7)7 A (66)
_ L~ (67)
i+ b1 —7)
B b—b? 68
- o (68)

which goes to % as € - 400 (accordingly, b — 0).
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On the other hand, for Laplace mechanism,

. .
Pr[|X|5%A]= Tdx=1—e¢"“T, (69)

which goes to zero as € — +o00.

We conclude that in the low privacy regime as € — 00,
the staircase mechanism with the heuristic parameter y = %
can guarantee with probability about % the additive noise is
very close to zero, while the probability given by Laplacian
mechanism is approximately zero.

VI. EXTENSION TO THE DISCRETE SETTING

In this section, we extend our main result Theorem 3 and
Theorem 4 to the discrete settings, and show that the optimal
noise-adding mechanism in the discrete setting is a discrete
variant of the staircase mechanism in the continuous setting.

A. Problem Formulation

We first give the problem formulation in the discrete setting.
Consider an integer-valued query function”

q:D— 17, (70)
where D is the domain of the databases. Let A denote the
sensitivity of the query function ¢ as defined in (12). Clearly,
A is an integer in this discrete setting.

In the discrete setting, a generic randomized mechanism /C
is a family of noise probability distributions over the
domain Z indexed by the query output (denoted by i), i.e.,

K={Pi:iel}, (71)
and given dataset D, the mechanism /C will release the query
output i = ¢(D) corrupted by additive random noise with
probability distribution P;:

KD) =i+ Xi, (72)
where X; is a discrete random variable with probability
distribution P;.

Then, the e-differential privacy constraint (2) on K is that
for any iy, i € Z such that |i; —iz] < A (corresponding to
the query outputs for two neighboring datasets), and for any
subset S C Z,

Pi(j) < e Pip(j+it—iz), YjeZ, lii—i2al <A, (73)
and the goal is to minimize the worst-case cost
400
sup D> LG)Pi()) (74)

i€Z j=—00

subject to the differential privacy constraint (73).
2Without loss of generality, we assume that in the discrete setting the query

output is integer-valued. Indeed, any uniformly-spaced discrete setting can be
reduced to the integer-valued setting by scaling the query output.

B. Optimality of Query-Output Independent Perturbation

In this section, we show that query-output independent
perturbation is optimal in the discrete setting.
For any integer n > 1, define

K2 {{Pi}icz|{Pi)iez satisfies (73), and Piy,="P;, Vi €Z}.
(75)

Theorem 11: Given any family of probability distribution
{Pilicz € Un=1Ky, there exists a probability distribution P*
such that the family of probability distributions {P;};c7, with
P = P* satisfies the differential privacy constraint (73) and

+00 400
sup D LOGYPFG) <sup D LGHPi().  (76)

i€Z j=—00 ieZ j=—00

Proof: The proof is essentially the same as the proof of
Theorem 3, and thus is omitted. |
Theorem 11 states that if we assume the family of noise
probability distributions is periodic in terms of i (the period
can be arbitrary), then in the optimal mechanism we can
assume P; does not depend on i. We conjecture that the
technical condition can be done away with.

C. Optimal Noise Probability Distribution

Due to Theorem 11, we restrict to query-output independent
perturbation mechanisms.

Let ¢(D) be the value of the query function evaluated at
dataset D. The noise-adding mechanism /C will output

K(D) =q(D) + X, 77

where X is the integer-valued noise added by the mechanism
to the output of query function. Let P be the probability
distribution of the noise X. Then the optimization problem
we study is
400
minimize LE)PU 78
in l;oo P (78)

subject to P(i) < e‘P(i +d), VieZ, deZ, |d| <|Al.

(79)

It turns out that when the cost function £(-) is symmetric
and monotonically increasing for i > 0, the solution to
the above optimization problem is a discrete variant of the
staircase mechanism in the continuous setting.

As in the continuous setting, we also assume that the cost
function £(-) is symmetric and monotonically increasing for
x>0, ie.,

Property 3:
L(3G) = L(—i), Viel (80)
LG) = L), Yi,jeZ 0=i=<]. (81)

The easiest case is A = 1. In the case that A = 1, the
solution is the geometric mechanism, which was proposed
in [6].

Recall b £ ¢7€.

Theorem 12: If the cost function L(-) satisfies Property 3
and A = 1, then the geometric mechanism, which has a
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Fig. 5. The Staircase-Shaped Probability Mass Function Py (7).

1b,lil i e 7,

probability mass function P with P(i) = {33

is the optimal solution to (78).
Proof: See Appendix F. [ |
For fixed general A > 2, consider a class of symmetric and
staircase-shaped probability mass functions defined as follows.
Given an integer 1 < r < A, denote P, as the probability mass
function defined by

a(r) 0<i<r
) e “a(r) r<i<A
Pr(l) = ke . .
e P.(i —kA) kA <i <(k+1)AforkeN
Pr(—i) i<0
(82)
for i € Z, where
1—-b
a(r) = (83)

2r +2b(A —r) — (1 —b)’

It is easy to verify that for any 1 < r < A, P, is a valid
probability mass function and it satisfies the e-differential pri-
vacy constraint (79). We plot the staircase-shaped probability
mass function P, (i) in Figure 5.

Let SP be the set of all probability mass functions which
satisfy the e-differential privacy constraint (79).

Theorem 13: For A > 2, if the cost function L(x) satisfies
Property 3, then

400
inf L N
ity 2, LOPO =,

Proof: See Appendix F. [ |
Therefore, the optimal noise probability distribution to
preserve e-differential privacy for integer-valued query func-
tion has a staircase-shaped probability mass function,
which is specified by three parameters €, A and r* =
argmin > L(i)P,(i). In the case A = 1, the
{reN|1<r<A}
staircase-shaped probability mass function is reduced to the

geometric mechanism.

min
reN|l<r<

+00
N > LOPG). (84

VII. EXTENSION TO THE ABSTRACT SETTING

In this section, we show how to extend the staircase mech-
anism to the abstract setting. The approach is essentially the
same as the exponential mechanism in [52], except that we
replace the exponential function by the staircase function.

Consider a privacy mechanism which maps an input from
a domain D to some output in a range R. Let u be the
base measure of R. In addition, we have a cost function
C:D xR — [0,+00).

Define A as

A2 IC(D1,7) —C(D2, )], (85)

max
reR, D1,D,CD:|D1—Dy|<1
i.e., the maximum difference of cost function for any
two inputs which differ only on one single value over
all r € R [52].

A randomized mechanism /C achieves e-differential privacy
if for any D, D> € D such that |[D; — D>| < 1, and for any
measurable subset S C R,

Pr[[C(Dy) € S] < exp(e) Pr[K(D») € S]. (86)

Definition 4 (Staircase Mechanism in the Abstract Setting):
For fixed y € [0,1], given input D € D, the staircase
mechanism in the abstract setting will output an element in
R with the probability distribution defined as

Jyes Sy €D, ) u(dr)

S)= ,
P = @D rutdr)

Y measurable set S CR,
(87)

where f, is the staircase-shaped function defined in (37).
Theorem 14: The staircase mechanism in the abstract set-
ting in Definition 4 achieves 2¢-differential privacy.
Proof: For any D1, Dy € D such that |D; — D,| < 1, and
for any measurable set S C R,

freS Sy (C(Dy, r))u(dr)

Po®) = @D, ryutdn) (88)
o s £y (C(Da, 1)) u(dr)
89
= £, €Dy, r)uldr) (89)
€ ¢ fres f)’ (C(D2, r)),u(dr)
90
= @D pan
= ¢*Pp, (), ©1)

where we have used the property that f,(C(Dy,r)) <
¢ f,(C(D2, 1) and f,(C(Da,r) < € f,(C(D1,r)) for
all r e R.

Therefore, the staircase mechanism in the abstract setting
achieves 2e-differential privacy for any y < [0, 1]. [ |

In the case that the output range R is the set of real
numbers R and the cost function C(d,r) = |r — g(d)| for
some real-valued query function ¢, the above mechanism is
reduced to the staircase mechanism in the continuous setting.

VIII. CONCLUSION

In this work we show that within the classes of mechanisms
oblivious of the database and the queries beyond the global
sensitivity, adding query-output independent noise with stair-
case distribution is optimal among all randomized mechanisms
(subject to a mild technical condition) that preserve differ-
ential privacy. The optimality is for single real-valued query
function under a very general utility-maximization (or cost-
minimization) framework. The class of optimal noise prob-
ability distributions has staircase-shaped probability density
functions which are symmetric (around the origin), monoton-
ically decreasing and geometrically decaying for x > 0.
The staircase mechanism can be viewed as a geometric



936 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 2, FEBRUARY 2016

mixture of uniform probability distributions, providing a
simple algorithmic description for the mechanism. Further-
more, the staircase mechanism naturally generalizes to discrete
query output settings as well as more abstract settings.

We explicitly derive the parameter of the staircase mecha-
nism with minimum expectation of noise amplitude and power.
Comparing the optimal performances with those of the stan-
dard Laplacian mechanism, we show that in the high privacy
regime (€ is small), Laplacian mechanism is asymptotically
optimal as € — 0; in the low privacy regime (e is large),
the minimum expectation of noise amplitude and minimum
noise power are ®(Ae_%) and @(Aze_%) as € — +o0,
while the expectation of noise amplitude and power using
the Laplacian mechanism are % and ze—Azz, where A is the
sensitivity of the query function. We conclude that the gains
are more pronounced in the moderate to low privacy regime.

We would like to point it out that the staircase mechanism
has been extended to the multidimensional setting in [53], and
the optimal mechanism is also studied in [54] for approximate
differential privacy under a similar optimization framework.

APPENDIX A
PROOF OF THEOREM 3

We first give two lemmas on the properties of {P;};cr which
satisfies (22).

Lemma 15: Given {P;},er satisfying (22), and given any
scalar oo € R, consider the family of noise probability
measures {P,(a)}teR defined by

PY LD, VieR (92)

Then {P,(a)},e]g also satisfies the differential privacy con-
straint, i.e., ¥Y|t] — | < A,
PLS) < e PYS +11 — 1), (93)

Furthermore, {P;};er and {P,(a)},ER have the same cost, i.e.,

sup [ LE&)Pdx)=sup [ L&)PP(dx).  (94)
teRJxeR teR JxeR
Proof:  Since by definition the family of probability

measures {P,(a)},e]g is a shifted version of {P;};cRr, (94) holds.

Next we show that {Pt(a)},e]g satisfies (93). Given any t1, f>
such that |f; — | < A, then for any measurable set § C R,
we have

P = PoalS) (95)

< e PrialS + (1 +a) — (2 + a)) (96)

= ¢ Pora(S+11 — 1) 97)

= PSS + 1 — 1), (98)

This completes the proof. [ ]

Next we show that given a collection of families of proba-
bility measures each of which satisfies the differential privacy
constraint (22), we can take a convex combination of them to
construct a new family of probability measures satisfying (22)
and the new cost is not worse. More precisely,

Lemma 16: Given a collection of finite number of families
of probability measures {”P,[l]},eR (i €{1,2,3,...,n}), such
that for each i, {Pt[l]},eR satisfies (22) and

Lx)PNdx) = 0, Vi,
xeR

sup 99)

teR

for some real number Q, consider the family of probability
measures {V;},er defined by

n
52> P, VieR, (100)
i=1
i.e., for any measurable set S C R,
n
5(8) = > aPls), (101)
i=1

where ¢; > 0, and 7, ¢; = 1.
Then {V;};er also satisfies
constraint (22), and

the differential privacy

L(x)vr(dx) < Q.
xeR

sup

teR

Proof: First we show that {V;},cr also satisfies the

differential privacy constraint (22). Indeed, V| — | < A,V
measurable set S C R,

(102)

By (8) = D aP(S) (103)
i=1

<D e P+ 1) (104)
i=1

= eV, (S+ 1 —n). (105)

Next we show that the cost of {V;};cr is no bigger than Q.
Indeed, for any ¢ € R,

/x ERE(x)f),(dx) = i;c,- /x ERE(x)f),[i](dx) (106)

<> 0 (107)
i=1
= Q. (108)
Therefore,
sup L(x)v(dx) < Q. (109)
teRJxeR
[ |

Applying Lemma 15 and Lemma 16, we can prove the
conjecture under the assumption that the family of probability
measures {P;},cr is piecewise constant and periodic over ?.

Proof of Theorem 3: We first prove that for any family
of probability measures {P;},cr € Kr,,, there exists a new
family of probability measures {P;};cr € Kr,, such that
75; =P forallt e R, i.e., the added noise is independent
of query output 7, and

£(x)75, (dx) < sup
teR

L(x)P:(dx).
xeR

sup (110)

teR JxeR
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Indeed, consider the collection of probability measures
;T
{P(Z )},ER fori €{0,1,2,...,n—1}, where {P(a)} is defined

in (92). Due to Lemma 15, for all i, {7? },ER satisfies the
differential privacy constraint (22), and the cost is the same
as the cost of {P;};cRr-

Define

(111)

nfl1 (-T)
P=> —P'".

Then due to Lemma 16, {P;},cr satisfies (22), and the cost
of is not worse, i.e.,

sup L(x)P;(dx) < sup L(x)P,(dx). (112)
teRJxeR teR JxeR
Furthermore, since {P;},cr € Kr,,, for any r € R,
n—1 n—1
~ 1 _aLy 1
Pt:;#?, :%;Pi%. (113)
1= 1=

Hence, 75, is independent of 7.

Therefore, among the collection of probability measures
in Ur>o Up=1 K7,,, to minimize the cost we only need to
consider the families of noise probability measures which are
independent of the query output . Then due to Theorem 4,
the staircase mechanism is optimal among all query-output-
independent noise-adding mechanisms. This completes the
proof of Theorem 3. u

APPENDIX B
PROOF OF THEOREM 4

In this section, we give detailed and rigorous proof of
Theorem 4.

A. Outline of Proof

The key idea of the proof is to use a sequence of proba-
bility distributions with piecewise constant probability density
functions to approximate any probability distribution satisfying
the differential privacy constraint (33). The proof consists
of 8 steps in total, and in each step we narrow down the
set of probability distributions where the optimal probability
distribution should lie in:

o Step 1 proves that we only need to consider symmetric

probability distributions.

o Step 2 and Step 3 prove that we only need to consider
probability distributions which have symmetric piecewise
constant probability density functions.

o Step 4 proves that we only need to consider those sym-
metric piecewise constant probability density functions
which are monotonically decreasing for x > 0.

o Step 5 proves that optimal probability density function
should periodically decay.

o Step 6, Step 7 and Step 8 prove that the optimal
probability density function over the interval [0, A)
is a step function, and they conclude the proof of
Theorem 4.

B. Step 1
Define

V* 2 inf (114)

L(x)P(d

Jnt [ cwpan,
; *

Our goal is to prove that V* = yél[lof,l]f"ER L(x)Py (dx).

If V* = 400, then due to the definition of V*, we have

inf
7€l0,1] /xe

and thus inf, cjo,1) [, g £L(x) =
to consider the case V* < +oo, i.e., V* is finite. Therefore,
in the rest of the proof, we assume V* is finite.

First we prove that we only need to consider symmetric
probability measures.

Lemma 17: Given P € SP, define a symmetric probability
distribution Py, as

A P(S)+P(=S)
2 b

L(x)Py(dx) = V* = 400, (115)
R

* = 400. So we only need

Poym(S) = Y measurable set S C R,

(116)

where the set —S 2 {—x | x € S}. Then Psym € SP, i.e., Pyym
satisfies the differential privacy constraint (33), and

/ LX) Psym(dx) = / L(x)P(dx).
xeR xeR

Proof: It is easy to verify that Psyy, is a valid probability
distribution. Due to the definition of Pgyy in (116), we have
PS)+P(=S)

Psym(S) = f = Psym(_S),
for any measurable set S C R. Thus, Psyy is a symmetric
probability distribution.

Next, we show that Pgyn, satisfies (33). Indeed, V measurable
set SCR and V|d| < A,

(117)

(118)

P(S) + P(—S

7)sym(S) = % (119)
- e“P(S +d) +28573(—S —d) (120)

_ eP(S+ad) +§‘P(—(S+d)) o)

= eepsym(S +d), (122)

where in (120) we use the facts P(S) < e“P(S + d) and
P(=S8) < e“P(=S —d).
Lastly, since L£(x) is symmetric,

/ LO)P(dx) = / LT LED by (123)
xeR xeR 2
= / L(x)Psym(dx). (124)
xeR
]
Therefore, if we define
SPoym = {Psym|P € SP}, (125)
due to Lemma 17,
Lemma 18:
V*= inf L(x)P(dx). (126)

PeSPsym JxeR
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C. Step 2

Next we prove that for any probability distribution P
satisfying differential privacy constraint (33), the probability
Pr(X =x) =0,Vx € R,and P([y, z]) # Oforany y < z € R.

Lemma 19: VP € SP, Vx € R, P({x}) = 0. And, for any
y<zeR, Py, z]) #0.

Proof: Given P € SP, suppose P({xo}) = po > 0, for
some xo € R. Then for any x € [xg, xo + A],

P({x}) = e, (127)

due to (33).

So P({x}) is strictly lower bounded by a positive constant
for uncountable number of x, and thus P ([xg, xo+ A]) = 400,
which contradicts with the fact P is a probability distribution.

Therefore, VP € SP, Vx € R, P({x}) = 0.

Suppose P([y, z]) = 0 for some y < z € R. Then from (33)
we have for any |d| < A,

P(y+d,z+d]) <eP(y,z]) =0,

and thus P([y + d,z + d]) = 0. By induction, for any
k € Z, P(ly + kd,z + kd]) = 0, which implies that
P((—00, +00)) = 0. Contradiction. So for any y < z € R,
P(ly,z]) # 0. u

(128)

D. Step 3

In this subsection, we show that for any P € SPgym with

V(P) é/ L(x)P(dx) < 400, (129)
xeR
we can use a sequence of probability measures
{(Pi € SPsym}i=1 with symmetric piecewise constant
probability density functions to approximate P with
limj— 400 V(Pi) = V(P).
Lemma 20: Given P € SPgyn with V(P) < +oo, any
positive integer i € N, define P; as the probability distribution
with a symmetric probability density function f;(x) defined as

a P2+ 2)
2 =Ly

ax X € [kl—l.),(k—i-l)lg)forkeN
filx) = ;
fi(=x) x <0
(130)
Then P; € SPyym and
lim V(P;) = V(P). (131)
1——+00

Proof:  First we prove that P; € SPgym, ie., P; is

symmetric and satisfies the differential privacy constraint (33).

By definition f;(x) is a symmetric and nonnegative func-
tion, and

+00 +00
fikx)dx =2 fix)dx (132)
—00 0
= 2/ P(dx) (133)
x€[0,+00)
= 2/ P(dx) (134)
x€(0,400)
=1, (135)

where in (134) we used the fact P({0}) = 0 due to Lemma 19.
In addition, due to Lemma 19, a; > 0, Vk € N.
So fi(x) is a valid symmetric probability density function,
and thus P; is a valid symmetric probability distribution.
Define the density sequence of P; as the sequence
{ag, ar,az,...,a,,...}. Since P satisfies (33), it is easy to
see that

aj <e‘ajir and ajix < e‘aj, Vj>0, 0<k<i (136)

Therefore, for any x, y such that [x — y| < A, we have
fitx) < e fi(y) and fi(y) < e fi(x), (137)

which implies that 7; satisfies (33). Hence, P; € SPsym.
Next we show that
lim V(Py) = V(P). (138)
i1—+00
Since L(x) satisfies Property 2, we can assume there exists
a constant B > 0 such that
L(x+1)<BL(x), Vx>T. (139)

Given 6 > 0, since V(P) is finite, there exists integer
T* > T such that

/ L(x)P(dx) < é (140)
x>T* B
For any integers i > 1, N > T*,
/ L(x)Pi(dx) < Pi(IN,N +1)L(N +1) (141)
X€[N,N+1)
=P(N,N+1)LN+1) (142)
< / BL(x)P(dx). (143)
X€[N,N+1)
Therefore,
/ L(x)P;(dx) 5/ BL(x)P(dx) (144)
x€[T*,400) x€[T*,400)
0
B— 14
< B (145)
= 0. (146)

For x € [0, T*), L(x) is a bounded function, and thus by
the definition of Riemann-Stieltjes integral, we have

lim
i—00

L(x)Pi(dx) = /

xel0,T

L(x)P(dx). (147)
x€l[0,T%) )

So there exists a sufficiently large integer i* such that for
all i > i*

/ L(x)P;(dx) —/ L(x)P(dx)
x€[0,7%) xel0,7%)

<J. (148)
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Hence, for all i > i*

[V(Pi) — V(P

/ L(x)P;(dx) —/ L(x)P(dx)
xeR xeR

L(x)Pi(dx) — /

xe[0,T%)

+ / LE)Pi(dx) - / LGP
xe[T*,+00) xe[T*,+00)

/ L(x)P;(dx) — / L(x)P(dx)
xe[0,T%) xe[0,T%)

+2/ L(x)Pi(dx) + 2/ L(x)P(dx)
x€[T*,+00) xe[T*,+00)

=2
xe[0,7%)

L(x)P(dx)

<2

b}
20040+ —
§(++B)

2
< @+ —)o.
< @4+ B)
Therefore,

lim L(x)Pi(dx) = / L(x)P(dx). (149)
xeR

i—>+00 JxeR
|

Define SP; sym L (PP e SPsym} fori > 1, ie., SP;sym
is the set of probability distributions satisfying differential pri-
vacy constraint (33) and having symmetric piecewise constant
(over intervals [k%, (k + 1)%) Yk € N ) probability density
functions.

Due to Lemma 20,

Lemma 21:

V= inf

L(x)P(dx).
PeU SPiym JxeR ()P (dx)

(150)

Therefore, to characterize V*, we only need to study prob-
ability distributions with symmetric and piecewise constant
probability density functions.

E. Step 4

Next we show that indeed we only need to consider those
probability distributions with symmetric piecewise constant
probability density functions which are monotonically decreas-
ing when x > 0.

Lemma 22: Given P, €  SPisgm with symmetric
plecewise constant probability density function f(-), let
{ag,ay, ..., an, ...} be the density sequence of f(-), i.e,

A A
fx)=ar, xelk—,(k+1)—) YkeN. (151)
l l

Then we can construct a new probability distribution
Py € SPisym the probability density function of which is
monotonically decreasing when x > 0, and

/ L(x)Pp(dx) < / L(x)P,(dx). (152)
xeR xeR
Proof: Since a; > 0, Yk € N, and
35 : (153)
ak— = =,
P 2

we have limy_, 400 ax = 0.

Given the density sequence {ag,ai,...,dn,...},
construct a new monotonically decreasing density sequence
{bo, b1, ..., by, ...} and a bijective mapping 7 : N — N as
follows

Iy = arg max ay, (154)

keN

7(0) = miInn, i.e., the smallest element in Iy, (155)
nelgp

bo = aﬂ.’(())’ (156)

Vm € Nand m > 1, (157)

I, = argmax a, (158)

keN\{z (j)Ij <m}

w(m) = mi[n n, i.e., the smallest element in 1,,,, (159)
nely,

by = Ax(m)- (160)

Since the sequence {ar} converges to 0, the maximum

of {ay} always exists in (154) and (158). Therefore, I, is
well defined for all m € N.
Note that since Y o ak% = % and the sequence {by}ren
is simply a permutation of {ax}ren, > fo i bk% I
Therefore, if we define a function g(-) as

by xelkZ, k+DL)forkeN
g(x) = ! !
g(—=x) x <0

(161)

then g(-) is a valid symmetric probability density function,
and

/ L(x)g(x)dx < / L(x) f(x)dx. (162)
xeR xeR

Next, we prove that the probability distribution P, with
probability density function g(-) satisfies the differential pri-
vacy constraint (33). Since {b }ren 1S @ monotonically decreas-
ing sequence, it is sufficient and necessary to prove that for
all k e N,

b
Ko< ef, (163)
by

To simplify notation, given k, we define

a*(k) = min a, (164)

k<j<k+i

ie., a*(k) denotes the smallest number of
{ak, aks1,s - - .5 Ay )

First, when k = 0, it is easy to prove that % < ¢€. Indeed,
recall that by = a; () and consider the i + 1 consecutive
numbers {az (), dz (0)+1, - - - » Az (0)+i} in the original sequence
{ax}ren. Then a*(0) < b;, since b; is the (i + 1)th largest

number in the sequence {ay}rcn. Therefore,

bo _ az _

_— = M<ef
b; b; '

165
<o S (165)

For k = 1, by = az(1) and consider the i + 1 consecu-
tive numbers {ar (1), @z (1)+1> - --» dz()+i)- If w(0) ¢ [z (1),
(1) +i], then a*(x (1)) < b;41, and thus

bi _arqy _ _4zy  _ e
biy1 biyi — a*(@(1)) T

(166)
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Algorithm 2 Identifying j* such that j*x < k and a*(z (j*)) <
i+
Jt <k
while there exists some j < kand z; € [z (j*)+1, w(j*)+
i] do
Jt
end while
Output j*

If #(0) € [#(1),z(1) + i], then a*(x(0)) < bj;; and
a*a('ff?&)) < e€. Therefore,
b b b
Lo X o (167)
bi+1 ~ bi+i — a*(x(0))

Hence, %ﬁ_ < ¢€ holds for k = 1.
1
In general, given k, we prove % < e€ as follows. First,
1

if 7 ¢ [m(k), (k) +i], Vj <k, then a*(z (k)) < bryi, and

hence
bk _ a”(k) < a”(k) < € (168)
bivk b1+k a*(m(k))

If there exists j < k and 7; € [w(k) + 1,z (k) + i], we use

Algorithm 2 to compute a number j* such that j* < k and
7 ¢ lw(j*) + 1w +il V) <.

It is easy to show that the loop in Algorithm 2 will terminate
after at most k steps.

After finding j*, we have j* < k, and a™(w (j*)) < bg4i-

Therefore

b o Gnn o _GnGY e (169)

bivk = bitk ~ a*(w(j*))
So % < ¢° holds for all k € N. Therefore, P € SP; sym.
This completes the proof of Lemma 22. [ ]

Therefore, if we define

SPimd L (PP e SPisym, and the density sequence of P
is monotonically decreasing},

then due to Lemma 22,
Lemma 23:

V* = inf

L(x)P(dx).
pEU?iISP,"md xeR (X) ( X)

(170)
F Step 5

Next we show that among all symmetric piecewise constant
probability density functions, we only need to consider those
which are periodically decaying.

More precisely, given positive integer i,

SPipd = {P|P € SPimd, and P has density sequence
= ¢, Vk € N},

{ap, a1, ..., an,...,} satisfying

Ak+i
then
Lemma 24:

V= inf

L(x)P(dx).
PEU?iIS'Pi’pd xeR ( ) ( )

(171)

Proof: Due to Lemma 23, we only need to consider
probability distributions with symmetric and piecewise con-
stant probability density functions which are monotonically
decreasing for x > 0.

We first show that given P, € SP; mg with density sequence
{ag,ay, ..., an,...,}, if “0 < ¢¢, then we can construct a
probability distributions Pb € 8731 md With density sequence
{bo, b1, ..., bn,...,} such that ”g = ¢¢ and

V(Pa) = V(Pp).

Define a new sequence {bg,b1,...,b,,...} by scaling
up aop and sealing down f{aj,az,...}. More precisely, let

(172)

_ i _
0= 2D((%7a0)e—52—?+a0) 1 > 0, and set
by = ao(1 + 9), (173)
by = ar(1 =96, VYk=>1, (174)
where § £ ,-”0‘3“ > 0, and we have chosen J such that
. 2D~ 90
by _ ag _ 354 €
bi .dk m—ao
It is easy to see the sequence {bg, b1,...,by,...,} cor-

responds to a valid probability density function and it also
satisfies the differential privacy constraint (33), i.e.,

b
ko <ef, Vk>o0. (175)
Di+i
Let P, be the probability distribution  with
{bo, b1, ...,by,...,} as the density sequence of its probability

density function. Next we show V(Pp) < V(P,).
It is easy to compute V (Pa), which is

(k+1)2
V(P,) =2= (ao / £(x)dx+2ak /k E(x)dx).

(176)
Similarly, we can compute V (Pp) by
V(Pp)

(et %
=2- (bo / E(x)dx—i—Zbk / " £(x)dx)

= V(Pa)

( 2
+2= (a05 / L(x)dx — & Zak / e z(x)dx)
k2

i

A 0
= V(P) +25 -2
l YN ap
o0 A 0 (k+1) 2
X Zak/ £(x)dx—2ak/A L(x)dx
=170 k=1 kT
A 0
= V(P +25
1 ﬁ — ag
(k+1)—
xZak / £(x)dx—/ L(x)dx
S V(Pa)5
where in the last step we used the fact that
fo L(x)dx — (k+1)’ L(x)dx) < 0, since L(-) is a

monotonically i 1ncreasmg function for x > 0.
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Therefore, for given i € N, we only need to consider
P € SPima with density sequence {aop,dai,...,an,...}
satisfying Z—? = ¢f.

Next, we argue that among all probability distributions
P € SPimd with density sequence {ag,ai,...,an,...,}
satisfying Z—f’ = ¢¢, we only need to consider those probability
distributions with density sequence also satisfying ai% = ¢€.

Given P, S SPima with density sequence

a

. . a
{ao,ai, ..., an,...} satisfying 2 and a_i+11 e‘,

we can construct a new probability distribution P, € SP; md
with density sequence {bg, b1, ..., by, ...} satisfying

=e€

by B
= = 177
b e, (177)
by,
= e, (178)
bit1

and V(P,) = V(Pp).

First, it is easy to see aj is strictly less than ag, since if
ap = ay, then ai% = a"% > Z—? = ¢€. Then we construct a new
density sequence by increasing a; and decreasing a;41. More

precisely, we define a new sequence {bg, b1, ..., by, ...} as
by =ay, Yk#1, k#i+1, (179)
by = a1+, (130)
bit1 = ajy1 — 9, (181)
where § = eéal'jr%a' and thus b{% = ¢€.
It is easy to verify that {bg,by,...,b,,...} is a valid

probability density sequence and the corresponding probability
distribution P}, satisfies the differential privacy constraint (33).
Moreover, V(P,) > V(Pp). Therefore, we only need to con-
sider P € SP; md with density sequences {ag, a1, ..., an, ...}
satisfying Z—? = ¢€ and % = ¢f.

Use the same argument, we can show that we only
need to consider P € SP;mg with density sequences

{ap, ar,...,a,, ...} satisfying
Gk _ o€ Wk >0. (182)
di+k
Therefore,
V¥ = inf L(x)P(dx). (183)
PeU2 SPipd JxeR
|

Due to Lemma 24, we only need to consider probability
distribution with symmetric, monotonically decreasing (for
x > 0), and periodically decaying piecewise constant prob-
ability density function. Because of the properties of sym-
metry and periodically decaying, for this class of probability
distributions, the probability density function over R is com-
pletely determined by the probability density function over the
interval [0, A).

Next, we study what the optimal probability density function
should be over the interval [0, A). It turns out that the optimal
probability density function over the interval [0, A) is a step
function. We use the following three steps to prove this result.

G. Step 6

Lemma 25: Consider a probability distribution P, €
SPipa (i = 2) with density sequence {ao,ay, ...,a,...}
and a?—i)l < e°. Then there exists a probability distribution

Py € SP;pa with density sequence {by, by, ..., by, ...} such
that lf—o = e, and
i—1
V(Pp) < V(Pa). (184)
Proof: For each 0 <k < (i — 1), define
oo eGHEDA
wi £ eI / L(x)dx. (185)
20 (+Ha

Since L(-) satisfies Property 2 and V* < oo, it is easy to
show that the sum of series in (185) exists and is finite, and
thus wy is well defined for all 0 < k < (i — 1). In addition, it
is easy to see

wo <wp Swp <-e- < Wiy, (186)
since £(x) is a monotonically increasing function when x > 0.

Then
i—1
V(Pa):/ LO)Paldx) =2 wiar.  (187)
xeR k=0

Since aa_ol < e, we can scale ag up and scale {ay, ..., a;—1}
i

down to derive a new valid probability density function with
smaller cost. More precisely, define a new probability measure

Py € SPipa with density sequence {bg, by, ..., by,,...} via
bo £ 7y ao, (183)
by £ y'ar, Vl<k<i-—I, (189)
for some y > 1 and y’ < 1 such that
bo c
=e°. (190)
bi—1

To make {bg, b1, ...,bn,...} be a valid density sequence,
i.e., to make the integral of the corresponding probability
density function over R be 1, we have

€ -

Sh=Yam=t

(191)
k=0 k=0
Define + £ 1=¢" L then we have two linear equations on
y and y’:
yap = ey’ (192)
yao+7y'(t —ap) =t. (193)
From (192) and (193), we can easily get
e 1ai1 1 (194)
= >
/ aop(t —ap +eaj—1)
t
s <. 195
Y t—aog+e‘ai— (195)
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Then we can verify that the V(P,) > V(P,). Indeed,

V(Pa) = V(Pp) (196)
= / L(x)P,4(dx) —/ L(x)Pp(dx) (197)
xeR xeR
i—1 i—1
=2 wa —2 ) wiby (198)
k=0 k=0
i—1
= 2((1 — Pwoao + (1 —7) > wkak) (199)
k=1
i—1
= 2((1 — Pwoao + (1 —7) > woak) (200)
k=1
= 2((1 — y)woao + (1 — yYwo(t — ao)) (201)
aj—1€et —ap + e‘aj—1
=2 - — St
wo (ao PR — +( ao)t mp— 6601‘—1)
(202)
—0. (203)
This completes the proof. [ ]

Therefore, due to Lemma 25, for all i > 2, we only need
to consider probability distributions P € SP; pq with density
sequence {ao, ay, ..., d,, ...} satisfying ;—EI = ef.

More precisely, define

SPisr = {P € SPipalP has density sequence

{ag, ai, ..., ay, ...} satisfying o _ ey,
aj—1
Then due to Lemma 25,
Lemma 26:
V* = inf L(x)P(dx). 204
Peuisp., Jin (x)P(dx) (204)
H. Step 7
Next, we argue that for each probability distribution
P € SPix (G = 3) with density sequence
{ag,ai, ...,a,,...}, we can assume that there exists an

integer 1 < k < (i —2), such that

VO < j <k,
Vk < j <i.

(205)
(206)

aj = aop,

aj = aj-1,

More precisely,

Lemma 27: Consider a probability distribution P, € SP; 4
(i > 3) with density sequence {ag, ai, ..., an,...}. Then there
exists a probability distribution P, € SP,ps with density
sequence {by, b1, ...,by, ...} such that there exists an integer
1 <k<(—2)with

b =ap, YO<j<k, (207)
bj = daj—1, Vk <j < i, (208)

and
V(Pp) < V(Pa). (209)

Proof: 1f there exists integer 1 < k < (i — 2) such that

aj =ap, Y0<j <k, (210)
aj =aj—1, Yk <j<I, (211)
then we can set P, = P,.
Otherwise, let k; be the smallest integer in
{0,1,2,...,i — 1} such that
ag, # ao, (212)

and let ko be the biggest integer in {0, 1,2,...,i — 1} such
that

ay # i1 (213)

It is easy to see that k1 # k. Then we can increase ax, and
decrease ay, simultaneously by the same amount to derive a
new probability distribution P, € SP; s with smaller cost.

Indeed, if
(214)

ap — Ak, = Ak, — Ai—1,

then consider a probability distribution P, € SP;s with

density sequence {bg, b1, ...,bi_1, ...} defined as
bj = ap, V0 < j <k, (215)
bj =aj;, Yk <j=<ky—1, (216)
by, = ar, — (ap — ax,), (217)
bj=uaj;, Vky<j<i—1. (218)
We can verify that V(P,) > V(Pp) via
V(Pa) — V(Pp) (219)
= L(x)P,(dx) — L(x)Pp(dx) (220)
xeR xeR
= 2(wk, bk, + Wi, bi,) — 2(wi, ax, + Wk, ar,) (221)
= 2wk1 (a() - akl) + 2wkz (akz - (a() - akl) - akz) (222)
= 2(ao — ak,)(wk, — w,) (223)
<0, (224)

where w; is defined in (185).
If ap — ax, > ax, —ai—1, then accordingly we can construct
Py € SPi s by setting

bj =ag, YO=<j <k, (225)
by, = ar, + (ax, — ai-1), (226)
bj=aj, Vki<j<k —1, (227)
bj=ai1, Yky<j<i—l (228)

And similarly, it is easy to verify that V(P,) > V(Pp).
Therefore, continue in this way, and finally we will obtain
a probability distribution P, € SP; s with density sequence

{bo, b1, ...,by,, ...} such that (207), (208) and (209) hold.
This completes the proof. [ ]
Define

SPistep = {P € SPis | P has density sequence
{ap, ai, ..., ay, ...} satisfying (207) and (208)

for some 1 <k < (i —2)}.

Then due to Lemma 27,
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Lemma 28:

V* = inf

= L(x)P(dx).
PeUX:SPisep JxeR (xyP(dz)

(229)

I Step 8
Proof of Theorem 4: Since {P,|y € [0, 1]} € SP, we have

‘/ = ]. I L 7: (1 i f i .

We prove the reverse direction in the following.
We first prove that for any P € SPjgep (i > 3), there
exists y € [0, 1] such that
/ L(x)P, (dx) < / L(x)P(dx). (231)
xeR xeR
Consider the density sequence {ag, ai,...,an,...} of P.

Since P € SP; step» there exists an integer 0 < k < i —2 such
that

aj =ap, Y0 <j <k, (232)
aj =ape ¢, Yk <j<i-—L (233)
Let
l—e”€ —€
ra 35 90¢
= =2 ¢[0,1]. 234
Y a0 — o) (0, 1] (234)
Then a(y’) = aop.
It is easy to verify that
A A
k—<y'A<(k+1)—. (235)
i i

The probability density functions of P and P, are the
same when x € [0, %A) U [k“l;lA, A). Since the integral of
probability density functions over [0, A) is 1_5_6 due to the

periodically decaying property, we have

A k k+1
ak7 =ao(y’ — lf)A + e “ap( _:_ —y)A.  (236)
Define # £i(y’ — %) € [0, 1]. Then
ar = fag+ (1 — Be “ap. (237)
Define
e GHA
wi) 237 e / L(x)dx, (238)
=0 (G+Ha
o GHEHA
w2 e L(x)dx. (239)
= G474

Note that w; = w,(cl) + w}gz). Since L(x) is a monotonically

increasing function when x > 0, we have
2 . .
w? GHSHA-G0A -y

o T GHa-G+ha Ty

1| <

d (240)
VT

Therefore,
/ L)P(dx) — L(x)P,(dx) (241)
xeR xeR
= 2way — 2 (w,({l)ao + w,({z)aoe*) (242)
=2 (0" + 0) a2 (a0 + 0P a0e™)  (243)
= 2(ax — aoefg)wlgz) —2(ag — ak)w,({l). (244)
Since
ar —age”* __ Plao —ape™) (245)
ap — a (1 = p)(ao — age™)
_ I (246)
-5
k
Y =3
=& (247)
- =7
o
> k- (248)
Ne)
k
we have
/ L(x)P(dx) —/ L(x)P,(dx) (249)
xeR xeR

= 2(ay — aoe_é)wlgz) — 2(ap — ak)wlgl) (250)

> 0. (251)
Therefore,
V* = inf L(x)P(dx) (252)
PEU,'O23SP[,Step xeR
> inf L(xX)P, (dx). 253
= ] (x)Py (dx) (253)
We conclude
V* = inf / L(x)P(d 254
Al e (x)P(dx) (254)
= inf L(x)P, (dx 255
) e (x)Py (dx) (255)
= inf L(x) f, (x)dx. (256)
7€l0, 1]/ xeRr
This completes the proof of Theorem 4. [ ]
APPENDIX C

PROOF OF THEOREM 5

Proof of Theorem 5: Recall b £ ¢, and L(x) = |x|.
We can compute V(P,) via

VP = [ s eds (257)
xeR
+00
= 2/ xf7 (x)dx (258)
0
+o0 y A
= 22(/ (x + kA)a(y)e *dx
k=0 70
A
+ / (x + kA)a(y)e e dx) (259)
yA
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=2A%(y)
+oo 2 2 2 2
ke k7)) =k _gaye kD7 —(k+y)
X Z (e 72 +e 3
k=0
(260)
= 2A%a(y)
+00 2 2
» Z (eke y=+ 2ky +ef(k+1)52k +1—2ky — vy )
2 2
k=0
(261)
+o00 2
b+(1—b
=2A%(y) Y ((b+(1—b)y)ke—kf + %e‘k‘)
k=0
(262)
b b+(1-b)y? 1
=2A? b+(1—b
a(y)(( +( )y)(l_b)ﬁ 7 =5
(263)
a2 1—b
N 2A(b+ (1 —b)y)
b b+(1—b)yy? 1
b+(1—b
x((+( )y)(l_b)2 5 -
(264)
b 1b+ (1 —b)y?
— A L 1o+ =by7y (265)
1—b 2b+(1—b)y
where in (263) we use the formulas
~+00
> b= b (266)
1-0b
k=1
iokbk __> (267)
P - (1-b)2

Note that the first term % is independent of y. Define

b+(1-b)y?
b+ (1—b)y’
and thus to minimize V (P, ) over y € [0, 1], we only need to
minimize g(y) over y € [0, 1].
Since y € [0, 1], g(y) < 1. Also note that g(0) = g(1) = 1.
So the optimal y * which minimize g(y) lies in (0, 1).
Compute the derivative of g(y) via

2y (L=b)(b+ (1 =b)y) = (b + (1 = b)y*>)(1 —b)

gy) £ (268)

§0) = b+ —b)y)?
(269)
(1—b)y2+2by —b
=(1- 2
D =y 70
Set g'(y*) = 0 and we get
Vb—b
ye=—y 271)
e"2¢ —e €
= ° (272)
I —e¢
1
= . (273)

1+e3

Therefore,
— *2
v@%)=A(15b+%Zi%_§%*) @74)
e?
=A 1 (275)
Due to Theorem 4, thefminimum expectation of noise
amplitude is V(P,+) = Aef—zl. [ ]

APPENDIX D
PROOF OF THEOREM 7

Proof of Theorem 7: Recall b £ ¢~¢. Then we compute
V (P, ) for the cost function L(x) = x? via

V(P)) = / sz f7 (x)dx (276)

_Az(bz—i-b +b+(1—b)y2 b 1b+(1—b)y3)
- (1—-b)2 " b+(1—=b)y 1=b 3 b+(1—=b)y )
(277)

b2 +b
(1-b)?
h()éb—i-(l—b)yz b 1b+(1—0b)y?
D W A =by 1=b  3b+U—-b)y
(1-b)y3 2, b0 b
:T)V“’V tist3 279)
b+ (1 —Db)y ’

and thus to minimize V (P, ) over y € [0, 1], we only need to

minimize a(y) over y € [0, 1].

Since y € [0,1], A(y) < % + % Also note that
h(0) = h() = % + % So the optimal y * which minimize
h(y) lies in (0, 1).

The derivative of h(y) is

Note that the first term

is independent of y. Define

(278)

2(1 = b)2y 3 +2b(1 — b)y 2 + 2%y — 224D

W(y) =2
) G+ (—by )
(280)
Set /(y*) = 0 and we get
2 202+ b
~(1 =Py 261 = by 25y % —0.
(281)

Therefore, the optimal y * is the real-valued root of the cubic
equation (281), which is

b (b — 2b% +2b* — b)1/3
1—b 213(1 — b)2

We plot y* as a function of b in Figure 4, and we can see

y*— % as € — 0, and y* — 0 as € — +oo. This also holds

in the case L£(x) = |x|.
Plug (282) into (277), and we get the minimum noise power

22723023 (14 b)2 P + b

*

y* = (282)

V(P,«) = A 283
Due to Theorem 4, the minimum expectation of noise power

. 272/3b2/3 14b 2/3 b
is V(Py«) = Az—(lib“;z) 0 [ ]
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APPENDIX E
PROOF OF THEOREM 9

Proof of Theorem 9: Let n = m + 1, and define

+00
ci & DK,
k=0

for nonnegative integer i.
First we compute V(P,) via

(284)

+00 7 A
V) =23 ([ ke e
k=0 0

A
(x +kA)Y"a(y)e” KDy
y A

+o0o
k+y)"
= 2ua Am+1 bk(
) %( pa—

bk+1 (k 4 1)m+1 (k + y)m+1
m—+ 1

—2A"a(y)2(bk—z’ Dy

k=0
(d -y

n
:2Ana(y)(z() bz -7 )cn l)
i=1
—2A"a(y)z Cn z(y (1_b)+b)
2A"(1—b)zl 1 (Nen—i('(1 = b) +b)
2An y(1—=>b)+b

+1 _ km+1

)

+ bb* 2izi

Let hi(y) 2 2P for i > 2. Since £;(0) = hi(1) = 1

and h;(y) < 1 for y € (0, 1), h;(y) achieves the minimum
value in the open interval (0, 1).
Z, 1()Cn (! (1 —b)+b)

Therefore, if we define h(y) £ T=b)7h , the
optimal y* € [0, 1], which minimizes V (P, ), should satisfy

h'(y*) =0,

where h'(+) denotes the first order derivative of A(-).
It is straightforward to derive the expression for 4'(-):

(285)

h( _4 286
where
Aim (")c L= 1)y - by
i=1
+ (")c iy (A= b)b — Z( )cn ib(1-b),
i=1 i=1
and

= (y (1 — b) + b)>.

* should make the numerator of (286),

satisfies

A=0.

Therefore, y
i.e., A be zero, i.e., y*

(287)

Since
3 (’i’)cni(i — i - by
i=1
+ (")c iy A= by — Z( )c,, ib(1 = b)
1

i=1

n ) ;
- 1)Cn—(i+1)(l + Dy (1 =b)b

-3 (")c _ib(1 = b)
n—1
=con — 1)p"(1 —b)* + l_:zl((';)cni(i — 1)1 —b)?
+ ( j 1)cn_<,-+1>(i + 1)1 = b)b)y’

+nep—1(1 = b)b — Z( )c,, ib(1 —b)

= co(n = 1)y"(1 =b)* + ' Z( )cn (i — 1)1 =b)

iy (1- N l)cn(i+1)(i + 11— b

i=1

— Z (")c _ib(1 = b),

* satisfies

y

con — 1)y *"(1 — b)? +y*’z( )cn i = (1 = b

i=1

n—1
; n

) 1 (i N 1)cn_(,-+1)(i +1)(1=b)b
=

—Z( )cn ib(1 — b)

-0 (288)

We can derive the asymptotic properties of y * from (288).
Before deriving the properties of y*, we first study the
asymptotic properties of ¢;, which are functions of b.

There are closed-form formulas for ¢; (i =0, 1, 2, 3):

(289)

(290)
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+00 2
b2 +b
_ kp2 _
o= > bk = 0o (291)
k=0
+o0 3 2
b3 +4b% + b
_ k3 _
= > bk = a5 (292)
k=0

In general, for i > 1,

+00 ] +00 ) +00 '
Cipl = Zbkkl+1 — Zbkkl+1 =b4+ Zbk+l(k + 1)l+1’
k=0 k=1

k=1
(293)
+o00 ) +o00 )
bCi+1 — Zbk+1kl+l — Zbk+1k1+l. (294)
k=0 k=1
Therefore,
+o00 ) )
cipt —beipr = b+ D B+ DT kT (295)
k=1
+00 i i1 )
=b+ > b Z( , )kf (296)
k=1 j=0 J
i i+ 1 +o00 i
:b—i—bZ( _ )Zk’bk (297)
= J —
+1
— b+b(—+2(l ; ) ) (298)
b L+
:m—i—bZ( ; )c,, (299)
j=1
and thus
b b (it
i1 = — . 300
Ci+1 (1—b)2+1—bz(] )Cj ( )

j=1
From (300), by induction we can easily prove that
e asb—>0,¢; > 0,Vi > 1,

e ash—1,Vi>0,¢; — +00,¢; = Q((1 b),+1) and

lim S (1 by =i+ 1.

b—1 ¢;

As b — 0, since ¢; — 0 fori > 1 and ¢y = 1, the last two
terms of (288) go to zero, and thus from (288) we can see
that y* goes to zero as well.

As b — 1, since ¢; = Q( :+1) and y * is bounded by 1,
the first term of (288) goes to zero, and the dominated terms
in (288) are

(Z)cn_ﬂ(l —byby* — (;)cn_zb(l —b)=0. (302)

(301)

*

Thus, in the limit we have y* = % Therefore, as b — 1,

* 1

This completes the proof. [ ]

APPENDIX F
PROOF OF THEOREM 12 AND THEOREM 13

In this section, we prove Theorem 12 and Theorem 13,
which give the optimal noise-adding mechanisms in the dis-
crete setting.

A. Outline of Proof

The proof technique is very similar to the proof in
the continuous settings in Appendix B. The proof consists
of 5 steps in total, and in each step we narrow down the
set of probability distributions where the optimal probability
distribution should lie in:

o Step | proves that we only need to consider probability

mass functions which are monotonically increasing for
i <0 and monotonically decreasing for i > 0.

o Step 2 proves that we only need to consider symmetric
probability mass functions.

o Step 3 proves that we only need to consider symmetric
probability mass functions which have periodic and geo-
metric decay for i > 0, and this proves Theorem 12.

o Step 4 and Step 5 prove that the optimal probability
mass function over the interval [0, A) is a discrete step
function, and they conclude the proof of Theorem 13.

B. Step 1

Recall SP denotes the set of all probability mass functions
which satisfy the e-differential privacy constraint (79). Define
+00

V*£ inf LE)P®G). 303
inf _Z ()P ) (303)

i=—00
First we prove that we only need to consider probability
mass functions which are monotonically increasing for i < 0

and monotonically decreasing for i > 0.
Define

SPmono = {P € SPIP(i) < P(j), P(m) = P(n),

Vi <j<0,0<m<n}.

Lemma 29:

400
inf Z LOPG).

PESPmono .
i=—00

V* = (304)
Proof: We will prove that given a probability mass
function P, € SP, we can construct a new probability mass
function P, € SPmono such that
+00 +00
> LOPL) = D LGP (305)
1=—00 1=—00
Given P, € SP, consider the sequence sa =
{Pa(0), Pa(1), Pu(—1), Py(2), Pa(—2),...}. Use the same
argument in Lemma 19 and we can show P,(i) > 0,
Vi € Z. Let the sequence sb = {by, b1,b_1,b2,b_>,...} be
a permutation of the sequence sa in descending order. Since
S Pali) = 1, 1imjs —oo Pu(i) = limj 400 Pu(i) = 0,
and thus sb is well defined. Let = be the corresponding
permutation mapping, i.e., 7 : Z — Z, and

bi = Py (z (i)).

Since L(-) is a symmetric function and monotonically
decreasing for i > 0, we have

L£O) = LA) = L(=1) =L(2) = L(=2) =--- = L)
SLED=LEHD) =L(=6E+1D) -

(306)
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Algorithm 3 Identifying at least 2A elements in the sequence
sb which are in the range [bje™¢, b;]

Jp<i
while there exists some j which appears before i in
the sequence {0,1,—1,2,-2,...} and z(j) € [7(j})
+1,7(jg) + Al do

Jk <
end while
Ji <
while there exists some j which appears before i in
the sequence {0,1,—1,2,-2,...} and #(j) € [x(j})
—A,7(j;)— 1] do

Ji < J
end while
Output j and j;.

Therefore, if we define a probability mass function P, with

Py(i)=b;, Viel, (307)
then
+00 +00
D LOP) = D LOPG). (308)

i=—00 i=—00

Next, we only need to prove Pp € SPmono, i-€., we need to
show that P), satisfies the differential privacy constraint (79).
Due to the way how we construct the sequence sb, we have
(309)
(310)

byo > by >by>b3>---,
bp>b_1>b r>b 3>---

Therefore, it is both sufficient and necessary to prove that

b.
b’fJ,WzQ (311)
i+A

b.

Lo<ef, Vi<O. (312)
bi_n

Since P, € SP, Vi € {7(0) — A, 7(0) — A + 1, 7(0) —
A+2,...,720) + A},

Pa(z(©0) _
Pali) —

Therefore, in the sequence sb there exist at least 2A

elements which are no smaller than bge €. Since b_A and b

are the 2Ath and (2A — 1)th largest elements in the sequence

sb other than by, we have bli—OA < ¢ and 5—2 < ef.

(313)

In general, given i € Z, we can use Algorithm 3 to find
at least 2A elements in the sequence sb which are no bigger
than b; and no smaller than b;e™¢.

More precisely, given i € Z, let ji and j; be the output of
Algorithm 3. Note that since the while loops in Algorithm 3
can take only at most 2(|i|+1) steps, the algorithm will always
terminate. For all integers j € [x (j;)—A, z(j;)—1], Pa(j) is
no bigger than b; and is no smaller than P, (j;)e™*; and for all
integers j € [w(ji)+1, 7 (jz)+ Al Pa(j) is no bigger than b;
and is no smaller than P, (jz)e €. Since Py (jz), Pa(j;) = bi,
for all j € [x(j§) — A, z(j) — ULz (§) + L2 () + A,

Pa(j) is no bigger than b; and is no smaller than bje €.

Therefore, there exist at least 2A elements in the sequence
sb which are no bigger than b; and no smaller than b;e™¢.

If i < 0, then b;_ is the 2Ath largest element in the
sequence sb which is no bigger than b; and no smaller than
bie ¢, and if i > 0, then b;1 A is the (2A —1)th largest element
in the sequence sb which is no bigger than b; and no smaller
than b;e™¢. Therefore, we have

b.
— < ef, Vi>0, (314)
bita
b; B :
<ef, Vi<O. 315)
bi—n
This completes the proof of Lemma 29. [ ]

C. Step 2

Next we prove that we only need to consider symmetric
probability mass functions which are monotonically decreas-
ing when i > 0.

Define

SPsym = {P € SPmonol P(i) = P(—i),Vi € Z}.  (316)
Lemma 30:
+00
* = inf ] ). 317
V ,Peglpsym iZ:OO L:(Z)P(l) ( )

Proof: The proof is essentially the same as the proof of
Lemma 17.

Given P, € SPmono, define a new probability mass
function Pp with
Pp(i) & Pali) + Pa(=1) Vi ¢ 7. (318)

2 b
It is easy to see Py is a valid probability mass function and
symmetric. Since the cost function £(-) is symmetric,

400 +00
D LOP) = D LOP). (319)

Next we show that P, also satisfies the differential privacy
constraint (79). For any i € Z and |d| < A, since P,(i) <
e“P,u(i +d) and P,(—i) < e“Py(—i — d), we have
_ Pa(i) + Pa(_i)

Pp(i) = 7 (320)
€ . € .
- eP,(i +d) +2e Pau(—i —d) 321)
= e Ppli +d). (322)
Therefore, P satisfies (79).
Finally, for any 0 <i < j,

,Pb(l.) _ Pa(l) +2Pa(_l) (323)
. Pal)+ Pl o)
= Pp(j). (325)

So Pp € SPmono, and thus P, € SPgym. We conclude

+00

V*= inf LO)YP(). 326
|
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D. Step 3

Next we show that among all symmetric and monotonically
decreasing (for i > 0) probability mass function, we only need
to consider those which are periodically and geometrically
decaying.

More precisely, define

P(i) .
SPpa £ {P € SPsymlm =, Vi e N} (327)
Then
Lemma 31:
V*= inf V(P). (328)
PES'PPC]

Proof: Due to Lemma 30, we only need to consider prob-
ability mass functions which are symmetric and monotonically
decreasing for i > 0.

We first show that given P, € SPsym, if % < €€, then we
can construct a probability mass function P, € SPsym such

PO _ e
that oA = ¢ and

V(Pa) = V(P»). (329)
Since P, is symmetric,
+00
V(Pa) = LOYPL(0) +2 D LEPa(i). (330)

i=1

Suppose 77;“2 < ¢, then define a new symmetric probability
a

mass function P, with

Py(0) £ (1+6)Py(0), (331)
Pu(i) £ (1 = )Pali), Vi € Z\{0}, (332)
where
o€ Pa(d) 1
It rm
o€ EAGYE 1
J = — 7’&“);, 5 >0 (334)
o TP
P _
N th?lt m% = ¢€.
It is easy to see P € SPsym, and
V(Pp) — V(Pa) (335)
+00
= 0L(0)Pa(0) — 20" D" L(i)Pali) (336)
=1
oo
< OLO)Pa(0) — 20 D" L(O)Pali) (337)
i=1
< 0L(0)P,(0) — 0" L(0)(1 — P4 (0)) (338)
= 0. (339)
Therefore, we only need to consider P € SPgyn satisfying
PO _ e

By using the same argument as in the proof of Lemma 24,
one can conclude that we only need to consider P € SPsym
satisfying

PG _ .

—_— = Vi € N.
Pt i€

(340)

Therefore, V* = infpesp,, V(P). |
Proof of Theorem 12: In the case that A = 1, due to
Lemma 31, the symmetry property and (340) completely char-
acterize the optimal noise probability mass function, which is
the geometric mechanism. [ ]

E. Step 4

Due to Lemma 31, the optimal probability mass function P
is completely characterized by P(0), P(1),...,P(A — 1).
Next we derive the properties of optimal probability mass
function in the domain {0, 1,2,..., A — 1}.

Since Lemma 31 solves the case A = 1, in the remaining
of this section, we assume A > 2.

Define
SPrstep; £ {P e SPpa | 3k €{0,1,..., A —2},such that
PG@)="P(©), Vie{0,1,...,k},
P()=AP0O),Vjelk+1,k+2,...,A=1}}.
Lemma 32:

V= inf

= V(P).
”PeU;'E[fg’l]SPmm

(341)

Proof: 1If A = 2, then for any P € SPpq, we can set
k=0, and P € SPsteppa-1). Therefore, Lemma 32 holds for
P0)

A =2.
Assume A > 3. First, we prove that we only need to

consider probability mass function P € SPpq such that there

exists k € {1,2,..., A — 2} with

P@i) =P, Vie{0,1,....,k—1}

P(G)y=PA-=1), Vielk+1,k+2,...,A—1}.

(342)
(343)

More precisely, let P, € SPpq, we can construct a probabil-
ity mass function P, € SPpq such that there exists k satisfying
(342) and (343), and V (Pp) > V(P,).

The proof technique is very similar to proof of Lemma 27.
Suppose there does not exists such k for P,, then let k1 be
the smallest integer in {1,2,..., A — 1} such that

Pa(kl) 7é Pa(o),
and let kp be the biggest integer in {0, 1, ..., A —2} such that

Pa(kz) # Pa(A —1).

It is easy to see that k1 < kp, and k; # 0. Then we
can increase P,(k;) and decrease P,(k2) simultaneously by
the same amount to derive a new probability mass function
Py € SPpa with smaller cost. Indeed, if

Pa(0) = Pa(ki) < Palkz) — Pa(A — 1),

(344)

(345)

(346)

then consider a probability mass function P, € SPpq with

Pp(i) = Pa(0), VO <i <ki, (347)
Pyi) = Pali), ki <i < ko, (348)
Py(k2) = Pa(ka) — (Pa(0) — Pa(k1)), (349)
Pp(i) = Pali), Vka <i <A —1. (350)
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Define

oo
wo £ L(O0)+2D L(kA)e™,
k=1

(351)

o

wi 22> LG +kA)e™, Vie(l,2,...,A—1}. (352)
k=0

Note that since £(-) is a monotonically decreasing function

when i > 0, we have wg < w1 <--- < wa_1.
Then we can verify that V(Pp) < V(P,) via

V(Pp) = V(Pa) (353)

A-1 A-1
= > Pyliywi — D Pali)wi (354)

i=0 i=0
= (Pa(0) = Pa (k1)) (wk, — wi,) (355)
<0. (356)

It
Pa(0) — Palk1) = Palka) — Pa(A — 1), (357)
then we can define P, € SPpq by setting

Pu(i) = Pa(0), VO <i <k, (358)
Poki) = Pa(kr) + (Pa(k2) — Pa(A — 1)),  (359)
Py(i) = Pali), Yk <i < ko, (360)
Pp(i) = Pa(A —1), Yo <i<A—1.  (361)

And similarly, we have

V(Pp) — V(Pa) = (Pa(k2) — Pa(A — 1)) (wi; — wi,) < 0.
(362)

Therefore, continue in this way, and finally we will obtain a
probability mass function P, € SPpq such that there exists k
to satisfy (342) and (343) and V(Pp) < V(P,).

From the above argument, we can see that in the optimal
solution P* € SPpq, the probability mass function can only
take at most three distinct values for alli € {0, 1,..., A —1},
which are P*(0), P*(k) and P*(A — 1). Next we show that
indeed either P*(k) = P*(0) and P*(k) = P*(A — 1), and
this will complete the proof of Lemma 32.

The optimal probability mass function P € SPpq can
be specified by three parameters P(0),4 € [e ¢, 1], k €
{1,2,..., A —2} and P(k). We will show that when k and A4
are fixed, to minimize the cost, we have either P(k) = P(0)
or P(k) = P(A — 1) = AP(0).

Since Y1 P(i) = 1,
L KPO) +P(K) + (A —k—1)APO) PO =1 (363)
1-b
and thus 'P(k) — (1+P(0))(l—b)—ZP(z())k—ziP(O)(A—k—l)'
The cost for P is
k—1 A—1
V(P)=PO) > wi+P(A—1) > wi+Pkuwe (364)
i=0 i=k+1

k—1 A-1
=P0) > wi+iP©O) > w (365)
i=0 i=k+1
(14+P0)(1—=b)—2P0)k—2AP(0)(A—k—1)
+( > YW,
(366)
which is a linear function of the parameter P(0).
Since P(k) > AP (0) and P (k) < P(0), we have
2k77(0) + P(k) TEAb_ k—1)iP©O) PO) =1
- 2/’cP(O) + P(0) —il-iAb— k—=1AP©O) PO0).
2k77(0) + P(k) TEAb_ k—1)iP©O) PO) =1
- 2/’cP(O) + AP(0) 1—1—_(2 —k—=1AP©0) P(O0).
and thus the constraints on P(0) are
1—0
wi2i2ib—k-n-135 =70
1-b

< .
T2k +2M(A—k) —1+0b

Since V(P) is a linear function of P(0), to minimize the
cost V(P), either P(0) = yrryrragn=rs O PO) =

m, i.e., P(0) should take one of the two extreme

points of (367). To get these two extreme points, we have
either P(k) = P(0) or P(k) = AP(0) = P(A —1).

Therefore, in the optimal probability mass function
P € SPpa, there exists k € {0, 1,..., A — 2} such that

P@) =P@O), Viel0,1,...,k} (367)
P@i)=PA—-1), Vielk+1,k+2,...,A—1}. (368)

This completes the proof of Lemma 32. [ ]
F. Step 5

In the last step, we prove that although 1 € [e™¢, 1], in the
optimal probability mass function, A is either e~ or 1, and
this will complete the proof of Theorem 13.

Proof: For fixedk € {0, 1,..., A—=2}, consider P € SPq

with
P(i) = PO), Viel01,... k), (369)
P(i) = iPO), Vietk+1,k+2,....,A—1}. (370)
Since >;°°  P(i) = 1,
2(k + 1)P(0) +1(fb— k—1)AP(0) _pOy=1, (7D
and thus
P(0) = s (372)

2k+ 1) +2(A—k—DA—1+b

Hence, P is specified by only one parameter 1.
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The cost of P is

A—1
V(P) = D Pli)w; (373)
i=0
k A—1
= PO) D> w; +iPO0) > w; (374)
i=0 k+1
_ (=D wi + A3, w) 375)
T2k+ D) +2(A—k—1)i—1+b
— C2
= 0D T D T2 — k=i = 145"
(376)

where C and C; are constant terms independent of A. There-
fore, to minimize V (P) over A € [e™¢, 1], /1 should take the
extreme points, either ¢e~¢ or 1, depending on whether C3 is
negative or positive.

When 1 = 1, then the probability mass function is uniquely
determined, which is P € SPpq with

1-b
2A— 145’
which is exactly P, defined in (82) with r = A.

When 4 = ™€, the probability mass function is exactly P,
with r =k + 1.
Therefore, we conclude that

Pi) = Vie{0,1,...,A—1}, (377

+o00
V* = min LE)Pr(Q). 378
{reNIISrsA}.Z ()P, (i) (378)
1=—00
[ |
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