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Optimal Noise Adding Mechanisms for
Approximate Differential Privacy

Quan Geng and Pramod Viswanath, Fellow, IEEE

Abstract— We study the (nearly) optimal mechanisms in
(ε, δ)-differential privacy for integer-valued query functions and
vector-valued (histogram-like) query functions under a utility-
maximization/cost-minimization framework. Within the classes of
mechanisms oblivious of the database and the queries beyond the
global sensitivity, we characterize the tradeoff between ε and δ
in utility and privacy analysis for histogram-like query functions,
and show that the (ε, δ)-differential privacy is a framework
not much more general than the (ε, 0)-differential privacy and
(0, δ)-differential privacy in the context of �1 and �2 cost
functions, i.e., minimum expected noise magnitude and noise
power. In the same context of �1 and �2 cost functions, we show
the near-optimality of uniform noise mechanism and discrete
Laplacian mechanism in the high privacy regime (as (ε, δ) →
(0, 0)). We conclude that in (ε, δ)-differential privacy, the optimal
noise magnitude and the noise power are �(min((1/ε), (1/δ)))

and �(min((1/ε2), (1/δ2))), respectively, in the high privacy
regime.

Index Terms— Data privacy, randomized algorithm.

I. INTRODUCTION

D IFFERENTIAL privacy is a framework to quantify to
what extent individual privacy in a statistical database is

preserved while releasing useful statistical information about
the database [1]. The basic idea of differential privacy is that
the presence of any individual data in the database should
not affect the final released statistical information significantly,
and thus it can give strong privacy guarantees against an adver-
sary with arbitrary auxiliary information. For more background
and motivation of differential privacy, we refer the readers to
the survey [2].

The standard approach to preserve ε-differential privacy
for real-valued query function is to perturb the query output
by adding random noise with Laplacian distribution. Recently,
Geng and Viswanath [3] show that under a general
utility-maximization framework, for single real-valued query

Manuscript received January 8, 2014; revised August 10, 2015; accepted
November 23, 2015. Date of publication December 11, 2015; date of current
version January 18, 2016. This work was supported in part by the National
Science Foundation under Grant CCF-1422278 and in part by the University
of Illinois at Urbana–Champaign. This paper was presented at the 2013
Workshop on Big Data and Differential Privacy, Simons Institute for Theory
of Computing.

Q. Geng was with the Coordinated Science Laboratory, University of Illinois
at Urbana–Champaign, Urbana, IL 61801 USA. He is now with Google Inc.,
New York, NY 10011 USA (e-mail: gengquanshine@gmail.com).

P. Viswanath is with the Coordinated Science Laboratory, University
of Illinois at Urbana–Champaign, Urbana, IL 61801 USA (e-mail:
pramodv@illinois.edu).

Communicated by A. Smith, Associate Editor for Complexity and
Cryptography.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIT.2015.2504972

function, the optimal ε-differentially private mechanism is
the staircase mechanism, which adds noise with staircase
distribution to the query output. The optimality of the staircase
mechanism is extended to the multidimensional setting for
histogram-like functions in [4], where the sensitivity of the
query functions is defined using the �1 metric as in [1].
A relaxed notion of privacy, (ε, δ)-differential privacy, was
introduced by Dwork et al. [5], and the standard approach to
preserving (ε, δ)-differential privacy is to add Gaussian noise
to the query output.

In this work, we study the (nearly) optimal mechanisms in
(ε, δ)-differential privacy for integer-valued query functions
and vector-valued (histogram-like) query functions under a
utility-maximization/cost-minimization framework, and char-
acterize the tradeoff between ε and δ in utility and privacy
analysis. Optimality in this work is defined with respect
to the class of the mechanisms which are oblivious of the
database and the properties of query functions except the
global sensitivity. We refer the readers to the end of Section I.A
for more details about the setting considered in this work.

(ε, δ)-differential privacy is a relaxed notion of privacy,
compared to the standard ε-differential privacy introduced
in [1]. (ε, δ)-differential privacy includes as special cases:

• (ε, 0)-differential privacy; in this standard setting, the
optimal mechanism for a general cost minimization
framework is the staircase mechanism as shown
in [3] and [4]. In the high privacy regime, the standard
discrete Laplacian mechanism too performs well.

• (0, δ)-differential privacy; this setting requires that the
total variation of the conditional probability distributions
of the query output for neighboring datasets should be
bounded by δ. In this paper we show that the uniform
noise distribution is near-optimal in the (0, δ)-differential
privacy setting for a general class of cost functions.

While the (ε, δ)-differential privacy setting is more general
than the two special cases – (ε, 0) and (0, δ)-differential
privacy – our main result in this work is to show that within
the classes of mechanisms oblivious of the database and the
queries beyond the global sensitivity, it is only more general
by very little; this is done in the context of �1 and �2 cost
functions. We show the near-optimality of uniform noise and
discrete Laplacian mechanisms in the high privacy regime
(as (ε, δ) → (0, 0)) for �1 and �2 cost functions.

Our result is a sharp departure from the setting of �∞
sensitivity (modeling adaptive query compositions) where
the notion of (ε, δ)-approximate differential privacy pro-
vides significant variance reductions (in the dimension of the
query output), as compared to the standard (ε, 0)-differential
privacy [1], [6], [7]. Our main result shows that such gains
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are not available in the �1 sensitivity model for mechanisms
oblivious of the database and queries - in fact approximate
differential privacy in the usual regime (δ � ε) is nearly the
same (up to constants, in added noise magnitude and variance)
as pure differential privacy. For completeness, we consider all
relationships between ε and δ in this paper.

The near-optimality of the two mechanisms (designed for
the special cases of (ε, 0) and (0, δ) differential privacy
settings) is proved by demonstrating a uniform bound on the
ratio between the costs of these two mechanisms and that of
the optimal cost in the (ε, δ) differential privacy setting in the
high privacy regime, i.e., as (ε, δ) → (0, 0) for �1 and �2 cost
functions.

A. Summary of Our Results

In this work we consider a very general model for
integer-valued and vector-valued (histogram-like) query func-
tions. Unlike previous works on (ε, δ)-differential privacy
(e.g., [8]–[10]), in this work we consider privacy mecha-
nisms which are oblivious of the queries and the database,
except for knowing the global sensitivity in the �1 metric.1

We implicitly assume that the local sensitivity is equal to
the global sensitivity. Due to the optimality of query-output
independent perturbation (under a technical condition) in a
min-max cost framework as shown in [3, Th. 2], in this work
we restrict ourselves to query-output independent perturbation
mechanisms.2

We summarize our results in the following. Let VL B denote
the lower bound we derived for the cost under differential
privacy constraint (it is a different lower bound for each type
of differential privacy constraints specified in the items below).
Let V Lap

U B and V uniform
U B denote the upper bounds for the cost

achieved by discrete Laplacian mechanism and uniform noise
mechanism. In this work, we show that

• For integer-valued query functions,
– for (0, δ)-differential privacy with the global sensitiv-

ity � = 1, the uniform noise mechanism is optimal
for all generic cost funtions,

– for (0, δ)-differential privacy with arbitrary global

sensitivity �, limδ→0
V uniform

U B
VL B

= 1 for �1 and �2 cost
functions,

1For vector-valued query function q(·) : D → Z
d , where d is the dimension

of the query output, we assume that for any v ∈ Z
d , the mechanism has to

consider the case there might exist a dataset D such that q(D) = v, and for
any v′ such that ‖v − v′‖1 ≤ �, where � is the global sensitivity of q(·),
there might exist a neighboring dataset D′ such that q(D′) = v′.

2Under the setting that the query function is real-valued and the released
query output is also real-valued (either scalar or vector), all privacy preserving
mechanisms can be viewed as noise-adding mechanisms, where the noise can
be defined as the difference between the true query output and the released
query output, and the noise can be either dependent on or independent of
the true query output. Specifically, a privacy preserving mechanism can be
characterized by a family of probability distributions {Pt }t∈R, where Pt is
the probability distribution of the noise when the query output is t . In [3],
we show that in the single dimensional setting, under the assumption that
{Pt }t∈R is piecewise constant and periodic (the period can be arbitrary)
both in terms of the index t , then under a min-max cost framework, query-
output independent perturbation is optimal. In the multidimensional setting,
under the same assumption that the family of noise probability distributions
{Pt }t∈Rd is piecewise constant and periodic in terms of the index t ,
query-output independent perturbation is optimal.

– for (ε, δ)-differential privacy with �1 and �2 cost

functions, lim sup(ε,δ)→(0,0)
min(V Lap

U B ,V uniform
U B )

VL B
≤ C for

some numerical constant C .
• For vector-valued (histogram-like) query functions,

– for (0, δ)-differential privacy with the global sensi-
tivity � = 1, the multi-dimensional uniform noise
mechanism is optimal for �1 and �2 cost functions,

– for (0, δ)-differential privacy with arbitrary global

sensitivity �, limδ→0
V uniform

U B
VL B

= 1 for �1 and �2 cost
functions,

– for (ε, δ)-differential privacy with �1 and �2 cost

functions, lim sup(ε,δ)→(0,0)
min(V Lap

U B ,V uniform
U B )

VL B
≤ C for

some numerical constant C , which is independent of
the dimension of the query function.

We conclude that in (ε, δ)-differential privacy, the optimal
noise magnitude and noise power are �(min( d�

ε , d�
δ )) and

�(min( d�2

ε2 , d�2

δ2 )), respectively, in the high privacy regime,
and naturally, the total cost grows linearly in terms of the
dimension of the query output.

We emphasize that these results are derived under the
following settings:

• when the domain of the query output is the entire set
of integers or Z

d , or the mechanism is oblivious of the
database;

• nothing more about the query function is known beyond
its global sensitivity;

• either the local sensitivity [11] of the query function is
unknown or it is the same as global sensitivity.

If any of these conditions are violated (the output domain has
sharp boundaries, or the local sensitivity deviates from the
global sensitivity [11], or we are restricted to specific query
functions [12]), then the optimal privacy mechanism need not
be data or query output independent, and the bounds derived
in this work may not apply.

B. Related Work

Dwork et al. [1] introduce ε-differential privacy and show
that the Laplacian mechanism, which perturbs the query output
by adding random noise with Laplace distribution proportional
to the global sensitivity of the query function, can preserve
ε-differential privacy. In [1], it is shown that for histogram-
like query functions, where the query output has multiple
components and the global sensitivity is defined using the
�1 metric, one can perturb each component independently by
adding the Laplacian noise to preserve ε-differential privacy.

Nissim et al. [11] show that for certain nonlinear query func-
tions, one can improve the accuracy by adding data-dependent
noise calibrated to the smooth sensitivity of the query func-
tion, which is based on the local sensitivity of the query
function. McSherry and Talwar [13] introduce the exponential
mechanism to preserve ε-differential privacy for general query
functions in an abstract setting, where the query function may
not be real-valued. Dwork et al. [5] introduce (ε, δ)-differential
privacy and show that adding random noise with Gaussian
distribution can preserve (ε, δ)-differential privacy for real-
valued query functions. Hall et al. [14] study how to preserve
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(ε, δ)-differential privacy for releasing (infinite dimensional)
functions, and show that adding Gaussian process noise to
the released function can preserve (ε, δ)-differential privacy.
Kasiviswanathan and Smith [15] study the semantics of
(ε, δ)-differential privacy under a Bayesian framework.
Chaudhuri and Mishra [16], and Machanavajjhala et al. [17]
propose different variants of the standard (ε, δ)-differential
privacy.

Ghosh et al. [18] show that for a single count query with
sensitivity � = 1, for a general class of utility functions,
to minimize the expected cost under a Bayesian framework
the optimal mechanism to preserve ε-differential privacy is
the geometric mechanism, which adds noise with geometric
distribution. Brenner and Nissim [19] show that for general
query functions no universally optimal mechanisms exist.
Gupte and Sundararajan [20] derive the optimal noise probabil-
ity distributions for a single count query with sensitivity � = 1
for minimax (risk-averse) users. Gupte and Sundararajan [20]
show that although there is no universally optimal solution to
the minimax optimization problem in [20] for a general class
of cost functions, each solution (corresponding to different
cost functions) can be derived from the same geometric
mechanism by randomly remapping. Geng and Viswanath [3]
generalize the results of [18] and [20] to real-valued (and
integer-valued) query functions with arbitrary sensitivity, and
show that the optimal query-output independent perturbation
mechanism is the staircase mechanism, which adds noise with
a staircase-shaped probability density function (or probability
mass function for integer-valued query function) to the query
output. The optimality of the staircase mechanism is extended
to the multidimensional setting for histogram-like functions
in [4], where the sensitivity of the query functions is defined
using the �1 metric as in [1].

Differential privacy for histogram query functions has been
widely studied in the literature, e.g., [8], [21]–[25], and many
existing works use the Laplacian mechanism as the basic tool.
For instance, Li et al. [25] introduce the matrix mechanism
to answer batches of linear queries over a histogram in
a differentially private way with good accuracy guarantees.
Their approach is that instead of adding Laplacian noise to
the workload query output directly, the matrix mechanism
will design an observation matrix which is the input to the
database, from perturbed output (using the standard Laplace
mechanism) estimate the histogram itself, and then compute
the query output directly. Li et al. [25] show that this
two-stage process will preserve differential privacy and
increase the accuracy. Hay et al. [22] show that for a general
class of histogram queries, by exploiting the consistency con-
straints on the query output, which is differentially private by
adding independent Laplace noises, one can improve the accu-
racy while still satisfying differential privacy. These existing
works study how to efficiently answer a set of linear queries
on the histogram, while our work addresses the problem
of releasing the histogram itself, which can be viewed as
the worst-case query release (without knowing which linear
queries will be asked).

Hardt and Talwar [23] study the tradeoff between privacy
and error for answering a set of linear queries over a histogram

under ε-differential privacy. The error is defined as the worst
expectation of the �2-norm of the noise. Hardt and Talwar [23]
derives a lower bound for the error in the high privacy
regime by using tools from convex geometry, and gives an
upper bound by analyzing a differentially private mechanism,
K -norm mechanism, which is an instantiation of the expo-
nential mechanism and involves randomly sampling from a
high dimensional convex body. The lower bound given in [23]
depends on the volume of a convex body associated with the
linear query functions, and the lower bound works for arbitrary
linear query functions. In our problem setting, the linear query
functions we are studying are the histogram function, which
is a special case of [23] by setting d = n and setting F to
be the identity map function. In this case, the lower bound
given in [23] is �(

√
d

ε ),3 which matches our result, as we
show that for ε-differential privacy, in the high privacy regime,
adding independent Laplacian noises to each component of the
histogram is asymptotically optimal in the context of �1 and �2

cost functions.
Nikolov et al. [8] extend the result of [23] on answering

linear queries over a histogram to the case of (ε, δ)-differential
privacy. Using tools from discrepancy theory, convex geometry
and statistical estimation, they derive lower bounds and upper
bounds of the error, which are within a multiplicative factor
of O(log 1

δ ) in terms of δ. Their bounds work for any set
of linear query functions over a histogram, while in our
work we study only the identity function, i.e., the query
output is the histogram itself. Our result shows that in the
high privacy regime (as (ε, δ) → (0, 0)), the optimal error
scales as �(min( 1

ε , 1
δ )) and �(min( 1

ε2 , 1
δ2 )) for �1 and �2

cost functions, respectively. Therefore, our results significantly
improve the bounds in [8] in terms of ε and δ in the high
privacy regime where both ε and δ go to zero.

Kasiviswanathan et al. [9] derive lower bounds on the
noise for releasing contingency tables under (ε, δ)-differential
privacy constraint, where the lower bounds depend on the size
and structure of the database. Our lower bounds are tighter and
sharper than those of [9] in terms of ε and δ. For instance,
in [9], for (ε, δ)-differential privacy the lower bounds are
proportional to (1 − δ

ε ), which are zero whenever δ = ε,
while our results show that the lower bound is �(min( 1

ε , 1
δ ))

as (ε, δ) → (0, 0).
De [10] studies lower bound on the additive noise for

Lipschitz query functions in (ε, δ)-differential privacy which
uses a different metric for the noise, and the lower bound
depends on the size of the database. Jain et al. [26] study
how to preserve (ε, δ)-differential privacy for online learning
algorithms, and show that the approximate differential privacy
can be achieved by adding Gaussian noise to each component
of the query output. They derive upper bounds on the noise,
and the upper bounds can be viewed as an application of the
composition theorem in [7] by Dwork, Rothblum, and Vadhan,
which has been improved by Kairouz et al. [27] recently. The
difference of [26] and other related works from our work is
that the global sensitivity of the query function is defined

3Note that for the d-dimensional �1 unit ball, the volume is 2d

d! , and thus
in [23, Th. 3.4], Vol(K )1/d = �( 1

d ).
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using �∞ metric in [7] and [26], while in our work we
use �1 metric.

C. Organization

This paper is organized as follows. We formulate the utility-
maximization/cost-minimization under the (ε, δ)-differential
privacy constraint for a single integer-valued query function as
a linear programming problem in Section II. In Section III, we
study (0, δ)-differential privacy, and show the near optimality
of the simple uniform noise mechanism. In Section IV, we
study the optimal mechanisms in (ε, δ)-differential privacy,
and show the optimality of uniform noise mechanism and
Laplacian mechanism in the regime (ε, δ) → (0, 0) in the
context of �1 and �2 cost functions. In Section V, we extend
the results to the multidimensional setting for histogram-like
query functions, where the query output is a vector of integers.

II. PROBLEM FORMULATION

Consider an integer-valued query function

q : D → Z, (1)

where D is the set of all possible datasets.
The sensitivity of the query function q is defined as

� � max
D1,D2∈D:|D1−D2|≤1

|q(D1) − q(D2)|, (2)

where the maximum is taken over all possible pairs of neigh-
boring datasets D1 and D2 which differ in at most one element,
i.e., one is a proper subset of the other and the larger dataset
contains just one additional element [2]. Clearly, � is an
integer in this discrete setting.

Definition 1 ((ε, δ)-Differential Privacy [5]): A randomized
mechanism K gives ε-differential privacy if for all data
sets D1 and D2 differing on at most one element, and all
S ⊂ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε)Pr[K(D2) ∈ S] + δ. (3)

A. Operational Meaning of (ε, δ)-Differential Privacy
in the Context of Hypothesis Testing

We first give an operational interpretation of differential
privacy in the context of hypothesis testing. While this inter-
pretation is not directly used for proving the results in this
paper, it is a useful tool for building the intuition and is useful
in other contexts [27].

As shown by [28], one can interpret the differential privacy
constraint (3) in the context of hypothesis testing in terms
of false alarm probability and missing detection probability.
Indeed, consider a binary hypothesis testing problem over two
neighboring datasets, H0 : D1 versus H1 : D2, where an
individual’s record is in D2 only. Given a decision rule, let
S be the decision region such that when the released output
lies in S, H1 will be rejected, and when the released output lies
in SC (the complement of S), H0 will be rejected. The false
alarm probability PF A and the missing detection probability
PM D can be written as

PF A = P(K (D1) ∈ SC ), (4)

PM D = P(K (D2) ∈ S). (5)

Therefore, from (3) we get

1 − PF A ≤ eε PM D + δ. (6)

Thus

eε PM D + PF A ≥ 1 − δ. (7)

Switch D1 and D2 in (3), and we get

Pr[K(D2) ∈ S] ≤ exp(ε)Pr[K(D1) ∈ S] + δ. (8)

Therefore,

1 − PM D ≤ eε PF A + δ, (9)

and thus

PM D + eε PF A ≥ 1 − δ. (10)

In conclusion, we have

eε PM D + PF A ≥ 1 − δ, (11)

PM D + eε PF A ≥ 1 − δ. (12)

The (ε, δ)-differential privacy constraint implies that in the
context of hypothesis testing, PF A and PM D can not be both
too small.

We plot the regions of PF A and PM D under
(ε, δ)-differential privacy, and under two special cases:
(ε, 0) and (0, δ)-differential privacy, in Figure 1.

B. Cost-Minimization/Utility-Maximization Formulation

The standard approach to preserving differential privacy is
to add noise to the output of query function. Let q(D) be the
value of the query function evaluated at D ∈ D, the noise-
adding mechanism K will output

K(D) = q(D) + X, (13)

where X is the noise added by the mechanism to the output
of query function. To make the output of the mechanism be
valid, i.e., q(D) + X ∈ Z, X can only take integer values.

Let P be the probability mass function of the noise X , and
use Pi to denote Pr[X = i ]. For a set S ⊂ Z, denote Pr[X ∈ S]
by PS .

In the following we derive the differential privacy constraint
on the probability distribution of X from (3).

Pr[K(D1) ∈ S] ≤ exp(ε)Pr[K(D2) ∈ S] + δ (14)

⇔ Pr[q(D1) + X ∈ S] ≤ exp(ε)Pr[q(D2)+X ∈ S]+ δ (15)

⇔ PS−q(D1) ≤ exp(ε)PS−q(D2) + δ (16)

⇔ PS ′ ≤ exp(ε)PS ′+q(D1)−q(D2) + δ, (17)

where S′ � S − q(D1) = {s − q(D1)|s ∈ S}.
Since (3) holds for any set S ⊆ Z, and |q(D1) −

q(D2)| ≤ �, from (17) we have

PS ≤ exp(ε)PS+d + δ, (18)

for any set S ⊆ Z and for all |d| ≤ �.
Consider a cost function L(·) : Z → R, which is a

function of the added noise X . Our goal is to minimize the
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Fig. 1. Regions of PM D and PF A in (ε, δ), (ε, 0) and (0, δ)-Differential
Privacy.

expectation of the cost subject to the (ε, δ)-differential privacy
constraint (18):

V ∗ := min
P

+∞∑

i=−∞
L(i)P(i)

subject to PS ≤ exp(ε)PS+d + δ, ∀S ⊂ Z,

d ∈ Z, |d| ≤ |�|. (19)

In this work, we restrict our attention to the scenario when
the cost function L(k) is symmetric (around k = 0) and
monotonically increasing for k ≥ 0. Furthermore, without loss
of generality, we assume L(0) = 0. Using the same argument
in [3, Lemma 28], we only need to consider symmetric noise
probability distributions.

III. (0, δ)-DIFFERENTIAL PRIVACY

We first consider the simple case when ε = 0, i.e.,
(0, δ)-differential privacy. The (0, δ)-differential privacy
constraint requires that the total variation of the conditional

probability distributions of the query output for neighboring
datasets should be bounded by δ.

In the differential privacy constraint (18), by choosing the
subset S = Sk := {� : � ≥ k} for k ∈ N and d = �, we
see that the noise probability distribution P must satisfy the
constraints

�−1∑

�=0

Pk+� ≤ δ, ∀k ∈ N. (20)

This relaxation enables us to prove lower bounds on V ∗.

A. � = 1

In the special case � = 1, the constraints in (20) are
particularly simple:

Pk ≤ δ, ∀k ∈ N. (21)

For symmetric cost functions L(k) that are monotonically
increasing in k ≥ 0, we can now readily argue that the uniform
probability distribution is optimal.

To avoid integer rounding issues, assume 1
2δ is an

integer.
Theorem 1: If � = 1, then

V ∗ =
1
2δ −1∑

k=− 1
2δ

δL(k), (22)

and the optimal noise probability distribution is

Pk =
{

δ − 1
2δ ≤ k ≤ 1

2δ − 1

0 otherwise
(23)

Proof: For � = 1, the constraints in (20) become
Pk ≤ δ, ∀k ∈ N. Since the cost function L(k) is symmetric
and monotonically increasing for k ≥ 0, to minimize the cost
we should let the noise probability mass function concentrate
around k = 0 as much as possible, while satisfying the
constraint Pk ≤ δ, ∀k ∈ N. Therefore, the optimal noise
probability mass function is (23), and it is easy to verify that
it satisfies the (0, δ)-differential privacy constraint (18).

B. General Lower Bound for � ≥ 2

We now turn to understanding (near) optimal (0, δ) privacy
mechanisms in terms of minimizing the expected loss when
the sensitivity � ≥ 2.

Recall that in (0, δ)-differential privacy, the minimum
cost V ∗ is the result of the following optimization problem,
which is a linear program:

V ∗ := min
+∞∑

k=−∞
L(k)Pk

s.t. Pk ≥ 0 ∀k ∈ N
+∞∑

k=−∞
Pk = 1

PS ≤ PS+d + δ, ∀S ⊂ Z, d ∈ Z, |d| ≤ |�|.
(24)
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Since L(·) is a symmetric function, we can assume P is a
symmetric probability distribution. In addition, we relax the
constraint (24) by choosing d = � and S = Sk for k ∈ N.
Then we get a relaxed linear program, the solution of which
is a lower bound for V ∗. More precisely,

VL B := min 2
∞∑

k=1

L(k)Pk (25)

s.t. Pk ≥ 0 ∀k ∈ N

P0

2
+

∞∑

k=1

Pk ≥ 1

2
(26)

−
�−1∑

�=0

Pk+� ≥ −δ, ∀k ∈ N. (27)

To avoid integer rounding issues, assume 1
2δ is a positive

integer.
Theorem 2: If

L(1 + �

2δ
) ≥ 2

⎛

⎜⎝L(1) +
1
2δ∑

i=1

(L(1 + i�) − L(i�))

⎞

⎟⎠, (28)

then

V ∗ ≥ VL B = 2δ

1
2δ −1∑

i=0

L(1 + i�). (29)

Proof: See Appendix A.

C. Uniform Noise Mechanism

Consider the noise with the uniform probability distribution:

Pk =
{

δ
� ∀ − �

2δ ≤ k ≤ �
2δ − 1

0 otherwise
(30)

It is readily verified that this noise probability distribution
satisfies the (0, δ) differential privacy constraint. Therefore, an
upper bound for V ∗ is

Theorem 3:

V ∗ ≤ VU B � 2

�
2δ −1∑

i=1

δ

�
L(i) + δ

�
L(

�

2δ
). (31)

D. Comparison of VL B and VU B

We first apply the lower bound (29) and upper bound (31)
to �1 and �2 cost functions, i.e., L(i) = |i | and L(i) = i2,
in which V ∗ corresponds to the minimum expected noise
amplitude and minimum noise power, respectively.

Note that in the case L(i) = |i |, the condition (28) in
Theorem 2 is

�

2δ
≥ 1

δ
+ 1. (32)

When � ≥ 3, (28) holds.
Corollary 4: For the cost function L(i) = |i |,

VL B = �

4δ
+ 1 − �

2
, (33)

VU B = �

4δ
, (34)

and thus the additive gap

VU B − VL B = �

2
− 1 (35)

is a constant independent of δ.
In the case L(i) = i2, the condition (28) in Theorem 2 is

�

2δ2 (
�

2
− 1) ≥ 1

δ
+ 1. (36)

When � ≥ 3, (36) holds.
Corollary 5: For the cost function L(i) = i2,

VL B = �2

12δ2 − �2

4δ
+ �(

1

2δ
− 1) + �2

6
+ 1, (37)

VU B = �2

12δ2 + 1

6
, (38)

and thus the multiplicative gap

lim
δ→0

VU B

VL B
= 1. (39)

Proof: See Appendix B.
Corollary 6: Given a positive integer m, consider the cost

function L(i) = |i |m. Then

lim
δ→0

VU B

VL B
= 1. (40)

Proof: By induction, it is easy to show that
∑n

i=1 im =
�( nm+1

m+1 ), and

lim
n→+∞

∑n
i=1 im

nm+1

m+1

= 1. (41)

Therefore,

lim
δ→0

VU B

VL B
= lim

δ→0

2 δ
�

∑ �
2δ −1
i=1 im + δ

�
�m

(2δ)m

2δ
∑ 1

2δ −1
i=0 (1 + i�)m

(42)

= lim
δ→0

2 δ
�

�m+1

(2δ)m+1

m+1

2δ�m ( 1
2δ )m+1

m+1

(43)

= 1. (44)

For general cost functions, we have the following bound
on the multiplicative gap between the lower bound and upper
bound.

Corollary 7: Given a cost function L(·) satisfying

sup
k≥T

L(k)

L(k − � + 1)
≤ C, (45)

for some integer T ∈ N, and some positive number C ∈ R,
then

lim sup
δ→0

VU B

VL B
≤ 1 + (1 + 1

2�
)C. (46)

Proof: See Appendix C.
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IV. (ε, δ)-DIFFERENTIAL PRIVACY

Recall that since L(·) is a symmetric function, without loss
of generality, we can restrict ourselves to symmetric noise
probability distributions, i.e.,

Pk = P−k, ∀k ∈ Z. (47)

The differential privacy constraint in (18) can be understood
in some detail by choosing the subset S = Sk := {� : � ≥ k}
for k ∈ N. In this case we see that the noise probability
distribution must satisfy the following constraints. For k = 0
and d = �,

PS0 ≤ eεPS� + δ. (48)

By using the symmetry condition in (47) and the fact that∑+∞
�=−∞ P� = 1, from (48) we get

P0
1 + eε

2
+ eε

�−1∑

�=1

P� ≤ δ + eε − 1

2
. (49)

For k = 1 and d = �, we have

PS1 ≤ eεPS�+1 + δ, (50)

and thus

P0
eε − 1

2
+ eε

�∑

�=1

P� ≤ δ + eε − 1

2
. (51)

For general k ≥ 2 and d = �, we have

PSk ≤ eεPS�+k + δ, (52)

and thus

P0
eε − 1

2
+ (eε − 1)

k−1∑

�=1

P� + eε
k+�−1∑

�=k

P� ≤ δ + eε − 1

2
.

(53)

A. Lower Bound

By restricting the set S in (18) to be Sk := {� : � ≥ k} for
k ∈ Z and restricting d to be �, we get the following relaxed
linear program, the solution of which is a lower bound for V ∗:

VL B := min 2
∞∑

k=1

L(k)Pk

s.t. Pk ≥ 0 ∀k ∈ N

P0

2
+

∞∑

k=1

Pk ≥ 1

2
(54)

P0
1 + εε

2
+ eε

�−1∑

k=1

Pk ≤ δ + eε − 1

2
(55)

P0
eε − 1

2
+ eε

�∑

k=1

Pk ≤ δ + eε − 1

2
(56)

P0
eε − 1

2
+ (eε − 1)

i−1∑

k=1

Pk + eε
i+�−1∑

k=i

Pk

≤ δ + eε − 1

2
, ∀i ≥ 2. (57)

Define

a �
δ + eε−1

2

eε
, (58)

b � e−ε. (59)

To avoid integer rounding issues, assume that there exists an
integer n such that

n−1∑

k=0

abk = 1

2
. (60)

Theorem 8: If
n−1∑

i=1

e−iε(2L(i�) − L(1 + (i − 1)�) − L(1 + i�)) ≥ L(1),

(61)

then we have

V ∗ ≥ VL B = 2
n−1∑

k=0

δ + eε−1
2

eε
e−kεL(1 + k�). (62)

Proof: See Appendix D.

B. Upper Bound: Uniform Noise Mechanism
and Discrete Laplacian Mechanism

Since (0, δ)-differential privacy implies (ε, δ)-differential
privacy, we can use the uniform noise mechanism with
noise probability distribution defined in (30) to preserve
(ε, δ)-differential privacy, and the corresponding upper
bound is

Theorem 9: For (ε, δ)-differential privacy, we have

V ∗ ≤ V uniform
U B = 2

�
2δ −1∑

i=1

δ

�
L(i) + δ

�
L(

�

2δ
). (63)

On the other hand, if we simply ignore the parameter δ
(i.e., set δ = 0), we can use a discrete variant of Laplacian
distribution to satisfy the (ε, 0)-differential privacy, which
implies (ε, δ)-differential privacy.

More precisely, define λ � e− ε
� .

Theorem 10: The probability distribution P with

Pk � 1 − λ

1 + λ
λ|k|, ∀k ∈ Z, (64)

satisfies the (ε, δ)-differential privacy constraint, and the cor-
resonding cost is

+∞∑

k=−∞
PkL(k) = 2

+∞∑

k=1

1 − λ

1 + λ
λkL(k). (65)

Corollary 11:

V ∗ ≤ V Lap
U B � 2

+∞∑

k=1

1 − λ

1 + λ
λkL(k) (66)

C. Comparison of Lower Bound and Upper Bound

In this section, we compare the lower bound (62) and the
upper bounds V uniform

U B and V Lap
U B for (ε, δ)-differential privacy

for �1 and �2 cost functions, i.e., L(i) = |i | and L(i) = i2,
in which V ∗ corresponds to the minimum expected noise
amplitude and minimum noise power, respectively. We show
that the multiplicative gap between the lower bound and upper
bound is bounded by a constant as (ε, δ) → (0, 0).
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1) ε ≤ δ Regime: We first compare the gap between the
lower bound VL B and the upper bound V uniform

U B in the regime
ε ≤ δ as δ → 0.

Corollary 12: For the cost function L(k) = |k|, in the
regime ε ≤ δ, we have

lim sup
δ→0

V uniform
U B

VL B
≤ 1

4(1 − 2 log 3
2 )

≈ 1.32 (67)

Proof: See Appendix E.
Corollary 13: For the cost function L(k) = k2, in the

regime ε ≤ δ, we have

lim sup
δ→0

V uniform
U B

VL B
≤ 1

12(2 − 4 log( 3
2 ) − 2(log( 3

2 ))2)
≈ 5

3
.

(68)
Proof: See Appendix F.

2) δ ≤ ε Regime: We then compare the gap between the
lower bound VL B and the upper bound V Lap

U B in the regime
δ ≤ ε as ε → 0.

Corollary 14: For the cost function L(k) = |k|, in the
regime δ ≤ ε, we have

lim sup
ε→0

V Lap
U B

VL B
≤ 1

1 − 2 log 3
2

≈ 5.29. (69)

Proof: See Appendix G.
Corollary 15: For the cost function L(k) = k2, in the

regime δ ≤ ε, we have

lim sup
ε→0

V Lap
U B

VL B
≤ 2

(2 − 4 log( 3
2 ) − 2(log( 3

2 ))2)
≈ 40. (70)

Proof: See Appendix H.

V. (ε, δ)-DIFFERENTIAL PRIVACY IN THE

MULTI-DIMENSIONAL SETTING

In this section we consider the (ε, δ)-differential privacy
in the multi-dimensional setting, where the query output has
multiple components and the global sensitivity � is defined as
the maximum �1 norm of the difference of the query outputs
over two neighboring datasets.

Let d be the dimension of the query output. Hence, the
query output q(D) ∈ Z

d . Let P be the probability mass
function of the additive noise over the domain Z

d . Then
the (ε, δ)-differential privacy constraint on P in the multi-
dimensional setting is that

PS ≤ eεPS+v + δ, ∀S ⊂ Z
d , v ∈ Z

d , ‖v‖1 ≤ �. (71)

Consider a cost function L(·) : Z
d → R, which is a

function of the added noise X . Our goal is to minimize the
expectation of the cost subject to the (ε, δ)-differential privacy
constraint (71):

V ∗ := min
P

∑

v∈Zd

L(v)P(v)

subject to PS ≤ eεPS+v + δ, ∀S ⊂ Z
d ,

v ∈ Z
d , ‖v‖1 ≤ �. (72)

A. (0, δ)-Differential Privacy

We first consider the simple case when ε = 0, i.e.,
(0, δ)-differential privacy. The (0, δ)-differential privacy con-
straint requires that the total variation of the conditional
probability distributions of the query output for neighboring
datasets should be bounded by δ.

In the differential privacy constraint (71), by choosing the
subset

S = Sm
k := {(i1, i2, . . . , id ) ∈ Z

d |im ≥ k} (73)

for k ∈ N, m ∈ {1, 2, . . . , d}, and choosing v such that only
one component is � and all other components are zero, we
see that the noise probability distribution P must satisfy the
constraints that ∀k ∈ N,∀m ∈ {1, 2, . . . , d},

∑

(i1,i2,...,id )∈Zd :k≤im ≤k+�−1

P(i1, i2, . . . , id) ≤ δ. (74)

To avoid integer-rounding issues, we assume that 1
2δ is an

integer.
1) Lower Bound on V ∗: We relax the constraint (71) by

choosing S to be Sm
k and choosing v such that only one

component is � and all other components are zero. Then we
get a relaxed linear program, the solution of which is a lower
bound for V ∗. More precisely,

V ∗ ≥ VL B := min
∑

i∈Zd

P(i)L(i)

s.t. P(i) ≥ 0 ∀i ∈ Z
d

∑

i∈Zd

P(i) ≥ 1

∀k ∈ N, ∀m ∈ {1, 2, . . . , d}∑

(i1,i2,...,id )∈Zd :k≤im ≤k+�−1

P(i1, i2, . . . , id)

≤ δ. (75)

Throughout the paper, we use the notation i := (i1, i2, . . . , id)
to denote a d-dimensional vector in Z

d .
Theorem 16: In the case L(i) = ‖i‖1,∀i ∈ Z

d , we have

VL B ≥ d�

4δ
− � − 1

2
d. (76)

Proof: See Appendix I.
Theorem 17: In the case L(i) = ‖i‖2

2 = ∑d
m=1 i2

m,
∀i = (i1, . . . , id) ∈ Z

d , we have

VL B ≥ d�2

12δ2 + (
1

�
− 1)

d�2

4δ
+ 1 − �

2
d + d�2

6
. (77)

Proof: See Appendix J.
2) Uniform Noise Mechanism in the Multi-Dimensional

Setting: Consider the noise with the uniform probability
distribution:

P(i) =
{

δd

�d − �
2δ ≤ im ≤ �

2δ − 1, ∀m ∈ {1, 2, . . . , d}
0 otherwise

(78)

It is readily verified that this noise probability distribu-
tion satisfies the (0, δ) differential privacy constraint (71).
Therefore, an upper bound for V ∗ is
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Theorem 18:

V ∗ ≤ VU B �
∑

{i∈Zd |− �
2δ ≤im≤ �

2δ −1,∀m∈{1,2,...,d}}

δd

�d
L(i). (79)

Corollary 19: In the case L(i) = ‖i‖1,∀i ∈ Z
d , we have

VU B = d�

4δ
. (80)

Proof:

VU B =
∑

{i∈Zd |− �
2δ ≤im≤ �

2δ −1,∀m∈{1,2,...,d}}

δd

�d
L(i) (81)

=
�
2δ −1∑

i1=− �
2δ

· · ·
�
2δ −1∑

id =− �
2δ

δd

�d
(|i1| + · · · + |id |) (82)

= d

�
2δ −1∑

i1=− �
2δ

· · ·
�
2δ −1∑

id =− �
2δ

δd

�d
|i1| (83)

= d

(
�

δ

)d−1
�
2δ −1∑

i1=− �
2δ

δd

�d
|i1| (84)

= d

(
�

δ

)d−1 δd

�d

(
(1 + �

2δ ) �
2δ

2
+

�
2δ (

�
2δ − 1)

2

)
(85)

= d�

4δ
. (86)

Corollary 20: In the case L(i) = ‖i‖2
2 �

∑d
m=1 i2

m,
∀i = (i1, . . . , id ) ∈ Z

d , we have

VU B = d�2

12δ2 + d

6
. (87)

Proof:

VU B =
∑

{i∈Zd |− �
2δ ≤im≤ �

2δ −1,∀m∈{1,2,...,d}}

δd

�d
L(i) (88)

=
�
2δ −1∑

i1=− �
2δ

· · ·
�
2δ −1∑

id =− �
2δ

δd

�d
(|i1|2 + · · · + |id |2) (89)

= d

�
2δ −1∑

i1=− �
2δ

· · ·
�
2δ −1∑

id =− �
2δ

δd

�d
|i1|2 (90)

= d

(
�

δ

)d−1
�
2δ −1∑

i1=− �
2δ

δd

�d
|i1|2 (91)

= d

(
�

δ

)d−1 δd

�d

×
(

�
2δ (1 + �

2δ )(
�
δ + 1)

6
+ ( �

2δ − 1) �
2δ (

�
δ − 1)

6

)
(92)

= d�2

12δ2 + d

6
. (93)

3) Comparison of Lower Bound and Upper Bound for
�1 Cost Function:

Corollary 21: For the cost function L(i) = ‖i‖1,

VL B ≥ d�

4δ
− � − 1

2
d, (94)

VU B = d�

4δ
, (95)

and thus the additive gap

VU B − VL B ≤ � − 1

2
d, (96)

which is a constant independent of δ.
In the case that � = 1, the additive gap �−1

2 d is zero, and
thus VL B = VU B .

Corollary 22: For the cost function L(i) = ‖i‖1, if � = 1,
then

V ∗ = VU B = VL B = d�

4δ
, (97)

and thus the uniform noise mechanism is optimal in this
setting.

Corollary 23: For the cost function L(i) = ‖i‖2
2,

VL B ≥ d�2

12δ2 + (
1

�
− 1)

d�2

4δ
+ 1 − �

2
d + d�2

6
, (98)

VU B = d�2

12δ2 + d

6
, (99)

and thus

lim
δ→0

VU B

VL B
= 1. (100)

In the case that � = 1,

VL B ≥ d

12δ2 + d

6
= VU B, (101)

and thus VL B = VU B .
Corollary 24: For the cost function L(i) = ‖i‖2

2, if � = 1,
then

V ∗ = VU B = VL B = d

12δ2 + d

6
, (102)

and thus the uniform noise mechanism is optimal in this
setting.

B. (ε, δ)-Differential Privacy

The (ε, δ)-differential privacy constraint on the probability
mass function P in the multi-dimensional setting is that

PS ≤ eεPS+v + δ, ∀S ⊂ Z
d , v ∈ Z

d , ‖v‖1 ≤ �. (103)

We relax this constraint by choosing S to be Sm
k and

choosing v such that only one component is � and all other
components are zero. Then we get a relaxed linear program,
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the solution of which is a lower bound for V ∗. More precisely,

V ∗ ≥ VL B := min
∑

i∈Zd

P(i)L(i)

s.t. P(i) ≥ 0 ∀i ∈ Z
d

∑

i∈Zd

P(i) ≥ 1

∀k ∈ N, ∀m ∈ {1, 2, . . . , d},∑

i∈Zd :k≤im ≤k+�−1

P(i) − (eε − 1)

×
∑

i∈Zd :im ≥k+�

P(i) ≤ δ. (104)

We are interested in characterizing V ∗ for the �1 and �2 cost
functions in the high privacy regime when (ε, δ) → (0, 0).

1) Lower Bound for �1 Cost Function: The dual linear
program of (104) for �1 cost function L(i) = ‖i‖1 is that

VL B := max μ − δ

⎛

⎝
∑

i1∈Z

y(1)
i1

+
∑

i2∈Z

y(2)
i2

+ · · · +
∑

id ∈Z

y(d)
id

⎞

⎠

(105)

s.t. y(1)
i1

, y(2)
i2

, . . . , y(d)
id

≥ 0, ∀i1 ∈ Z,

i2 ∈ Z, . . . , id ∈ Z (106)

μ −
∑

i1∈[k1−�+1,k1]
y(1)

i1
+ (eε − 1)

∑

i1≤k1−�

y(1)
i1

− . . . −
∑

id∈[kd −�+1,kd ]
y(d)

id
+ (eε − 1)

∑

id≤kd −�

y(d)
id

≤ |k1| + |k2| + · · · + |kd |, ∀(k1, . . . , kd) ∈ Z
d .

(107)

Given the parameters (ε, δ), let β = max(ε, δ).
Since (β, β)-differential privacy is a relaxed version of
(ε, δ)-differential privacy, in the above dual program we
can replace both ε and δ by β, and the optimal value of
the objecitve function will still be a lower bound of V ∗.
More precisely,

V ∗ ≥ V ′
L B

:= max μ − β

⎛

⎝
∑

i1∈Z

y(1)
i1

+
∑

i2∈Z

y(2)
i2

+ · · · +
∑

id ∈Z

y(d)
id

⎞

⎠

(108)

s.t. y(1)
i1

, y(2)
i2

, . . . , y(d)
id

≥ 0, ∀i1 ∈ Z, i2 ∈ Z, . . . , id ∈ Z

(109)

μ −
∑

i1∈[k1−�+1,k1]
y(1)

i1
+ (eβ − 1)

∑

i1≤k1−�

y(1)
i1

− . . . −
∑

id ∈[kd −�+1,kd ]
y(d)

id
+ (eβ − 1)

∑

id≤kd −�

y(d)
id

≤ |k1| + |k2| + · · · + |kd |, ∀(k1, . . . , kd ) ∈ Z
d .

(110)

Theorem 25: For the �1 cost function,

lim inf
max(ε,δ)→0

V ′
L B

d�
max(ε,δ)

≥ log
9

8
≈ 0.1178 (111)

Proof: See Appendix K.
Similarly, for the �2 cost function, we have the lower bound

V ∗ ≥ V ′
L B

:= max μ − β

⎛

⎝
∑

i1∈Z

y(1)
i1

+
∑

i2∈Z

y(2)
i2

+ · · · +
∑

id ∈Z

y(d)
id

⎞

⎠

(112)

s.t. y(1)
i1

, y(2)
i2

, . . . , y(d)
id

≥ 0, ∀i1 ∈ Z, i2 ∈ Z, . . . , id ∈ Z

(113)

μ −
∑

i1∈[k1−�+1,k1]
y(1)

i1
+ (eβ − 1)

∑

i1≤k1−�

y(1)
i1

− . . . −
∑

id ∈[kd −�+1,kd ]
y(d)

id
+ (eβ − 1)

∑

id ≤kd −�

y(d)
id

≤ |k1|2 + |k2|2 + · · · + |kd |2, ∀(k1, . . . , kd) ∈ Z
d .

(114)

Theorem 26: For the �2 cost function,

lim inf
max(ε,δ)→0

V ′
L B

d�2

β2

≥ 0.0177. (115)

Proof: See Appendix L.
2) Upper Bounds: Uniform Noise Mechanism and

Discrete Laplacian Mechanism: Since (0, δ)-differential
privacy implies (ε, δ)-differential privacy and we have shown
that the uniform noise mechanism defined in (78) satisfies
(0, δ)-differential privacy, an upper bound for V ∗ for the �1

cost function is

V ∗ ≤ V uniform
U B = d�

4δ
(116)

by Corollary 19.
In addition, (ε, 0)-differential privacy also implies

(ε, δ)-differential privacy, and the discrete multidimensional
Laplacian mechanism, which adds independent Laplacian
noise to each component of the query output, satisfies
(ε, 0)-differential privacy. Consider the discrete Laplacian
mechanism in the multi-dimensional setting with probability
mass function P defined as

P(i) =
(

1 − λ

1 + λ

)d

λ|i1 |+|i2 |+···+|id |, ∀i ∈ Z
d , (117)

where λ � e− ε
� .

The corresponding cost achieved by Laplacian mechanism
for the �1 cost function is

V Lap
U B =

∑

i∈Zd

(
1 − λ

1 + λ

)d

λ|i1 |+···+|id |(|i1| + · · · + |id |) (118)

= 2dλ

1 − λ2 (119)

= 2de− ε
�

1 − e−2 ε
�

(120)

= �(
d�

ε
), (121)

as ε → 0.
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Similarly, for the �2 cost function, we have

V uniform
U B = d�2

12δ2 + d

6
, (122)

and

V Lap
U B =

∑

i∈Zd

(
1 − λ

1 + λ

)d

λ|i1 |+···+|id |(|i1|2+ · · · + |id |2) (123)

= 2dλ

(1 − λ)2 (124)

= �(
2d�2

ε2 ). (125)

3) Comparison of Lower Bound and Upper Bounds: Com-
pare the lower bound in Theorem 25 and the upper bounds
(116) and (121), and we conclude that for the �1 cost function,
the multiplicative gap between the upper bound and lower
bound is upper bounded by a constant as (ε, δ) → (0, 0).
More precisely,

Corollary 27: For the �1 cost function, we have

V ′
L B ≤ V ∗ ≤ min(V uniform

U B , V Lap
U B ), (126)

and as (ε, δ) → (0, 0),

lim sup
(ε,δ)→(0,0)

min(V uniform
U B , V Lap

U B )

V ′
L B

≤ 1

log 9
8

≈ 8.49 (127)

Similarly, for the �2 cost function, we have
Corollary 28: For the �2 cost function, we have

V ′
L B ≤ V ∗ ≤ min(V uniform

U B , V Lap
U B ), (128)

and as (ε, δ) → (0, 0),

lim sup
(ε,δ)→(0,0)

min(V uniform
U B , V Lap

U B )

V ′
L B

≤ 2

0.0177
≈ 113. (129)

APPENDIX A
PROOF OF THEOREM 2

Proof of Theorem 2: Consider a feasible solution to the
optimization problem (25) with primal variables

pk =
{

δ k = 1 + i�, for i = 0, 1, 2, . . . , 1
2δ − 1

0 otherwise
(130)

The corresponding value of the objective function is

2δ

1
2δ −1∑

i=0

L(1 + i�). (131)

Therefore,

VL B ≤ 2δ

1
2δ −1∑

i=0

L(1 + i�). (132)

We claim that the above primal variables are the optimal solu-
tion. We prove this claim by constructing the corresponding
dual variables.

Associating dual variables μ with the constraint in (26),
yk with the constraint in (27), we have the dual linear program:

VL B = max μ − 2δ

∞∑

k=0

yk

s.t. μ ≥ 0, yk ≥ 0, ∀k ∈ N, (133)
1

2
μ − y0 ≤ 0, (134)

μ −
k∑

i=max(0,k−�+1)

yi ≤ L(k), ∀k ≥ 1. (135)

The complementary slackness conditions require that

μ − y0 − y1 = L(1), (136)

μ −
1+k�∑

i=2+(k−1)�

yi = L(1 + k�), for k = 1, 2, . . . ,
1

2δ
− 1,

(137)

yk = 0, ∀k ≥ (
1

2δ
− 1)� + 2. (138)

Consider the following dual variables:

μ = L(1 + �

2δ
), (139)

yk = 0, ∀k ≥ (
1

2δ
− 1)� + 2, (140)

∀2 ≤ k ≤ (
1

2δ
− 1)� + 1,

yk = L(k + �) − L(k + � − 1) + yk+�, (141)

y1 =
1
2δ∑

i=1

(L(1 + i�) − L(i�)) ≥ 0, (142)

y0 = μ − L(1) − y1

= L(1 + �

2δ
) − L(1) −

1
2δ∑

i=1

(L(1 + i�) − L(i�)) ≥ 0,

(143)

where the inequality in (143) holds due to the assumption (28).
It is easy to verify that these dual variables satisfy the

constraints of the dual linear program, and the value of the
objective function is

μ − 2δ

+∞∑

k=0

yk = μ − 2δ

1
2δ −1∑

i=0

(μ − L(1 + i�)) (144)

= 2δ

1
2δ −1∑

i=0

L(1 + i�). (145)

Therefore, by weak duality we have

VL B ≥ 2δ

1
2δ −1∑

i=0

L(1 + i�). (146)

Due to (132), we conclude

VL B = 2δ

1
2δ −1∑

i=0

L(1 + i�). (147)

�
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APPENDIX B
PROOF OF COROLLARY 5

Proof of Corollary 5: First we compute the lower bound
VL B via

VL B = 2

1
2δ −1∑

i=0

δL(1 + i�) (148)

= 2δ

1
2δ −1∑

i=0

(1 + i�)2 (149)

= 2δ

1
2δ −1∑

i=0

(1 + 2i� + i2�2) (150)

= 2δ(
1

2δ
+ 2�

1
2δ (

1
2δ − 1)

2
+ �2 ( 1

2δ − 1) 1
2δ (2

1
2δ − 1)

6
)

(151)

= 1 + �(
1

2δ
− 1) + �2

12δ2 + �2

6
− �2

4δ
(152)

= �(
�2

12δ2 ). (153)

The upper bound is

VU B = 2

�
2δ −1∑

i=1

δ

�
L(i) + δ

�
L(

�

2δ
) (154)

= 2
δ

�

( �
2δ − 1) �

2δ (
�
δ − 1)

6
+ δ

�

�2

4δ2 (155)

= 1

6
(
�2

2δ2 + 1 − 3�

2δ
) + �

4δ
(156)

= �2

12δ2 + 1

6
(157)

= �(
�2

12δ2 ). (158)

Therefore, the multiplicative gap goes to one as δ → 0, i.e.,

lim
δ→0

VU B

VL B
= 1. (159)

�

APPENDIX C
PROOF OF COROLLARY 7

Proof of Corollary 7: Using the fact that L(·) is a monoton-
ically increasing function for k ≥ 0, we have

VU B − VL B = 2

�
2δ −1∑

i=1

δ

�
L(i)+ δ

�
L(

�

2δ
) − 2δ

1
2δ −1∑

i=0

L(1+ i�)

(160)

≤ −2δL(1) + δ

�
L(

�

2δ
) + 2δL(

�

2δ
− 1) (161)

≤ (2 + 1

�
)δL(

�

2δ
). (162)

Therefore,

VU B

VL B
= 1 + VU B − VL B

VL B
(163)

≤ 1 + (2 + 1
�)δL( �

2δ )

2δ
∑ 1

2δ −1
i=0 L(1 + i�)

(164)

≤ 1 + (2 + 1
�)δL( �

2δ )

2δL(1 + ( 1
2δ − 1)�)

, (165)

and thus

lim sup
δ→0

VU B

VL B
≤ 1 + (1 + 1

2�)C. (166)

�

APPENDIX D
PROOF OF THEOREM 8

Proof of Theorem 8: Consider the feasible primal variables
{pk}k∈N defined as

Pk =
{

abi for k = 1 + i�, 0 ≤ i ≤ n − 1

0 otherwise
(167)

It is straightforward to verify that the above primal variables
satisfy the constraints of the relaxed linear program, and the
corresponding value of the objective function is

2
n−1∑

k=0

abkL(1 + k�). (168)

We prove it is also the optimal value by constructing
the optimal dual variables for the corresponding dual linear
program.

Associating dual variables μ, y0, y1, yi with the primal
constraints in (54), (55), (56) and (57), respectively, we have
the dual linear program:

VL B := min μ − (2δ + eε − 1)

+∞∑

k=0

yk (169)

s.t. μ ≥ 0, yk ≥ 0 ∀k ∈ N (170)

1

2
μ − 1 + eε

2
y0 − eε − 1

2
y1 − eε − 1

2

+∞∑

k=2

yk ≤ 0

(171)

μ − eε y0 − eε y1 − (eε − 1)

+∞∑

k=2

yk ≤ L(1)

(172)

∀k ≥ 2,

μ − eε
k∑

l=max(0,k−�+1)

yl − (eε − 1)

×
+∞∑

l=k+1

yl ≤ L(k). (173)

If the primal variables defined in (167) are the optimal
solution, the complementary slackness conditions require that
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the corresponding dual variables satisfy that

μ = L(1) + eε(y0 + y1) + (eε − 1)

+∞∑

l=2

yl (174)

μ = L(1 + �) + eε
1+�∑

l=2

yl + (eε − 1)

+∞∑

l=2+�

yl (175)

∀1 ≤ k ≤ n − 1,

μ = L(1 + k�) + eε
1+k�∑

l=2+(k−1)�

yl + (eε − 1)

+∞∑

l=2+k�

yl,

(176)

yl = 0, ∀l ≥ 2 + (n − 1)�. (177)

Consider the following dual variables defined via

μ = L(1 + (n − 1)�), (178)

yk = 0, ∀k ≥ 2 + (n − 2)�, (179)

∀2 ≤ k ≤ 1 + (n − 2)�,

yk = b(yk+� + L(k + �) − L(k + � − 1)), (180)

y1 =
n−1∑

i=1

bi (L(1 + i�) − L(i�)), (181)

y0 =
n−1∑

i=1

bi (L(i�) − L(1 + (i − 1)�)). (182)

We verify that the above dual variables satisfy the
inequality (171) in the following

(1 + eε)y0 + (eε − 1)y1 + (eε − 1)

+∞∑

k=2

yk − μ ≥ 0

(183)

⇔ y0 − y1 + eε(y0 + y1) + (eε − 1)

+∞∑

k=2

yk − μ ≥ 0

(184)

⇔ y0 − y1 + μ − L(1) − μ ≥ 0

(185)

⇔ y0 − y1 − L(1) ≥ 0

(186)

⇔
n−1∑

i=1

bi(2L(i�) − L(1 + (i − 1)�) − L(1 + i�)) ≥ L(1).

(187)

It is easy to verify that the dual variables satisfy the
constraints (170), (171), (172) and (173) in the dual linear
program. Next we compute the corresponding value of the
objective function

μ − (2δ + eε − 1)

+∞∑

k=0

yk (188)

= μ − (2δ + eε − 1)(y0 + y1 + μ − L(1) − eε(y0 + y1)

eε − 1
)

(189)

= μ − 2δ + eε − 1

eε − 1
(μ − L(1) − y0 − y1) (190)

= L(1 + (n − 1)�) − 2δ + eε − 1

eε − 1
(L(1 + (n − 1)�)

−L(1) −
n−1∑

i=1

bi (L(1 + i�) − L(1 + (i − 1)�))) (191)

= 2
n−1∑

k=0

abkL(1 + k�), (192)

which is also the value of the objective function in the primal
problem achieved by the primal variables defined in (167).
Therefore, we conclude that

VL B = 2
n−1∑

k=0

abkL(1 + k�). (193)

�

APPENDIX E
PROOF OF COROLLARY 12

Proof of Corollary 12: For the cost function L(k) = |k|,

VL B = 2
n−1∑

k=0

abkL(1 + k�) (194)

= 2
n−1∑

k=0

abk(1 + k�) (195)

= 1 + 2a�

n−1∑

k=0

bkk (196)

= 1 + 2a�(
b − bn

(1 − b)2 − (n − 1)bn

1 − b
). (197)

Given δ > 0, VL B is a decreasing function of ε. Therefore,

to lower bound
V uniform

U B
VL B

in the regime ε ≤ δ, we only need to
consider the case ε = δ. Thus, in the following we set ε = δ.

Since
∑n−1

k=0 abk = 1
2 , we have

a
1 − bn

1 − b
= 1

2
(198)

⇔ bn = 1 − 1 − b

2a
. (199)

As δ → 0, 1−b
2a = 1−e−ε

2
δ+ eε−1

2
eε

→ 1
3 , and thus

lim
δ→0

bn = 1 − 1

3
= 2

3
, (200)

n = �(
log( 3

2 )

ε
). (201)

Note that a = �( 3
2δ) as δ → 0.

Therefore, as δ → 0,

VL B ≈ 2�a(
1 − 2

3

ε2 −
log( 3

2 )

ε
2
3

ε
) (202)

≈ 2�
3

2
δ(

1

3δ2 −
2
3 log( 3

2 )

δ2 ) (203)

= �

δ
(1 − 2 log

3

2
) (204)

≈ 0.19
�

δ
. (205)
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Recall V uniform
U B = �

4δ .
Therefore,

lim
ε=δ→0

VU B

VL B
= 1

4(1 − 2 log 3
2 )

≈ 1.32, (206)

and thus

lim sup
ε≤δ→0

VU B

VL B
≤ 1

4(1 − 2 log 3
2 )

≈ 1.32, (207)

�

APPENDIX F
PROOF OF COROLLARY 13

Proof of Corollary 13: Using the same argument in the proof
of Corollary 12, we can set ε = δ.

For the cost function L(k) = k2,

VL B = 2
n−1∑

k=0

abkL(1 + k�) (208)

= 2
n−1∑

k=0

abk(1 + k�)2 (209)

= 1 + 4a�

n−1∑

k=0

bkk + 2a�2
n−1∑

k=0

bkk2 (210)

≈ 2a�2
n−1∑

k=0

bkk2 (211)

= 2�2 δ + eε−1
2

eε

−b+ 2( b(1−bn−1)
(1−b)2 − (n−1)bn

1−b ) − b2(1−bn−2)
1−b −(n−1)2bn

1 − b
(212)

≈ 2�2 3

2
ε

2(
1− 2

3
ε2 − 2

3 log( 3
2 )

ε2 ) − 1
3ε − 2

3
(log( 3

2 ))2

ε2

ε
(213)

≈ 3�2

ε2 (
2

3
− 4

3
log(

3

2
) − 2

3
(log(

3

2
))2) (214)

= �2

ε2 (2 − 4 log(
3

2
) − 2(log(

3

2
))2) (215)

≈ �2

20ε2 (216)

= �2

20δ2 (217)

Recall V uniform
U B = �2

12δ2 .
Therefore,

lim
ε=δ→0

V uniform
U B

VL B
= 1

12(2 − 4 log( 3
2 ) − 2(log( 3

2 ))2)
≈ 5

3
,

(218)

and thus

lim sup
ε≤δ→0

V uniform
U B

VL B
≤ 1

12(2 − 4 log( 3
2 ) − 2(log( 3

2 ))2)
≈ 5

3
.

(219)

�

APPENDIX G
PROOF OF COROLLARY 14

Proof of Corollary 14: For the cost function L(k) = |k|,

VL B = 2
n−1∑

k=0

abkL(1 + k�) (220)

= 2
n−1∑

k=0

abk(1 + k�) (221)

= 1 + 2a�

n−1∑

k=0

bkk (222)

= 1 + 2a�(
b − bn

(1 − b)2 − (n − 1)bn

1 − b
). (223)

Given ε > 0, VL B is a decreasing function of δ. Therefore,

to lower bound
V Lap

U B
VL B

in the regime δ ≤ ε, we only need to

consider the case δ = ε. Thus, in the following we set δ = ε.
Following the same calculations in the proof of

Corollary 12, we have

VL B ≈ �

δ
(1 − 2 log

3

2
) (224)

≈ 0.19
�

δ
(225)

= 0.19
�

ε
. (226)

On the other hand, we have

V Lap
U B = 2

+∞∑

k=1

1 − λ

1 + λ
λkk (227)

= 2e− ε
�

1 − e−2 ε
�

(228)

≈ �

ε
, (229)

as ε → 0.
Therefore,

lim
ε=δ→0

V Lap
U B

VL B
= 1

1 − 2 log 3
2

≈ 5.29, (230)

and thus

lim sup
δ≤ε→0

V Lap
U B

VL B
≤ 1

1 − 2 log 3
2

≈ 5.29. (231)

�

APPENDIX H
PROOF OF COROLLARY 15

Proof of Corollary 15: Using the same argument in the proof
of Corollary 14, we can set ε = δ.

For the cost function L(k) = k2, following the same
calculations in the proof of Corollary 13, we have

VL B ≈ �2

ε2 (2 − 4 log(
3

2
) − 2(log(

3

2
))2) (232)

≈ �2

20ε2 (233)
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On the other hand, we have

V Lap
U B = 2

+∞∑

k=1

1 − λ

1 + λ
λkk2 (234)

= 2λ

(1 − λ)2 (235)

≈ 2
�2

ε2 , (236)

as ε → 0.
Therefore,

lim
ε=δ→0

V Lap
U B

VL B
= 2

(2 − 4 log( 3
2 ) − 2(log( 3

2 ))2)
≈ 40, (237)

and thus

lim sup
δ≤ε→0

V Lap
U B

VL B
≤ 2

(2 − 4 log( 3
2 ) − 2(log( 3

2 ))2)
≈ 40. (238)

�

APPENDIX I
PROOF OF THEOREM 16

Proof of Theorem 16: Consider the dual program of the
linear program (75),

VL B := max μ − δ

⎛

⎝
∑

i1∈Z

y(1)
i1

+
∑

i2∈Z

y(2)
i2

+ · · · +
∑

id ∈Z

y(d)
id

⎞

⎠

s.t. y(1)
i1

, y(2)
i2

, . . . , y(d)
id

≥ 0, ∀i1 ∈ Z,

i2 ∈ Z, . . . , id ∈ Z

μ −
∑

i1∈[k1−�+1,k1]
y(1)

i1
− . . . −

∑

id ∈[kd −�+1,kd ]
y(d)

id

≤ |k1| + |k2| + · · · + |kd |, ∀(k1, . . . , kd) ∈ Z
d .

Consider a candidate solution with

μ = d�

2δ
(239)

and for all m ∈ {1, 2, . . . , d},

y(m)
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ
d i = 0

max(μ
d − k�, 0)

i = k�, for k ∈ Z, k ≥ 1

max(μ
d − (|k| − 1)� − 1, 0)

i = k�, for k ∈ Z, k ≤ −1

0 otherwise

(240)

It is easy to verify that this candidate solution satisfies
the constraints, and the corresponding value of the objective

function is

μ − δ

⎛

⎝
∑

i1∈Z

y(1)
i1

+
∑

i2∈Z

y(2)
i2

+ · · · +
∑

id ∈Z

y(d)
id

⎞

⎠ (241)

= μ − δd
∑

i1∈Z

y(1)
i1

(242)

= μ − δd

⎛

⎝
μ

d�∑

i=0

(
μ

d
− i�) +

μ
d� −1∑

i=0

(
μ

d
− i� − 1)

⎞

⎠ (243)

= μ − δd

( μ
d ( μ

d� + 1)

2
+ (μ

d + � − 2) μ
d�

2

)
(244)

= μ − δd(
μ2

d2�
+ μ

d
− μ

d�
) (245)

= μ − δ(
μ2

d�
+ μ − μ

�
) (246)

= d�

4δ
− � − 1

2
d. (247)

Therefore, we have

VL B ≥ d�

4δ
− � − 1

2
d. (248)

�

APPENDIX J
PROOF OF THEOREM 17

Proof of Theorem 17: Consider the dual program of the
linear program (75),

VL B := max μ − δ

⎛

⎝
∑

i1∈Z

y(1)
i1

+
∑

i2∈Z

y(2)
i2

+ · · · +
∑

id ∈Z

y(d)
id

⎞

⎠

s.t. y(1)
i1

, y(2)
i2

, . . . , y(d)
id

≥ 0, ∀i1 ∈ Z,

i2 ∈ Z, . . . , id ∈ Z

μ −
∑

i1∈[k1−�+1,k1]
y(1)

i1
− . . . −

∑

id ∈[kd −�+1,kd ]
y(d)

id

≤ |k1|2+|k2|2+ · · · +|kd |2, ∀(k1, . . . , kd)∈ Z
d .

To avoid integer-rounding issues, assume that 1
2δ is an

integer. Consider a candidate solution with

μ = d�2

4δ2 (249)

and for all m ∈ {1, 2, . . . , d},

y(m)
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ
d i = 0
μ
d − k2�2

i = k�, for 1 ≤ k ≥ 1
2δ

μ
d − ((|k| − 1)� + 1)2

i = k�, for − 1
2δ ≤ k ≤ −1

0 otherwise

(250)

It is easy to verify that this candidate solution satisfies
the constraints, and the corresponding value of the objective
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function is

μ − δ

⎛

⎝
∑

i1∈Z

y(1)
i1

+
∑

i2∈Z

y(2)
i2

+ · · · +
∑

id ∈Z

y(d)
id

⎞

⎠ (251)

= μ − δd
∑

i1∈Z

y(1)
i1

(252)

= μ − δd

⎛
⎜⎝

1
2δ∑

i=0

(
μ

d
− i2�2) +

1
2δ −1∑

i=0

(
μ

d
− (i� + 1)2)

⎞
⎟⎠ (253)

= d�2

12δ2 + (
1

�
− 1)

d�2

4δ
+ 1 − �

2
d + d�2

6
. (254)

Therefore, we have

VL B ≥ d�2

12δ2 + (
1

�
− 1)

d�2

4δ
+ 1 − �

2
d + d�2

6
. (255)

�

APPENDIX K
PROOF OF THEOREM 25

Proof of Theorem 25: Consider a candidate solution with

μ = d� log 3
2

β (assuming k � μ
d� is an integer), and

for all m ∈ {1, 2, . . . , d},

y(m)
i =

⎧
⎪⎨

⎪⎩

0 i ≤ −k�

eβ y(m)
i−� + 1 i ∈ [−k� + 1, 0]

max(eβ y(m)
i−� − 1, 0) i ≥ 0.

(256)

It is easy to verify that the above candidate solution satisfies
the constraints of the dual linear program. We can derive the
analytical expression for ym

i , which is

y(m)
i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 i ≤ −k�
e(k− j)β−1

eβ−1
i ∈[−( j +1)�+1,−j�],
for j ∈ [0, k − 1]

max(e jβ ekβ−2
eβ−1

+ 1
eβ−1

, 0) i ∈ [( j − 1)� + 1, j�].
(257)

To avoid integer-rounding issues, assume that n �
1
β log 1

2−ekβ = log 2
β is an integer. Then the value of the

objective function with this candidate solution is

μ − β

⎛

⎝
∑

i1∈Z

y(1)
i1

+
∑

i2∈Z

y(2)
i2

+ · · · +
∑

id ∈Z

y(d)
id

⎞

⎠ (258)

= μ − βd
∑

i1∈Z

y(1)
i1

(259)

= μ − βd�

(
k∑

i=1

eiβ − 1

eβ − 1
+

n∑

i=1

(eiβ ekβ − 2

eβ − 1
+ 1

eβ − 1
)

)

(260)

= μ − βd�

⎛

⎝
eβ (1−ekβ )

1−eβ − k

eβ − 1
+ ekβ − 2

eβ − 1

eβ(1− enβ)

1− eβ
+ n

eβ − 1

⎞

⎠

(261)

= d� log 3
2

β

− βd�

⎛

⎝
eβ (1− 3

2 )

1−eβ − log 3
2

β

eβ − 1
+ − 1

2

eβ − 1

eβ(1− 2)

1− eβ
+ log 2

β(eβ − 1)

⎞

⎠

(262)

= d� log 3
2

β

− βd�

(
eβ

2(eβ − 1)2 − log 3
2

β(eβ − 1)

− eβ

2(eβ − 1)2 + log 2

β(eβ − 1)

)
(263)

= �

(
d�

β
(log

3

2
− 1

2
+ log

3

2
+ 1

2
− log 2)

)
(264)

= log
9

8
�

(
d�

β

)
(265)

≈ �

(
0.1178

d�

β

)
, (266)

as β � max(ε, δ) → 0.
Therefore,

lim inf
max(ε,δ)→0

V ′
L B

d�
β

≥ log
9

8
≈ 0.1178 (267)

�

APPENDIX L
PROOF OF THEOREM 26

Proof of Theorem 26: Let α = 3
2 . Consider a candidate

solution with μ = d�2 log2 α
β2 (assuming k �

√
μ
d

� = log α
β is an

integer), and for all m ∈ {1, 2, . . . , d},

y(m)
i =

⎧
⎪⎨

⎪⎩

0 i ≤ −k�

eβ y(m)
i−� + 2|i | + 1 i ∈ [−k� + 1, 0]

max(eβ y(m)
i−� − (2i + 1), 0) i ≥ 0.

(268)

It is easy to verify that the above candidate solution satisfies
the constraints of the dual linear program.

Define

z1 = 2

eβ − 1
, (269)

z2 = 1 − 2eβ�
eβ−1

eβ − 1
, (270)

z3 = 2

1 − eβ
, (271)

z4 = 1 − 2eβ�
1−eβ

1 − eβ
. (272)

We can derive the analytical expression for ym
i , which

is y(m)
i = 0, ∀i ≤ −k�, and ∀i = −(k ′� + j) for

k ′ ∈ [0, k − 1], j ∈ [0,� − 1],
y(m)

i = e(k−k′)β (z1(k�+ j) + z2) − z1(k
′�+ j) − z2 (273)

and for i = (m − 1)� + j , where j ∈ [1,�], m ≥ 1,

y(m)
i = max(am, j , 0), (274)
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where

am, j � emβ(z1(k� + � − j) + z2)

− z1(� − j) − z2 − z3(� − j) + z4)

− z4 − z3((m − 1)� + j).

For each j ∈ [1,�], and we are interested in finding
the number m( j) such that am( j ), j = 0. As β → 0, from
am( j ), j = 0, we get

em( j )βekβ (
2

β
k� − 2�

β2 ) = −2�

β2 − 2

β
m( j)�+ o(

1

β2 ). (275)

Therefore,

m( j) = log γ

β
+ o(

1

β
), (276)

where γ is the solution to

γα(log α − 1) = −(1 + log γ ). (277)

When α = 3
2 , we have γ ≈ 1.7468.

Therefore, the value of the objective function is

μ − β

⎛

⎝
∑

i1∈Z

y(1)
i1

+
∑

i2∈Z

y(2)
i2

+ · · · +
∑

id ∈Z

y(d)
id

⎞

⎠

= μ − βd
∑

i1∈Z

y(1)
i1

= μ − βd(

k−1∑

k′=0

�−1∑

j=0

y(1)
−(k′�+ j ) +

�∑

j=1

m( j )∑

m=1

y(1)
(m−1)�+ j)

= d�2 log2 α

β2

− βd(
1 − e−kβ

1 − e−β
ekβ((z1k� + z2)� + z1

�(� − 1)

2
)

− z1�
2 k(k − 1)

2
− z1k

�(� − 1)

2
− z2k�)

− βd
�∑

j=1

(
eβ(1 − em( j )β)

1 − eβ
(ekβ (z1(k� + � − j) + z2)

− z1(� − j) − z2 − z3(� − j) + z4) − z4m( j)

− z3�
m( j)(m( j) + 1)

2
+ z3(� − j)m′)

= d�2

β2 (log2 α − (α − 1)(2 log α − 2) + log2 α − 2 log α

+ (1− γ )α(2 log α− 2)− 2 log γ − log2 γ )+ o(
1

β2 )

= d�2

β2

(
2 log2 α − 2 − 2αγ log α+ 2αγ − 2 log γ − log2 γ

)

+ o(
1

β2 )

≈ 0.0177
d�2

β2 + o(
1

β2 ).

as β � max(ε, δ) → 0.
Therefore,

lim inf
max(ε,δ)→0

V ′
L B

d�2

β2

≥ 0.0177. (278)

�
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