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Abstract— We derive upper bounds on the transport capacity
of wireless networks. The bounds obtained are solely dependent
on the geographic locations and power constraints of the nodes.
As a result of this derivation, we are able to conclude the
optimality, in the sense of scaling of transport capacity with the
number of nodes, of a multi-hop communication strategy for a
class of network topologies.
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I. INTRODUCTION

UNDERSTANDING network communication has re-
mained the holy grail of information theory; even the

simplest settings have largely uncharacterized capacity re-
gions. Recently, some progress in the study of wireless net-
works has been made by asking questions coarser than precise
achievable rate regions. In particular, the seminal work of
[4] introduced the measure transport capacity: The total bit-
meters per second a network can reliably support. Further,
the authors studied the rate of growth of this performance
measure as a function of the network resource—the number
of radios (equivalently, nodes) themselves. The key result of
[4] is to identify the rate of growth of transport capacity of
an n radio network using a simple nearest neighbor multihop
communication scheme.

In the multihop communication scheme we treat simul-
taneous transmissions as interference, and so a successful
transmission over a distance d means that there are no other
transmissions in an area proportional to d2. There is now
a (potential) tradeoff between a need to communicate long
distances and allowing many simultaneous transmissions. In a
regular (or close to regular) network it is optimal to always
communicate to nearest neighbors. With this, the transport ca-
pacity of regular minimum distance networks grows linearly in
n. It is not clear how much we are missing out by focusing on
a simple multihop store-and-forward communication strategy.

In irregular networks there is crowding of nodes and the
transport capacity with multihop communication is reduced;
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this is studied in a general framework in [6]. Again, it
is not clear if this reduction is due to our choice of the
communication strategy (multihop) or a fundamental property
of the location of the nodes. The goal of this paper is
to provide an answer to these questions by deriving some
simple fundamental upper bounds to the transport capacity.
The bounds we provide are solely a function of network
topology, i.e., the geographic locations of the nodes. As a
by-product of this derivation, we will be able to conclude
the optimality of multihop communication for a large class of
networks (optimality in the sense of the same rate of growth
with the number of nodes). This is a strengthening of the
same conclusion arrived at in [12], which also studied the
performance of other non-multihop communication schemes.

We study the following general wireless network: The
received signal at node j at (slotted) time m is

yj [m] =
∑

i6=j

hij [m]xi[m] + zj [m]. (1)

Here xi[m] is the signal transmitted by node i at time m and
zj [m] is i.i.d. white Gaussian noise. The multiplier hij [m] is
defined as

hij [m] :=
hs

ij [m]

(1 + rij)
δ
,

where
{
hs

ij [m]
}

m
, a stationary and ergodic stochastic process

that is independent for each pair of nodes (i, j), models the
small scale fluctuations of frequency flat fading. For simplicity
we assume that E[|hs

ij [m]|2] = 1 for all i, j,m. The large scale
variations are modeled explicitly through the decay of signal
level: A factor of 1

(1+rij)
δ from node i to node j, with rij

denoting the (Euclidean) distance between the nodes i and j.
The parameter δ is the rate of signal decay,1 which is unity
in free space, two with a single reflected path along with the
line of sight, and possibly greater than 2.5 in crowded urban
environments [3].

We are interested in peer-peer communication, i.e., the
nodes are communicating among themselves. The focus of
this paper is to derive information theoretic upper bounds to
transport capacity, which is defined as

CT := sup
n∑

i,j=1

Rijrij , (2)

1The far field signal decay is usually denoted by r
−δ
ij . Here we have written

(1 + rij)
−δ to ensure that our model makes sense when nodes get close; i.e.,

the average received power is not more than the average transmit power.
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where the supremum is taken over all the feasible n × n rate
matrices [Rij ] (a rate matrix [Rij ] is feasible if simultaneous
reliable communication at rates Rij is possible, for all nodes
i and j).

The only general upper bound in network information
theory is the cut-set bound (Theorem 4 in [1], Theorem 14.10.1
in [2]). Our main result is to use a random cut-set to derive
the following upper bound on transport capacity. We consider
two (disparate) models of the wireless fading channel. If
the channel variations are “slow” enough so that coherent
communication is possible, we model this scenario by allowing
full knowledge at each node of the fading channels from
all the other nodes. This is also known as the full CSI
scenario (channel state information at both the transmitter and
receiver nodes). In the scenario where the channel is changing
rapidly enough so that coherent communication is not feasible,
our model is to assume complete ignorance of the channel
realizations by all the nodes. This is the no CSI model. Clearly
these are two extreme models but they serve to cover the
ranges of channel fluctuations and allow us to make simple
statements about the network communication problem. Each
node j has an average transmit power constraint (denoted by
Pj).
Main Result: The transport capacity is upper bounded by

n∑

i,k,j=1

√
PiPk min (rij , rkj)

(1 + rij)
δ
(1 + rkj)

δ
. (3)

With no channel state information at the nodes, we can
sharpen the upper bound to

n∑

i,j=1

Pirij

(1 + rij)
2δ

. (4)

This upper bound on the transport capacity is entirely in
terms of the geographic locations and the power constraints
of the nodes. We see that the upper bound is quite robust to
“small” (in a network sense) fluctuations of the geographic
locations of the nodes. For example, removing one node from
the network does not alter the performance by much. Or if
two specific nodes were moved very close to each other, then
again the upper bound does not change by much.

This upper bound allows us to study scaling laws (rate of
growth of transport capacity with number of nodes) for specific
network topologies. Consider minimum distance networks
(with a minimum distance of, say rmin > 0, between any
two nodes) on a line and on a plane (a scenario studied in
[12]).

1) The transport capacity of minimum distance networks
on a line is upper bounded by c1n as long as δ > 1.5.
With no channel state information the same bound holds
with δ > 1.

2) The transport capacity of minimum distance networks
on a plane is upper bounded by c2n as long as δ > 2.5.
With no channel state information the same bound holds
with δ > 1.5.

Here c1 and c2 are constants that depend on the actual node
locations; simple upper bounds to these constants are derived
in Section III. In a recent (and independent) work [13], the

authors show that a transport capacity of c0n is achievable via
multihop communication in wireless networks with the time-
varying fading model expressed in (1) (see Theorem 3.2 of
[13]). Hence, we can conclude that multihop communication
is optimal in the sense of scaling of transport capacity with the
number of nodes. This is a strengthening of the same result
in [12], which considered a simpler, time-invariant channel
model and required stronger conditions on δ. The essence of
our derivation is to argue that even when nodes team up (at the
transmitter side and at the receiver side) the spatial separation
prevents them from forming many parallel channels (in other
words, the spatial degrees of freedom are limited). A result
similar in spirit is arrived at independently in [7] for the sum-
capacity of the network, under a time-invariant channel model.

We can use our upper bound to study random networks and
show the robustness of this scaling law optimality of multihop
communication. In particular, when the nodes are randomly
and uniformly placed in an area growing linearly with the
number of nodes (on a line, the overall length is of order
n), the transport capacity is upper bounded by O (n log n)
for almost every realization of node locations with no CSI
at the nodes; with full CSI at the nodes, the upper bound is
O
(
n (log n)

2
)

. On the other hand, multihop communication
can achieve a transport capacity of order n√

log n
for almost

every realization of node locations (Section 3 of [6]). In
comparison to the dominant term (linear growth in n) the
logarithmic factors are small, which shows the near-optimality
of multihop communication in this context of random node
locations.

Upon a closer look at the upper bound for transport capacity
in (3) and (4), we see the linearity of transport capacity in
the transmit power. Communication in a large network is
primarily interference-limited and occurs at low SNRs (signal
to noise ratios); in this regime, linearity of SNR w.r.t. the
communication rate is a good approximation. If the nodes
have widely different power capabilities and this capability
can be tuned to specific network topologies, then the statement
of our main result may be too weak. To understand the role
of power constraints on transport capacity, we consider the
following scenario: there is only an overall transmit power
constraint (growing linearly with the number of nodes) and
this can be distributed among the nodes in any manner (that
is suited to the specific network topology). In this case, it
turns out that the number of spatial degrees of freedom that
cooperation between transmitting and receiving nodes can
harness is approximately proportional to n

1
2δ . This statement

can be made precise in the context of minimum distance
networks on both a line and a plane. Minimum distance
networks with an overall power constraint have a transport
capacity upper bounded by c3n

1+ 1
2δ−1 log n. If the nodes have

no channel state information, then we can sharpen this bound
to c4n

1+ 1
2δ log n. We have the same conditions on the decay

rate δ as in the individual power constraint scenario mentioned
earlier. Simple upper bounds to c3 and c4 are derived in
Section V.

The main result is derived in Section II . The scaling laws
for minimum distance networks are studied in Section III .
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The role of random node locations is studied in Section IV .
We conclude with a discussion of the import of our results
and list some open questions.

II. MAIN RESULT

Suppose there are n nodes in the network N and each node
is power-limited to Pi, i ∈ N . Let rij denote the distance
between the nodes i and j for i, j ∈ N . Suppose now that we
divide the nodes by partitioning N into complementary sets
C+ and C− with cardinalities nC+ and nC− . As stated in the
introduction, our main result is the following theorem.

Theorem 2.1: Consider an arbitrary configuration of n
nodes in the plane. With no channel state information (CSI)
at the nodes, the transport capacity is upper bounded by

CT ≤
∑

i,j 6=i

Pi
rij

(1 + rij)2δ
. (5)

With full CSI at the nodes, the transport capacity is further
upper bounded by

CT ≤
∑

i,k,j 6=i,k

√
PiPk

min(rij , rkj)

(1 + rij)δ(1 + rkj)δ
. (6)

Proof: There are two key ideas used in the proof:

1) We can bound the sum-rate of communication across
a given cut by the capacity of a point-to-point, fading
AWGN channel with nC+ transmit and nC− receive
antennas.

2) We can use a random straight line to geographically
partition the nodes and then average the bound over the
distribution of this line to arrive at a bound on transport
capacity.

We begin with the no CSI model. Now suppose that after we
partition N into C+ and C−, a genie provides CSI to only the
nodes in C−. Clearly, more information can only result in a
larger rate. The assumption that only the nodes in C− know
the channel realizations is equivalent to the assumption of
receiver-only CSI in a MIMO (multiple input, multiple output)
channel H ∈ C

nC−×nC+ . For any given cut-set partition,
the sum rate of communication across the cut is then upper
bounded by the capacity of such a MIMO channel:

∑

i∈C+, j∈C−

Rij ≤ max
Kx�0:

(Kx)ii≤Pi

E
[
log det

(
I + HKxH

†)] ,

:= max
Kx�0:(Kx)ii≤Pi

R(Kx). (7)

Here we have normalized the variance of the background
additive white Gaussian noise to unity. If we model the pro-
cesses {hij [m]} as independent and the stationary distribution
to be symmetric around the origin, then one can show that
the optimal covariance matrix is diagonal, i.e., the maximum
in (7) is attained with (Kx)kk = Pik

for k = 1, 2, ..., nC+ .
This result has been shown in somewhat different ways in the
literature [5], [9], [10], [11]. We provide a simple proof in the
appendix for completeness (expressed as (35)). Evaluating (7)
for this diagonal Kx and using the fact that the determinant
of a Hermitian matrix is at most as large as the product of

PSfrag replacements
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rij
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Fig. 1. Uniformly random line Lr,θ partitioning the n node network.

its diagonal entries (the Hadamard inequality), we obtain the
following:

max
Kx�0:

(Kx)ii≤Pi

R(Kx) ≤ E



∑

j∈C−

log

(
1 +

∑

i∈C+

Pi|hij |2
)
 ,

≤
∑

j∈C−

log

(
1 +

∑

i∈C+

Pi

(1 + rij)2δ

)
,(8)

≤
∑

j∈C−

∑

i∈C+

Pi

(1 + rij)2δ
. (9)

The last two steps are obtained by applying Jensen’s inequality
and the fact that log(1 + x) ≤ x. Now suppose that this
partitioning of N was accomplished by a uniformly random
straight line, geographically splitting the network into C+

and C−. Since there is a finite number of nodes, we can
circumscribe them by a circle, the radius of which we will
denote by dn.

Suppose that this random line Lr,θ is parameterized by polar
coordinates (r, θ) which are each independently and uniformly
distributed over [0, dn] and [0, 2π], respectively (see Figure 1).
Then it is easy to show that the probability of a uniformly
random line cutting any two nodes i, j ∈ N is exactly rij

πdn
.

This also follows from the following classical result from
stochastic geometry (see [8]): Let A be a bounded convex
set in R

2 and c ⊂ A be a curve of finite length. Then, the
expected number of times a random line intersects c is equal
to 2L(c)/perim(A), where L(c) is the length of the curve c
and perim(A) is the perimeter of the set A.

Here A is a circle of radius dn and c is the line joining
the nodes i and j. This result allows us to express transport
capacity (2) as the supremum (over all feasible rate vectors)
of the (scaled) average of the sum-rates of communication
across all cuts generated by a uniformly random line. If we
let 1{A} denote the indicator function of the event A (defined
to be one if A is true and zero otherwise), and let EC denote
the expectation operator with respect to the distribution of the
cut-sets (C+, C−) generated by the uniformly random line, we
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can express this fact in the following way:

EC




∑

i∈C+, j∈C−

Rij


 = EC




n∑

i,j=1

Rij1{i∈C+, j∈C−}


 ,

=

n∑

i,j=1

RijP
(
i ∈ C+, j ∈ C−) ,

=
n∑

i,j=1

Rij
rij

2πdn
. (10)

Here we used the fact that

P((i, j) cut) = P({i ∈ C−, j ∈ C+} ∪ {i ∈ C+, j ∈ C−}),
=

rij

πdn

implies that P(i ∈ C+, j ∈ C−) =
rij

2πdn
since, given a random

line realization, the assignment of (C+, C−) is unique up to a
permutation, both permutations being equally likely. Scaling
(10) by 2πdn and taking the supremum over all feasible n × n
rate matrices [Rij ], one arrives at the transport capacity as
defined in (2). Thus we can find upper-bounds on CT by
first upper-bounding the sum-rate across each cut and then
averaging (and scaling) this bound over all cuts. In particular,
from (9) we have that

CT ≤ 2πdn EC



∑

j∈C−

∑

i∈C+

Pi

(1 + rij)2δ


 ,

= 2πdn

n∑

i,j=1

Pi

(1 + rij)2δ

rij

2πdn
,

=
n∑

i,j=1

Pi
rij

(1 + rij)2δ
,

thus proving the first part of the theorem.
We now turn to the full CSI model. Here full channel

state information is available at both the transmitter and
receiver in a MIMO channel. Thus the sum-rate bound on
the communication across the cut, for a given partition, now
takes the form

∑

i∈C+

j∈C−

Rij ≤ E


 max

Kx�0:
(Kx)ii≤Pi

log det
(
I + HKxH

†)

 ,

≤ E



∑

j∈C−

max
Kx�0:

(Kx)ii≤Pi

log
(
1 + hjKxh

†
j

)

 ..(11)

Here hj is the j-th row of H. Every principal minor of a
positive semidefinite matrix is nonnegative. In particular if A
is a p.s.d. matrix then aiiajj ≥ |aij |2. We use this fact to get

max
Kx�0:

(Kx)ii≤Pi

hjKxh
†
j = max

Kx�0:
(Kx)ii≤Pi

∑

i,k∈C+

hij(Kx)ikh∗
kj ,

≤
∑

i,k∈C+

√
PiPk|hijhkj |.

Substituting this calculation in (11) and using the indepen-
dence of the small scale variations between different channels

(and our normalization of the average amplitude of the small
scale variations to unity) we arrive at a bound on the sum-rate:

∑

i∈C+

j∈C−

Rij ≤
∑

j∈C−

∑

i,k∈C+

√
PiPk

(1 + rij)δ(1 + rkj)δ
. (12)

As before, we average (12) over the cut-sets by observing that
the probability that the node j and the pair of nodes (i, k)
are cut by a uniformly random line cannot be larger than the
probability of cutting either the nodes j and i or nodes j and k.
We pick the smaller of the two probabilities, min(rji,rjk)

2πdn
, for

the upper bound. Multiplying the resulting average by 2πdn,
we obtain (6), thus proving the theorem.

III. SCALING LAWS FOR MINIMUM DISTANCE NETWORKS

In this section, we look at the applicability of our upper
bounds on transport capacity derived in Section II to some
specific network topologies. In particular, we consider mini-
mum distance networks, where any pair of nodes is separated
by a distance at least rmin > 0. We consider networks on a
line and on the plane. Our main goal is to characterize the
rate of growth of the upper bounds to transport capacity as a
function of the number of nodes. We denote P as a uniform
upper bound to the average transmit power constraints of the
radios.

Corollary 3.1: Suppose the nodes lie on a line at a distance
of at least rmin > 0 from each other. With no CSI at the nodes,
the transport capacity is upper bounded by

2Pζ (2δ − 1)

r2δ−1
min

n,

for all δ > 1. With full CSI at the nodes, the transport capacity
is upper bounded by

4PA(δ)

r2δ−1
min

n, (13)

as long as δ > 3/2. Here ζ (δ) :=
∑∞

i=1 i−δ , a finite number
for δ > 1, is the Riemann-Zeta function and A(δ) := ζ(δ) +

1
2−δ {ζ(2δ − 2) − ζ(δ)}.

Proof: We first consider a regular linear network in which
the consecutive nodes are equally spaced on the real line with
node i at rmini for i ∈ I = {−n−1

2 , ...−1, 0, 1, ..., n−1
2 }.2 For

such a configuration of nodes, rij = rmin|i − j| for i, j ∈ I .
We evaluate the expression (5) by observing that choosing
j = 0 yields the largest inner sum (over all i):

CT ≤
∑

i,j 6=i

Pi
rmin|i − j|

(1 + rmin|i − j|)2δ
,

<
∑

i,j 6=i

Pi

(1 + rmin|i − j|)2δ−1
,

≤ 2Pn

(n−1)/2∑

i=1

1

(1 + rmini)
2δ−1

,

<
2Pζ (2δ − 1)

r2δ−1
min

n.

2Since we are deriving an upper bound we can always, if necessary, add
another node to make n odd.
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Now suppose the nodes are arbitrarily positioned on a line
with rmin being the smallest distance between any two nodes.
Then we can move the nodes in by shrinking the distance
between any two consecutive ones down to rmin so that for
i 6= j, rij ≥ rmin|i − j|. Consequently, the upper bound to
transport capacity is largest for the regular linear network and
we have shown the first part of the corollary.

Let us turn to the full CSI model. Again it suffices to
consider regular linear networks. Since now the nodes have full
CSI we must evaluate the expression (6). We again observe
that setting j = 0 yields an inner sum (over all other nodes
i, k) larger than for any other node j. Thus,

CT ≤
∑

i,k
j 6=i,k

√
PiPk

rmin min(|i − j|, |k − j|)
(1 + rmin|i − j|)δ(1 + rmin|k − j|)δ

,

≤ 2Pn

(n−1)/2∑

i,k=1

rmin min(i, k)

(1 + rmini)
δ
(1 + rmink)

δ
,

≤ 4Pn

(n−1)/2∑

i=1

∑

k≥i

1

(1 + rmini)
δ−1

(1 + rmink)
δ
,

<
4Pn

r2δ−1
min

n∑

k=1

k∑

i=1

1

iδ−1kδ
. (14)

We are interested in δ > 1, the decay rate even in free space,
where we have the lower Riemann sum

k∑

i=1

i1−δ < 1 +

∫ k

1

x1−δ dx,

< 1 +
1

2 − δ
(k2−δ − 1). (15)

Using (15) to upper bound the inner sum in (14), we get

n∑

k=1

k∑

i=1

i1−δk−δ ≤ ζ(δ) +
1

2 − δ
{ζ(2δ − 2) − ζ(δ)} . (16)

The above constant is well-defined for all δ > 3/2 + ε:
It is upper bounded by ζ(δ) + 2ζ(1 + 2ε) and decreases
monotonically to zero as δ grows. Here ε > 0 is arbitrary.
Denoting the constant in (16) by A(δ) we obtain the statement
of our claim in (13).

The following corollary establishes a similar result for
planar networks.

Corollary 3.2: Suppose that the nodes lie on a plane at a
distance of at least rmin > 0 from each other. With no CSI at
the nodes, the transport capacity is upper bounded by

(2π + 12)Pζ (2δ − 2)

r2δ−1
min

n,

for δ > 3/2. With full CSI at the nodes, the transport capacity
is upper bounded by

2(2π + 12)2PA(δ − 1)

r2δ−1
min

n, (17)

for δ > 5/2.
Proof: Consider an arbitrary planar network with minimum
distance rmin > 0 and let us begin with the no CSI model.

To upper bound the transport capacity we need to evaluate the
expression in (5).

CT ≤
∑

i,j 6=i

Pi
rij

(1 + rij)2δ
,

<
∑

i,j 6=i

Pi

r2δ−1
ij

. (18)

We pick one of the nodes, say i0, and wish to evaluate the
inner sum (over all j 6= i0) in (5). The value of this quantity
will depend upon the actual geographic configuration of the
nodes. However, we can find an upper bound to it by counting
the greatest possible number of nodes at any given distance
from i0. Observe that at a distance of jrmin from i0 there are
at most b2πjc nodes. Suppose that we move the nodes lying in
the annulus formed by circles of radius jrmin and (j +1)rmin

to a distance of jrmin from node i0. Since there are at most

π(rmin(j + 1))2 − π(rminj)2

π( rmin

2 )2
= 4(2j + 1)

such nodes, the overall number of nodes at distance jrmin

from node i0 cannot be larger than b(2π + 8)j + 4c. Note
that moving nodes closer to i0 only further upper bounds
the quantity

∑
i0,j 6=i0

1

r2δ−1

i0j

. Continuing from (18), our upper

bound on transport capacity is

CT <
Pn

r2δ−1
min

√
n/2∑

j=1

b(2π + 8)j + 4c
j2δ−1

,

<
Pn

r2δ−1
min

√
n/2∑

j=1

(2π + 12)j

j2δ−1
,

<
(2π + 12)Pζ (2δ − 2) n

r2δ−1
min

.

This proves the first part of the corollary.
Now consider the full CSI model. This time we evaluate

the expression (6) to bound the transport capacity. We use the
same counting arguments as those used in the proof of the
first statement of this corollary to get

CT ≤
∑

i,k,j 6=i,k

√
PiPk

min(rij , rkj)

(1 + rij)δ(1 + rkj)δ
,

≤ (2π + 12)2Pn

r2δ−1
min

√
n/2∑

i,k=1

ik min(i, k)

iδkδ
, (19)

≤ 2(2π + 12)2Pn

r2δ−1
min

√
n/2∑

i=1

∑

k≥i

1

iδ−2kδ−1
,

<
2(2π + 12)2Pn

r2δ−1
min

n∑

k=1

k∑

i=1

1

iδ−2kδ−1
.

Since the only difference here from (14) is that δ is reduced
by 1, we have shown the claim in (17).

IV. SCALING LAWS FOR RANDOM NETWORKS

In the previous section we considered arbitrary linear and
planar network configurations under the assumption that no
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two nodes can be closer than a distance of rmin > 0. To test
the robustness and generality of our approach, we introduce
random perturbations in the locations of the nodes. As a first
step to tackling this problem, we observe the following simple
result, a proof of which can be found in Section 3 of [6].

Given a random process {Xn}∞n=1 and functions f and g,
we will use the shorthand notation f(Xn) . g(n) to mean the
following:

P (f(Xn) ≤ g(n) for all but finitely many n) = 1.

Lemma 4.1: Suppose there are n ≥ 1 urns and we are given
n indistinguishable balls to distribute among them. Further,
suppose that we are equally likely to place any of the balls
in any of the urns. Let Bn = {i1, i2, . . . , in} represent a
realization of the locations of n balls in n urns, i.e., let ik
be the number of balls that fall in urn k. Thus {Bn}∞n=1 is a
random process, indexed by n, of realizations of ball locations.
Then, we have that maxBn . log n.

We now proceed to apply this result to linear and planar
random networks. Let {Nn}∞n=1 denote the random process of
realizations of network configurations, indexed by the number
of radios n. We will write CT (Nn) to emphasize the fact that
the transport capacity is a function of this random process.

Theorem 4.2: Suppose that Nn is a collection of n nodes
whose locations are independently and uniformly distributed
on a straight line of length n. With no CSI at the nodes, we
have that

CT (Nn) . 4Pζ (2δ − 1) n log n,

for all δ > 1. With full CSI at the nodes, we have that

CT (Nn) . 16PA(δ) n (log n)2,

as long as δ > 3/2.
Proof: Suppose that the n nodes in the network Nn have no
CSI and that their locations are uniformly and independently
distributed on the line segment [0, n]. We will use letters x and
y to denote the nodes (and, interchangeably, their locations)
in Nn, and |A| to denote the cardinality of set A. Identifying
the urns in Lemma 4.1 with the intervals [i, i+1], we get that

|Nn ∩ [i, i + 1]| . log n for each i ∈ In
4
= {0, 1, . . . , n}.

Suppose that, given a fixed j ∈ In, we move the nodes
lying in [i, i + 1] to the point i if j ≤ i or to the point i + 1
if j > i. At the remaining points in In we add log n nodes,
since this can also only further increase transport capacity. The
result is a regular linear network with at most (in the sense of
“.”) 2 log n nodes at distance rij from j, for each i ∈ In. We
now use this construction of regular networks to upper bound
expression (5) for the random network:

CT (Nn) <
∑

x,y∈Nn:x6=y

Px

(1 + rxy)2δ−1
,

.
∑

j∈In

∑

i∈In

2P log n

(1 + rij)2δ−1
,

< 4Pn log n

n/2∑

k=0

1

(1 + k)2δ−1
, (20)

< 4Pζ (2δ − 1) n log n.

Here, as before, we use P to denote maxx∈Nn
Px. The

inequality (20) was obtained by observing that choosing j =
n/2 yields the largest inner sum (over i). Note that the bound
is valid only for δ > 1. Thus the first part of the theorem is
proved.

Now suppose the nodes have full CSI. A procedure identical
to the one described above is used to generate, for each j ∈
In, a regular linear network with at most 2 log n nodes at
each distance rij from j. We then proceed to upper bound
expression (6):

CT (Nn) <
∑

x,y,z∈Nn:z 6=x,y

√
PxPy

1 + min(rxz, ryz)

(1 + rxz)δ(1 + ryz)δ
,

.
∑

j∈In

∑

i,k∈In

4P (log n)2
1 + min(rij , rkj)

(1 + rij)δ(1 + rkj)δ
,

≤ 8Pn(log n)2
n/2∑

l,m=0

1 + min(l,m)

(1 + l)δ(1 + m)δ
, (21)

< 16Pn(log n)2
n∑

m=1

m∑

l=1

1

lδ−1mδ
.

Inequality (21) was obtained using the observation that choos-
ing j = n/2 yields the largest inner sum (over all i, k). With
the notation from (16) we get that, for δ > 3/2,

CT (Nn) . 16PA(δ) n (log n)2,

which proves the second part of the theorem.
Theorem 4.3: Suppose that Nn is a collection of n nodes

whose locations are independently and uniformly distributed
on a square of area n. With no CSI at the nodes, we have that

CT (Nn) . 4P (2ζ (2δ − 2) + ζ (2δ − 1)) n log n,

as long as δ > 3/2. With full CSI at the nodes, we have that

CT (Nn) . 32 {4A(δ − 1) + 4B(δ) + A(δ)}Pn (log n)2,

as long as δ > 5/2. Here

B(δ) := ζ(δ − 1) +
1

δ − 2
(ζ(δ − 1) − ζ(2δ − 3))

is a finite number for δ > 5/2.
Proof: Assume that the nodes have no CSI. Suppose that we
partition the square (of area n) in which the network Nn lies,
into n square-lets s1, s2, . . . , sn, each of unit area. This forms
a regular grid: Sn := {(i, j) : i, j ∈ {0, 1, . . . ,√n}} ⊂ Z

2.
Identifying the urns in Lemma 4.1 with the square-lets si,
we get that |Nn ∩ si| . log n for each i ∈ In. Now, pick
any vertex v ∈ Sn. Suppose that we move the nodes that
fall in each square-let of Sn onto the square-let vertex that
is the closest, in the Euclidean sense, to v. At the remaining
“empty” vertices in Sn we add log n nodes, since this can
also only further increase transport capacity. This will result
in a regular planar network but with multiple nodes at each
vertex. In particular, there will be at most (in the sense of “.”)
2 log n nodes at each vertex in some subset S̃n ⊂ Sn\{v}, at
most log n nodes at each vertex in the complement of S̃n in
Sn, and at most 4 log n nodes at v (see Figure 2). In other
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Fig. 2. The grid S36 for a random network on a plane. As indicated by the
arrows, the nodes in each square-let are moved to the square-let vertex closest
to vertex v.

words, the largest possible number of nodes at any u ∈ Sn is
(1 + 1{u∈S̃n} + 3 · 1{u=v}) log n =: fv(u).

Now, let v be the central node. Then we see that on the
square of perimeter 8k centered at v there are 8k vertices, for
k ∈ {1, 2, ...,√n/2}. By inspecting Figure 2 we see that four
of these vertices will have at most 2 log n nodes and the rest,
8k − 4 vertices, will have at most log n nodes. Suppose that
we move all of the nodes at these vertices onto the circle of
radius k centered at v. Then we will get a total of at most
(8k+4) log n nodes at each distance k ∈ {0, 1, ...,√n/2} from
v. We then have, starting from expression (5), the following
sequence of upper bounds:

CT (Nn) ≤
∑

x,y∈Nn:x6=y

Px

(1 + rxy)2δ−1
,

.
∑

v∈Sn

∑

u∈Sn

P
fv(u) log n

(1 + ‖v − u‖)2δ−1
, (22)

≤ Pn log n

√
n/2∑

k=0

(8k + 4)

(1 + k)2δ−1
,

< 4Pn log n





2

√
n

2
+1∑

k=1

1

k2δ−2
+

√
n

2
+1∑

k=1

1

k2δ−1





.

We thus arrive at the claimed upper bound, for δ > 3/2,

CT (Nn) . 4P (2ζ (2δ − 2) + ζ (2δ − 1)) n log n.

Now suppose that the network nodes have full CSI. A
procedure identical to the one described above is used to
generate, for each v ∈ Sn, a regular planar network with at
most (in the sense of “.”) fv(u) log n nodes at each vertex

u ∈ Sn. We then have

CT (Nn) ≤
∑

x,y,z∈Nn:
z 6=x,y

√
PxPy

1 + min(rxz, ryz)

(1 + rxz)δ(1 + ryz)δ
,

.
∑

v,u,t∈Sn

P (log(n))2fv(u)fv(t) ·

(1 + min(‖u − v‖, ‖t − v‖))
(1 + ‖u − v‖)δ(1 + ‖t − v‖)δ

,

≤ Pn(log n)2 ·
√

n/2∑

j,k=0

(8j + 4)(8k + 4)(1 + min(j, k))

(1 + j)δ(1 + k)δ
,

< 32 {4A(δ − 1) + 4B(δ) + A(δ)}Pn (log n)2.

Here the last step follows from observing the similarity to (21)
with δ replaced by δ−1. Thus the condition on δ for the upper
bound to hold is now δ > 5/2.

V. SCALING LAWS FOR NETWORKS WITH A TOTAL POWER

CONSTRAINT

We have considered networks in which the nodes are
individually power limited and have observed essentially O(n)
scaling of upper bounds to transport capacity of minimum
distance and random networks. In this section, we would
like to study the sensitivity of this scaling law to individual
power constraints of the nodes. In particular, we allow arbitrary
distribution of power to the radios in the network (constraining
the total transmit power to grow linearly in the number of
radios). We will see that with this extra degree of flexibility,
approximately n

1
2δ−1 parallel channels can be created in the

cut-set bound. As before, we begin with linear networks then
moving on to planar networks.

Theorem 5.1: Suppose the nodes lie on a line at a distance
of at least rmin > 0 from each other. Further, the signal decay
parameter δ > 1. With no CSI at the nodes, the transport
capacity is upper bounded by

π

(
P

r2δ
min

+
2δ − 1

2δ

)
n1+ 1

2δ log n.

With full CSI at the nodes, the transport capacity is upper
bounded by

πn

(
log

(
1 +

Pn

r2δ
min

)
n

1
2δ−1 +

P

r2δ
min

n
1

2δ−1 + (2δ − 1)

)
.

Proof: We begin with no CSI at the nodes. Suppose that the
nodes are allowed to distribute a total power of nP among
each other. Then, by partitioning the network with a uniformly
random line L, we will observe a total power of, say, nP +

in C+ and nP− = n(P − P+) in C−. Examining (10), we
observe that transport capacity can also be expressed as the
supremum (over all achievable rates) of

πdnEL




∑

i∈C+, j∈C−

Rij +
∑

i∈C−, j∈C+

Rij


 ,

where EL denotes the expectation operator with respect to the
distribution of the line L. Now, applying the MIMO channel
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bound with a total power constraint of nP + to the first sum-
rate in the above we expression we obtain
∑

i∈C+, j∈C−

Rij < max
Kx�0:

Tr(Kx)≤nP+

E
[
log det

(
I + HKxH

†)] ,

where H ∈ C
nC−×nC+ . A similar expression is true for the

second term but with H replaced by H† and P+ replaced
by P−. We first claim that the optimal covariance matrix
of this maximization problem is again diagonal, allowing the
reduction of the constraint set to all p.s.d. diagonal matrices
P = diag(p1, p2, ..., pnC+

) for which the trace constraint is
satisfied (see (39) in the appendix for the justification). We
also note that the nonzero eigenvalues of HPH† are equal to
the nonzero eigenvalues of PH†H so that

∑

i∈C+, j∈C−

Rij < max
P�0:

Tr(P)≤nP+

E
[
log det

(
I + PH†H

)]
.

Applying the Hadamard bound and Jensen’s inequality and
then adding the two sum-rate terms we get that

CT

πdn
≤

EL


 max

p∈S(nC+ ,P+)

∑

i∈C+

log


1 + pi

∑

j∈C−

1

(1 + rij)2δ




+ max
p̃∈S(nC− ,P−)

∑

i∈C−

log


1 + p̃i

∑

j∈C+

1

(1 + rij)2δ




 ,(23)

where we have used p̃ to denote the powers of the nodes in
C−, and where we have defined the set

S(k, T ) := {p = (p1, p2, . . . , pk) ∈ R
k
+ :
∑

pi ≤ nT}.

Now, allowing j ∈ {1, 2, . . . , n}, and collecting the two terms
we obtain a further upper bound:

CT

πdn
≤ max

p∈S(n,P )

n∑

i=1

log


1 + pi

n∑

j=1

1

(1 + rij)2δ


(24)

=: Mn. (25)

Since the function that is being maximized is concave and is
defined on a convex compact set, the maximum value is also
given by the dual problem:

Mn = min
λ≥0

max
p∈Rn

+

L(λ,p).

Here L(λ,p) is the Lagrangian of the primal problem and is
given by

L(λ,p) =
n∑

i=1

log (1 + piVi) − λ

(
n∑

i=1

pi − nP

)
. (26)

We have used Vi to denote
∑n

j=1
1

(1+rij)2δ . Classical water-
pouring of {pi} over {Vi} tells us that the maximum of
L(λ,p) over p ∈ R

n
+ is given by

n∑

i=1

log+

(
Vi

λ

)
− λ

n∑

i=1

(
1

λ
− 1

Vi

)+

+ λnP. (27)

Here we have defined x+ = max(x, 0) and the function
log+(x) = log(x) if x ≥ 1 and zero otherwise.

As in Section III it suffices to consider a regular linear
network with n nodes spaced by a distance of exactly rmin >
0. Further, we only focus on rmin ≤ 1 because, according to
(24), the smaller the node separation, the greater the upper
bound on transport capacity. Note that for a linear regular
network at rmin we have that rij = rmin(i + j − 1). Thus by
the upper Riemann sum,

Vi =

n∑

j=1

1

(1 + rmin(i + j − 1))2δ
,

<

∫ n

0

dx

(rmin(i + x) + 1 − rmin)2δ
,

<
1/rmin

(rmini + 1 − rmin)2δ−1
,

<
1

r2δ
min

(
i + 1

rmin
− 1
)2δ−1

,

≤ 1

r2δ
mini2δ−1

. (28)

We choose λ = r−2δ
min n

1−2δ
2δ and use (28) to obtain

Mn <

⌊
n

1
2δ

⌋

∑

i=1

log

(
r2δ
minn

2δ−1

2δ

r2δ
mini2δ−1

)
+

Pn
1
2δ

r2δ
min

,

<
2δ − 1

2δ
n

1
2δ log n +

P

r2δ
min

n
1
2δ ,

=

(
P

r2δ
min

+
2δ − 1

2δ

)
n

1
2δ log n.

(29)

Substituting this calculation into the upper bound in (25), we
obtain the statement of the theorem.

Now consider the full CSI model. The usual bound on the
sum-rate of communication from C+ to C− is

∑

i∈C+

j∈C−

Rij < E


 max

Kx�0:
Tr(Kx)≤nP+

log det
(
I + HKxH

†)

 ,

≤ E



∑

j∈C−

max
Kx�0:

Tr(Kx)≤nP+

log
(
1 + hjKxh

†
j

)

 .

Here we have, again, used hj to denote the j-th row of H. Now
note that, for any given row vector x ∈ C

n, the maximum of
xKxx

† over all p.s.d. matrices Kx with unit trace constraint
is achieved by Kx = x†x

‖x‖2 . Therefore,

max
Kx�0:

Tr(Kx)≤nP+

hjKxh
†
j = nP+‖hj‖2.

Now, using Jensen’s inequality to further upper bound the sum-
rates in both directions across the cut and then averaging the
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result over the distribution of the cut, we arrive at

CT

πdn
≤ EL



∑

j∈C−

log

(
1 + nP+

∑

i∈C+

1

(c + rij)2δ

)

+
∑

j∈C+

log

(
1 + nP− ∑

i∈C−

1

(c + rij)2δ

)
 .

Just as in the proof of the first part of the theorem, we
can further upper bound transport capacity by letting i ∈
{1, 2, . . . , n} to get

CT

πdn
≤

n∑

i=1

log (1 + nPVi) . (30)

We substitute the approximation (28) into the above expres-
sion, and bound the resulting sum with the following integral:

CT

πdn
<

∫ n

0

log

(
1 +

P

r2δ
min

n

x2δ−1

)
dx,

=

∫ 1

0

log

(
1 +

P

r2δ
min

n

x2δ−1

)
dx

+

∫ n
1

2δ−1

1

log

(
1 +

P

r2δ
min

n

x2δ−1

)
dx

+

∫ n

n
1

2δ−1

log

(
1 +

P

r2δ
min

n

x2δ−1

)
dx,

≤ log

(
1 +

Pn

r2δ
min

)
+ (2δ − 1)

∫ 1

0

log

(
1

x

)
dx

+ log

(
1 +

Pn

r2δ
min

)[
n

1
2δ−1 − 1

]

+

∫ n

n
1

2δ−1

Pn

r2δ
minx2δ−1

dx,

< (2δ − 1) + log

(
1 +

Pn

r2δ
min

)
n

1
2δ−1 +

P

r2δ
min

n
1

2δ−1 .

Observing that dn = n for linear networks, we obtain the
statement of the theorem.

Theorem 5.2: Suppose the nodes lie on a plane at a distance
of at least rmin > 0 from each other. With no CSI at the nodes,
the transport capacity is upper bounded by

πPKn
1
2
+ 1

2δ−1 + π
2δ − 2

2δ − 1
n1+ 1

2δ−1 log
(
nr2δ−2

min

)
,

for δ > 1 and with K = 2π+12
r2δ
min

. With full CSI at the nodes,
the transport capacity is upper bounded by

πn

((
n

1
2δ−2 + 1

)
log(1 + nPK) +

PKn
1

2δ−2

2δ − 3
+ 4δ − 4

)
,

for δ > 3/2.
Proof: We begin with the no CSI model first and follow the
derivation used in the proof of the first part of Theorem 5.1
to arrive at

∑

i∈C+, j∈C−

Rij <

max
p∈S(nC+ ,P+)

∑

i∈C+

log


1 + pi

∑

j∈C−

1

(1 + rij)2δ


 .(31)
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Fig. 3. Hexagonal packing of nodes for n = 25.

Consider an arbitrary straight line cut of the circle of radius
dn containing the n nodes. Consider a new configuration of
nodes in C− for which the quantity

Vi :=
∑

j∈C−

1

(1 + rij)2δ

is maximized for each i ∈ C+ while still honoring the mini-
mum distance property. Then the bound (31) on the sum-rate
of communication across this cut will be larger than that of any
other node configuration in C−. To maximize our upper bound
on overall transport capacity, we would like a single network
configuration to have this property for all possible straight-line
cuts. Such a minimum-distance network configuration must
have the property that each node be surrounded by the greatest
possible number of nodes at a distance of rmin from it. To see
that this must be so, suppose that there exists a node, call it
i0, which has one fewer than the maximum number of nodes
at distance rmin from it. Suppose further that the node that is
missing, call it j0, is actually at a distance of rmin +ε from i0,
for ε > 0. Then we can choose to partition the network with
a straight line that cuts i0 and j0 and intersects the circle of
radius rmin

2 around i0. Clearly the value of Vi0 for this cut is
less than what it would be if j0 was exactly rmin away from
i0. Thus for a network configuration to be optimal in the sense
of maximizing the bound on transport capacity, it must have
such a “dense” packing of nodes.

Now, at a distance of rmin from each node there can be
at most six other nodes that are also at a distance of rmin

from each other. Since this is true for each node, the network
configuration that maximizes our bound on transport capacity
is the hexagonal packing of nodes in the plane (see Figure 3).
We now proceed to upper bound the transport capacity of such
a network.

As before, it suffices to consider the center-cut. The enu-
meration of the nodes in C+ is top-to-bottom and according
to the pattern indicated in the figure. We claim that Vi, as a
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function of i, changes value only when
⌊

i−1√
n

⌋
changes value.

To see this, observe that for nodes 1 ≤ i ≤ √
n, the closest

node in C− is at a distance of rmin. Likewise, for nodes√
n+1 ≤ i ≤ 2

√
n, the closest receiving node is at a distance

of 2rmin, and so on. In particular, for 1 ≤ i ≤ √
n, we have

that

Vi <

n∑

j=1

(2π + 12)j

(1 + rminj)2δ
<

(2π + 12)

r2δ
min

n∑

j=1

1

j2δ−1
.

To see this, we use a bounding procedure similar to the one
in the proof of Corollary 3.2: We pick any node i in the given
set and note that there can be at most b(2π + 12)jc nodes
at distance rminj from i. Note that we can always extend
the hexagonal pattern by adding more nodes to ensure that
this bound holds for all 1 ≤ i ≤ √

n. In general, for any
1 ≤ i ≤ n/2, we can write

Vi <
(2π + 12)

r2δ
min

n∑

j=1

(
1

rmin
+ j +

⌊
i − 1√

n

⌋)1−2δ

.

We can then further upper bound the above expression by
recognizing it as a Riemann sum:

Vi <
2π + 12

r2δ
min

∫ n

0

dx
(

1
rmin

+ x +
⌊

i−1√
n

⌋)2δ−1
,

<
2π + 12

r2δ
min

(
1

rmin
+
⌊

i−1√
n

⌋)2δ−2
. (32)

Further, we have an upper bound to the transport capacity by
choosing λ = 2π+12

r2δ
min

n
2−2δ
2δ−1 in the Lagrange dual (c.f. (26)):

CT

πdn
≤ P (2π + 12) n

1
2δ−1

r2δ
min

+

n/2∑

i=1

log+

(
n

2δ−2

2δ−1

⌊
1

rmin
+

i − 1√
n

⌋2−2δ
)

.(33)

Observe that the number of nonzero terms in the above sum is
the same as the number of values of i for which the argument
of the log+ function is greater or equal to one. This number
is no more than

⌊√
n n

1
2δ−1

⌋
. Thus we have

CT

πdn
≤ P (2π + 12) n

1
2δ−1

r2δ
min

+
2δ − 2

2δ − 1

√
n n

1
2δ−1 log

(
nr2δ−2

min

)
.

Noting that dn =
√

n for hexagonally arranged planar net-
works, we get the desired bound on transport capacity.

Now the nodes have full CSI and we only look at the regular
planar network (hexagonally arranged as in Figure 3). We
follow the same steps as those used to derive an upper bound
for the linear regular network under full CSI in Theorem (5.1),
to arrive at the expression (30), which is replicated here for
convenience:

CT

πdn
≤

n∑

i=1

log (1 + nPVi) . (34)

Here Vi for planar networks is upper bounded as, from (32),

Vi <
2π + 12

r2δ
min

(
1

rmin
+
⌊

i−1√
n

⌋)2δ−2
,

<
K

(
i√
n
− 1
)2δ−2

.

where we have defined the constant K = 2π+12
r2δ
min

. If we
substitute this upper bound for Vi in (34), and note that
dn =

√
n for planar networks, we get

CT

π
√

n
<

n∑

i=1

log

(
1 + nPK

(
i√
n
− 1

)2−2δ
)

.

We can upper bound this sum with an integral, just as in (28),
to obtain

CT

π
√

n
<

∫ n

0

log

(
1 + nPK

(
x√
n
− 1

)2−2δ
)

dx.

Performing the change of variable u = x√
n
− 1 and restricting

ourselves to δ > 3/2, we continue to upper bound the integral:

CT

π
√

n
<

∫ √
n−1

−1

log

(
1 +

nPK

u2δ−2

)√
ndu,

=
√

n

∫ 0

−1

log

(
1 +

nPK

u2δ−2

)
du

+
√

n

∫ 1

0

log

(
1 +

nPK

u2δ−2

)
du

+
√

n

∫ n
1

2δ−2

1

log

(
1 +

nPK

u2δ−2

)
du

+
√

n

∫ √
n−1

n
1

2δ−2

log

(
1 +

nPK

u2δ−2

)
du,

= 2
√

n

∫ 1

0

log

(
1 +

nPK

u2δ−2

)
du

+
√

n

∫ n
1

2δ−2

1

log

(
1 +

nPK

u2δ−2

)
du

+
√

n

∫ √
n−1

n
1

2δ−2

log

(
1 +

nPK

u2δ−1

)
du,

< 2
√

n log(1 + nPK) + 2
√

n(2δ − 2)

+
√

n log(1 + nPK)
[
n

1
2δ−2 − 1

]

+
√

n

∫ √
n

n
1

2δ−2

nPK

u2δ−2
du,

<
√

n log(1 + nPK) + 2
√

n(2δ − 2)

+
√

n log(1 + nPK)n
1

2δ−2 +
√

n
PKn

1
2δ−2

2δ − 3
.

VI. DISCUSSION

We have applied our simple upper bounds to transport
capacity to calculate an upper bound to scaling laws for certain
class of network topologies. While this bound matched the
scaling law with a simple multihop communication scheme,
care must be exercised in interpreting this result. In particular,
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the preconstants for the lower bound and the upper bound to
the transport capacity are different and have to be taken into
consideration when architecting the communication strategy.

A key aspect to our study of scaling laws has been the
consideration of minimum distance networks (or random
networks over a large area). The scenario where there is a
crowding of nodes in a fixed area is interesting and our upper
bound techniques are not useful in this setting; essentially n
spatial degrees of freedom can be generated by close-by nodes.
On the other hand, the multihop communication strategy is
interference-limited and the performance scales with area.
More precisely, for a fixed area, the upper bound using the
cut-set technique yields a scaling law of order n log n while
the multi-hop communication yields a scaling law of order√

n. Resolving this huge gap, either by careful upper bound
techniques or by cleverer communication strategies, remains
an open problem.

APPENDIX I
OPTIMALITY OF DIAGONAL COVARIANCE MATRICES

H ∈ C
n×m is a random matrix with mutually independent

entries (i.e., the real and imaginary parts of the entries of
H are all independent). Further, we have that the marginal
distribution of each of these random variables is symmetric
around the origin. Then consider the following claim:

max
Kx�0:

(Kx)ii≤Pi

EH

[
log det

(
I + HKxH

†)] =

EH

[
log det

(
I + HPH†)] .(35)

Here we have written P as the diagonal matrix with the ith

diagonal element equal to Pi. The function being maximized
is strictly concave and the set over which it is maximized
is convex and compact. Thus the maximization is attained
and the maximal value is characterized by the Kuhn-Tucker
conditions. The Lagrangian for this problem is

L(Kx,S,D) =

E
[
log det

(
I + HKxH

†)]+ tr(SKx) + tr(D(I − Kx)).

The Lagrange variables for the diagonal and positive definite
constraints on the input are the nonnegative diagonal matrix
D and positive semidefinite S, respectively. The Kuhn-Tucker
conditions for the optimality of K∗

x are

(Kx)ii = Pi, and
dL(Kx,S,D)

dKx
(K∗

x) = 0.

The derivative constraint can be rewritten as

dL(Kx,S,D)

dKx
(K∗

x) =

H† (I + HK∗
xH

†)−1
H + S − D = 0. (36)

Our main observation is that

H† (I + HPH†)−1
H (37)

is a nonnegative diagonal matrix. If we can show this, then
we are done: the choice S = 0 and D to the nonnegative
diagonal matrix in (37) satisfies the Kuhn-Tucker conditions in
(36) with K∗

x = P. Consider the off diagonal (i, j)th element

(i 6= j) of the matrix in (37), writing the ith column of H by
hi:

h
†
j

(
I + HPH†)−1

hi =
h
†
jAhi(

1 + Pjh
†
jAhj

)(
1 + Pih

†
iAhi

) .

(38)

Here we have written A :=
(
I +

∑
k 6=i,j Pkhkh

∗
k

)−1

and

used the matrix inversion lemma:
(
B + xx†)−1

= B−1 −
B−1xx†B−1

1+x†B−1x
whenever the terms exist. Now observe that

A,hi,hj are all independent. Thus conditioned on A, we can
use the symmetry of the distributions of the elements of hi,hj

around the origin to claim that the right-hand side of (38) is
equal to zero. This justifies the claim in (35).

We can also make a related statement about the optimality of
diagonal covariance matrices for the no CSI capacity with an
overall power constraint. In particular, consider the following
claim (analogous to (35)):

max
Kx�0:

tr[Kx]≤P

EH

[
log det

(
I + HKxH

†)] =

max
D�0:

tr[D]≤P

EH

[
log det

(
I + HDH†)] .(39)

In other words, we can restrict the space of covariance matrices
from the cone of positive semidefinite matrices to the cone of
nonnegative diagonal matrices (D in (39) denotes a diagonal
matrix). The proof of (39) follows in much the same way
we showed (35). The key component of the proof is to show
that with a diagonal Kx, the Kuhn-Tucker conditions reduce
to those where the input space was already restricted to be
diagonal matrices.
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