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Abstract

We study two building-block models of interference-limited wireless networks,
motivated by the problem of joint Peer-to-Peer and Wide Area Network design.
In the first case, a single “long-range” transmitter interferes with multiple par-
allel “short-range” transmissions, and, in the second case, multiple short-range
transmitters interfere with a single long-range receiver. We identify the maximal
degree-of-freedom region of the former network and show that multilevel superposi-
tion coding by the long-range transmitter performs optimally. Moreover, a simple
power control strategy, performed by the long-range transmitter, achieves a region
that is within one bit of the capacity region, under certain channel conditions. For
the latter network, we show that short-range transmitter power control is degree-
of-freedom optimal under certain channel conditions.

1 Introduction

The convergence of heterogenous radio devices and services in the unlicensed as well as
the legacy-operator bands has created a need for highly spectrally efficient communication
in the presence of multiuser interference bearing spatially non-uniform statistics. The
increased popularity of short-range peer-to-peer communication (Bluetooth and WiFi, for
instance), along with the more traditional demand for mobile long-range WAN access, is
leading up to a clash of scales and a possibility of throughput degradation in both types
of networks if they are to occupy the same spectrum.

Practical peer-to-peer protocols as well as cellular wide area network interference man-
agement technologies have traditionally centered around two fundamental basic schemes:
orthogonalization and full-reuse. Orthogonalization divides the total degrees of freedom
(time or frequency) to the different users, while, at the other extreme, full reuse allows
each point-to-point communication to take place over the same time and frequency band
and multiuser interference is treated as noise.
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In this paper, we study the problem of joint short- and long-range network design from
an information-theoretic standpoint. More specifically, our focus is on finding optimal
interference management schemes for two specific wireless network topologies: the many-
receiver, single-interferer and the many-interferer, single receiver networks. These two
examples are illustrated in Fig. 1.

In the first example, only one transmitter is creating interference to the other receivers
as it communicates with its intended receiver. This situation could correspond to a
setting in which one long-range WAN transmission such as a cellular uplink is taking
place over the same time and frequency bands as multiple local short-range peer-to-peer
transmissions. The long-range transmitter is typically more powerful than the short-range
radios and hence will generate significant interference. At the same time, the short-
range transmissions are not powerful enough to cause interference among themselves. In
the second example, the short-range peer-to-peer communications create interference for
the long-range receiver. This could take place when a WAN downlink is experiencing
interference from a group of neighboring peer-to-peer transmissions.

(a)

(b)

Figure 1: The many-receiver, single-interferer network in (a) and the single-receiver,
many-interferer network in (b). The transmitters are denoted by empty circles and
receivers by filled circles. The solid arrows are intended communication links and the
dotted arrows represent the interference.

Our main results are approximations to the capacity regions of the two networks
illustrated in Fig. 1. For the single-interferer, many-receiver network of Fig. 1 (a), we
show that a simple power-control strategy achieves a region that is within one bit of
the capacity region of the network, in a “weak interference” regime. Our result is an
extension and a strengthening of the two-user “Z-channel” result of [4].

Furthermore, we study the behavior of the network in the asymptotic interference
limited regime (introduced in [4]) in which the transmit and received signal-to-noise
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ratios (SNRs) approach infinity while keeping fixed the ratios of the received SNRs (in
decibels) of the signals of interest to the transmitted SNR (in decibles), as well as the
ratios of the received SNRs of the interference to the transmitted SNR. In this regime, we
obtain a complete characterization of the degree-of-freedom region of the network of Fig. 1
(a). We show that the communication scheme that achieves all points in this region is
multilevel superposition coding at the long-range transmitter and successive interference
decoding and cancellation at the short-range receivers. For the network of Fig. 1 (b), we
identify the degree-of-freedom region in this same regime, and we show that the optimal
scheme is transmit power control by the short-range transmitters.

This paper is organized as follows: in Section 2 we introduce the channel model and
the definitions of the approximations to the capacity region. In Section 3 we state our
main results which are proved in Section 4. Finally, we discuss the extension of the
classical result on the capacity in the “strong-interference” regime in Section 5.

2 Preliminaries

2.1 The channel model

Suppose that there are k short-range users in both networks of Fig. 1. We will refer to the
long-range user as “user 0” and short-range user i simply as “user i”, for i = 1, 2, . . . , k.
The network channels can be represented by the following equations, which are also
depicted in Fig. 2:

Network (a) of Fig. 1: Network (b) of Fig. 1:

Y0 = h00X0 + Z0, Y0 = h00X0 +
k∑
i=1

hi0Xi + Z0,

Yi = h0iX0 + hiiXi + Zi Yi = hiiXi + Zi,

where Xi ∈ C, for i = 1, 2, . . . , k.
Each transmitter is subject to an average power constraint E[|Xi|2] ≤ Pi, i = 0, 1, . . . , k,

and the noise Zi ∼ CN (0, N0) is i.i.d. over time. In the following, we define the received
signal-to-noise and interference-to-noise ratios (SNR and INR, respectively):

Network (a) of Fig. 1: Network (b) of Fig. 1:

SNRi :=
|hii|2Pi
N0

SNRi :=
|hii|2Pi
N0

INRi :=
|h0i|2P0

N0

INRi :=
|hi0|2Pi
N0

Each user i = 0, 1, . . . , k communicates a message mi ∈ {1, 2, . . . , 2nRi} with a codeword
Xn
i := (Xi(j))

n
j=1 drawn from a codebook C(n, i) the codewords of which satisfy the
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Figure 2: The many-receiver, single-interferer network in (a) and the single-receiver,
many-interferer network in (b). The long range user channel input is X0 and output Y0.

average transmit power constraint

n∑
j=1

|Xi(j)|2 ≤ nPi, i = 1, 2, . . . , k.

Throughout this paper, we assume that Pi = P for i = 0, 1, . . . , k and define the transmit
SNR by1

SNR :=
P

N0

.

1The differences in the power-profiles of the transmitters can be expressed through the channel gains
to their receivers.
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At each receiver, the decoding function Dn
i : Cn 7→ {1, 2, . . . , 2nRi} produces an

estimate m̂i of the transmitted message mi of its transmitter and error occurs if m̂i 6= mi.
The average error probability for user i is given by

εi,n := E[P(m̂i 6= mi)],

where the expectation is taken over the uniform and independent distribution of the mes-
sages m0,m1, . . . ,mk. A rate tuple (R0, R1, . . . , Rk) is achievable if there exists a family of
codebook tuples {(C(n, 1), C(n, 2), . . . , C(n, k))}ni=1 for which the error probabilities εi,n,
i = 0, 1, . . . , k go to zero as n→∞.

2.2 Approximating the capacity region

We first introduce definitions of two approximations to the capacity region, which we will
use to state our main results.

Definition 2.1 An achievable rate region is said to be within one bit of the capacity
region of a given network if, for any rate tuple (R0, R1, R2, . . . , Rk) on the boundary of
the achievable region, the rate tuple (R0, R1 + 1, R2 + 1, . . . , Rk + 1) is not achievable.

We note that this definition of “within one bit” is stronger than the one in [4] since it
quantifies the gap from capacity in the direction of the i-th coordinate to be at most one
bit for every choice of R0.

Let C denote the capacity region of a network of type (a) or type (b) in Fig. 1. Let

D̃ be given by

D̃ :=

{(
Ri

log SNR

)k

i=1

: (Ri)
k
i=1 ∈ C

}
.

The following definition is essentially identical to the one introduced in [4].

Definition 2.2 The degree-of-freedom region is defined to be

D := lim D̃,

where the limit is taken as SNR, SNRi, INRi →∞, while keeping fixed the ratios

Ci :=
log SNRi
log SNR

, and Ii :=
log INRi
log SNR

, i = 0, 1, . . . , k.

3 The Main Results

In the next three theorems, we state the main results of our paper.
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Theorem 3.1 Suppose that INR1 ≥ INR2 ≥, . . . ,≥ INRk. The degree-of-freedom region
of the network of Fig. 2 (a) is given by

di ≤ Ci,

d0 +
∑
i∈S

Ri ≤ max{Ijl , Cjl}+ max{Ijl−1
− Ijl , Cjl−1

}+

· · ·+ max{Ij1 − Ij2 , Cj1}+ (C0 − Ij1)+,

for any set S = {j1, j2, · · · , jl} ⊂ {1, 2, 3, · · · , k} with j1 < j2 < · · · < jl.

The scheme that achieves the degree-of-freedom region of the network is multilevel
superposition coding, performed by the long-range transmitter. This can be thought
of a generalization of the scheme presented in [4] (and based on [6]), for the two-user
channel. Intuitively, by appropriately choosing the powers for the different components
of the superposition codeword, the received power of each of the undecodable codeword
components at a given short-range receiver can be forced to be below the noise floor.
In other words, every codeword component that arrives above the noise floor at a given
receiver is decoded and cancelled-off. The degree of freedom region can also be achieved
using a power control strategy without multilevel superposition coding, for the case when
SNRi ≥ INRi, for i = 1, 2, . . . , k.

Theorem 3.2 Suppose that SNR0 ≥ INRi and SNRi ≥ INRi for i = 1, 2, . . . , k and
consider the network shown in Fig. 2 (a). Then, the union over γ ∈ [0, 1] of the rate
regions defined by

R0 ≤ log(1 + γSNR0),

Ri ≤ log

(
1 +

SNRi
1 + γINRi

)
,

for i = 1, 2, . . . , k, is within one bit of the capacity region of the network.

The scheme used to obtain this region is a power control policy: the long-range
transmitter reduces its transmit SNR from SNR to γSNR, and each of the short-range
receivers simply treats interference as noise.

Theorem 3.3 The degree-of-freedom region of the network of Fig. 2 (b) with SNRi ≥
INRi and SNR0 ≥ INRi for i = 1, 2, . . . , k, is given by

di ≤ Ci,

d0 + di ≤ C0 + Ci − Ii,
for i = 1, 2, . . . , k.

In this case, the degree-of-freedom-optimal scheme is for the short-range transmitters
to lower their transmit power and the long-range receiver to treat all interference as noise.
Depending on which point on the boundary of the degree-of-freedom region the network
is operating, one of the users is favored over the others. If this user turns out to be a
short-range user, this user should use full transmit power while the other short-range
users lower their transmit power so that the interference they create for the long-range
user is at the same level as the interference caused by the favored user.
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4 Proofs of the Main Results

4.1 Proof of Theorem 3.1

4.1.1 The outer bound

Throughout the paper, we will use the high-SNR approximations2

log(1 + INR1 + SNR1) ≈ max{log INR1, log SNR1},
log

(
1 + SNR0

1 + INR1

)
≈ (log SNR0 − log INR1)+ . (1)

We define the interference plus noise term at each receiver i and time m as

Si(m) = h0iX0(m) + Zi(m), for i = 1, 2, · · · , k, (2)

and
Sni = (Si(1), Si(2), . . . , Si(n)) for i = 1, 2, · · · , k, (3)

Without loss of generality we can assume S = {1, 2, 3, · · · , k}, i.e., we can characterize
the bound on d0 +d1 + . . . , dn. We begin by deriving an upper bound on R0 +R1 + · · ·Rk

(for ease of notation, we omit the nεn terms coming from Fano’s inequality).

n(R0 +R1 + · · ·Rk)

≤ I(Xn
0 ;Y n

0 ) + I(Xn
1 ;Y n

1 ) + · · ·+ I(Xn
k−1;Y n

k−1) + I(Xn
k ;Y n

k )

≤ I(Xn
0 ;Y n

0 , S
n
1 , S

n
2 , · · · , Snk ) + I(Xn

1 ;Y n
1 , S

n
2 , S

n
3 , · · · , Snk ) + · · ·+ I(Xn

k−1;Y n
k−1, S

n
k ) + I(Xn

k ;Y n
k )

= I(Xn
0 ;Snk ) + I(Xn

0 ;Snk−1|Snk ) + · · ·+ I(Xn
0 ;Sn1 |Sn2 , · · · , Snk ) + I(Xn

0 ;Y n
0 |Sn1 , · · · , Snk )

+ I(Xn
1 ;Y n

1 |Sn2 , · · · , Snk ) + · · ·+ I(Xn
k−1;Y n

k−1|Snk ) + I(Xn
k ;Y n

k )

= h(Snk )− h(Zn
k ) + h(Snk−1|Snk )− h(Zn

k−1) + · · ·+ h(Sn1 |Sn2 , · · · , Snk )− h(Zn
1 )+

h(Y n
0 |Sn1 , · · · , Snk )− h(Zn

0 ) + h(Y n
1 |Sn2 , · · · , Snk )− h(Y n

1 |Xn
1 , S

n
2 , · · · , Snk ) + · · ·

+ h(Y n
k−1|Snk )− h(Y n

k−1|Xn
k−1S

n
k ) + h(Y n

k )− h(Snk )

= h(Snk )− h(Zn
k ) + h(Snk−1|Snk )− h(Zn

k−1) + · · ·+ h(Sn1 |Sn2 , · · · , Snk )− h(Zn
1 )

+ h(Y n
0 |Sn1 , · · · , Snk )− h(Zn

0 ) + h(Y n
1 |Sn2 , · · · , Snk )− h(Sn1 |Sn2 , · · · , Snk ) + · · ·+ h(Y n

k−1|Snk )

− h(Snk−1|Snk ) + h(Y n
k )− h(Snk )

= h(Y n
0 |Sn1 , · · · , Snk ) + h(Y n

1 |Sn2 , · · · , Snk ) + · · ·+ h(Y n
k−1|Snk ) + h(Y n

k )− h(Zn
k )− · · · − h(Zn

0 )

≤ h(Y n
0 |Sn1 ) + h(Y n

1 |Sn2 ) + · · ·+ h(Y n
k−1|Snk ) + h(Y n

k )− h(Zn
k )− · · · − h(Zn

0 )

≤
n∑
i=1

[h(Y0,i|S1,i) + h(Y1,i|S2,i) + · · ·+ h(Yk−1,i|Sk,i) + h(Yk,i)]− h(Zn
k )− · · · − h(Zn

0 ).

(4)

We observe that Gaussian inputs maximize the conditional and unconditional entropies
in the above expression. Evaluating the bound with Gaussian inputs, using convexity of

2which satisfy the property that the higher order terms are O(1), i.e., the approximation error vanishes
as SNR, INR1,SNR0, SNR1 →∞.
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log function and the power constraint, dividing by n and letting n → ∞ and applying
the high-SNR approximations, we obtain the following bound on the degrees of freedom:

d0 + d1 + . . .+ dk ≤ (C0 − I1)+ + max{I1 − I2, C1}+ · · ·
+ max{Ik−1 − Ik−2, Ck−1}+ max{Ik, Ck}.

(5)

The individual rate bounds in the statement of Theorem 3.1 follow trivially from Fano’s
inequality.

4.1.2 The inner bound

We use a multilevel superposition coding scheme as described in the following. Suppose
that INR1 ≥ INR2 ≥, . . . ,≥ INRk. User 0 splits its message m0 into k + 1 independent
messages u,w,w1, w2, . . . , wk−1 and generates corresponding i.i.d. Gaussian codewords
Xn
u , X

n
w, X

n
w1
, . . . , Xn

wk−1
of average power

Pu :=
SNR

INR1

,

Pw := SNR,

Pwi :=
SNR

INRi+1

, i = 1, 2, . . . , k − 1.

The transmitted codeword is then given by the superposition of the individual ones:

Xn
0 = Xn

w +Xn
u +Xn

w1
+ . . .+Xn

wk−1
.

Message u is private and is decoded only by receiver 0 and message w is public and is
decoded by all of the receivers. Message w1 is decoded only by receivers 0 and 1; message
w2 is decoded by receivers 0, 1, and 2; message w3 is decoded by receivers 0, 1, 2, and
3; and the last message wk−1 is decoded by all but receiver k. Next we use induction to
prove that this scheme can acieve the degree of freedom region given in Theorem 3.1.

Step 1: k = 2 (3-node network)
For each of the independent messages u,w,w1 of user 0 and messages m1,m2 of users

1 and 2, we associate a degree of freedom du, dw, dw1 , and d1, d2, respectively. Each of the
receiver can be thought of as the receiver of a MAC channel. Receiver 0 needs to decode
u,w,w1, receiver 1 needs to decode w,w1,m1 and receiver 2 needs to decode w,m2. The
achievable degree-of-freedom region is given by the following set of inequalities:
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@ Receiver 0 @ Receiver 1 @ Receiver 2

dw ≤ C0, dw ≤ I1, dw ≤ I2,

dw1 ≤ (C0 − I2)+, dw1 ≤ I1 − I2, d2 ≤ C2,

du ≤ (C0 − I1)+, d1 ≤ C1, dw + d2 ≤ max{I2, C2},
dw + dw1 ≤ C0, dw + dw1 ≤ I1,

dw + du ≤ C0, dw + d1 ≤ max{I1, C1},
dw1 + du ≤ (C0 − I2)+, dw1 + d1 ≤ max{I1 − I2, C1},

dw + dw1 + du ≤ C0, dw + dw1 + d1 ≤ max{I1, C1}.

By removing the redundant inequalities, we obtain the following region:
At receiver 0:

dw + dw1 + du ≤ C0,

dw1 + du ≤ (C0 − I2)+,

du ≤ (C0 − I1)+.

(6)

At receiver 1:

dw + dw1 ≤ I1,

dw1 ≤ I1 − I2,

d1 + dw + dw1 ≤ max{I1, C1},
d1 + dw1 ≤ max{I1 − I2, C1},

d1 ≤ C1.

(7)

At receiver 2:

dw ≤ I2,

d2 + dw ≤ max{I2, C2},
d2 ≤ C2.

(8)

We can use Fourier-Motzkin elimination to get an achievable region in terms of d0, d1

and d2. To do that, note that d0 = dw + dw1 + du and all the rates are non-negative, we
add the following obvious bounds:

−d0 + dw + dw1 + du ≤ 0,

d0 − dw − dw1 − du ≤ 0,

−du ≤ 0,

−dw1 ≤ 0,

−dw ≤ 0.

(9)
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Note that du only appears in (6) and (9). We can eliminate du by adding each of the
inequalities in which the coefficient of du is +1 to each of the inequalities in which the
coefficient of du is −1. After doing that, we have the bounds in (7), (8) and the following.

d0 ≤ C0,

d0 − dw ≤ (C0 − I2)+,

d0 − dw − dw1 ≤ (C0 − I1)+,

dw + dw1 ≤ C0,

dw1 ≤ (C0 − I2)+,

−d0 + dw + dw1 ≤ 0,

−dw1 ≤ 0,

−dw ≤ 0.

(10)

We then eliminate dw1 from (7) and (10). After doing that, we have the bounds in
(8) and the following.

d0 ≤ C0,

d0 − dw ≤ (C0 − I2)+,

d0 ≤ (C0 − I1)+ + I1,

d0 − dw ≤ (C0 − I1)+ + I1 − I2,

d0 + d1 ≤ (C0 − I1)+ + max{I1, C1},
d0 + d1 − dw ≤ (C0 − I1)+ + max{I1 − I2, C1},

d0 ≤ (C0 − I1)+ + C0,

d0 − dw ≤ (C0 − I1)+ + (C0 − I2)+,

dw ≤ I1,

d1 + dw ≤ max{I1, C1},
d1 ≤ max{I1 − I2, C1},
dw ≤ C0,

−d0 + dw ≤ 0,

d1 ≤ C1,

−dw ≤ 0.

(11)
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After removing the redundant bounds in the above equation we get

d0 ≤ C0,

d0 − dw ≤ (C0 − I2)+,

d0 + d1 ≤ (C0 − I1)+ + max{I1, C1},
d0 + d1 − dw ≤ (C0 − I1)+ + max{I1 − I2, C1},

dw ≤ I1,

d1 + dw ≤ max{I1, C1},
dw ≤ C0,

−d0 + dw ≤ 0,

d1 ≤ C1,

−dw ≤ 0.

(12)

We finally eliminate dw from (7) and (12). After doing that, we have the following
bounds.

d0 ≤ C0,

d0 ≤ (C0 − I2)+ + I2,

d0 + d2 ≤ (C0 − I2)+ + max{I2, C2},
d0 ≤ (C0 − I2)+ + I1,

d0 + d1 ≤ (C0 − I2)+ + max{I1, C1},
d0 ≤ (C0 − I2)+ + C0,

d0 + d1 ≤ (C0 − I1)+ + max{I1, C1},
d0 + d1 ≤ (C0 − I1)+ + max{I1 − I2, C1}+ I2,

d0 + d1 + d2 ≤ (C0 − I1)+ + max{I1 − I2, C1}+ max{I2, C2},
d0 + d1 ≤ (C0 − I1)+ + max{I1 − I2, C1}+ I1,

d0 + 2d1 ≤ (C0 − I1)+ + max{I1 − I2, C1}+ max{I1, C1},
d0 + d1 ≤ (C0 − I1)+ + max{I1 − I2, C1}+ C0,

d1 ≤ (C0 − I1)+ + max{I1 − I2, C1},
d2 ≤ max{I2, C2},
d1 ≤ max{I1, C1},
d2 ≤ C2,

d1 ≤ C1.

(13)

After removing the redundant bounds in the above equation we get

d0 ≤ C0,

d1 ≤ C1,

d2 ≤ C2,

d0 + d1 ≤ max{I1, C1}+ (C0 − I1)+,

d0 + d2 ≤ max{I2, C2}+ (C0 − I2)+,

d0 + d1 + d2 ≤ (C0 − I1)+ + max{I1 − I2, C1}+ max{I2, C2}.
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Step 2: (k + 1)-node network.
We have

x0 = xw + xwk−1
+ xwk−2

+ · · ·+ xw1 + xu.

If we examine all the constraints for (k + 1)-node network, we have the following
non-trivial constraints at each receiver:

At receiver 0:

dw + dwk−1
+ dwk−2

+ · · ·+ dw1 + du ≤ C0,

dwk−1
+ dwk−2

+ · · ·+ dw1 + du ≤ (C0 − Ik)+,

dwk−2
+ · · ·+ dw1 + du ≤ (C0 − Ik−1)+,

...

dw1 + du ≤ (C0 − I2)+,

du ≤ (C0 − I1)+.

(14)

At receiver 1:

dw + dwk−1
+ dwk−2

+ · · ·+ dw1 ≤ I1,

dwk−1
+ dwk−2

+ · · ·+ dw1 ≤ I1 − Ik,
dwk−2

+ · · ·+ dw1 ≤ I1 − Ik−1,

...

dw2 + dw1 ≤ I1 − I3,

dw1 ≤ I1 − I2,

d1 + dw + dwk−1
+ dwk−2

+ · · ·+ dw1 ≤ max{I1, C1},
d1 + dwk−1

+ dwk−2
+ · · ·+ dw1 ≤ max{I1 − Ik, C1},

d1 + dwk−2
+ · · ·+ dw1 ≤ max{I1 − Ik−1, C1},

...

d1 + dw2 + dw1 ≤ max{I1 − I3, C1},
d1 + dw1 ≤ max{I1 − I2, C1},

d1 ≤ C1.

(15)
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At receiver 2:

dw + dwk−1
+ dwk−2

+ · · ·+ dw2 ≤ I2,

dwk−1
+ dwk−2

+ · · ·+ dw2 ≤ I2 − Ik,
dwk−2

+ · · ·+ dw2 ≤ I2 − Ik−1,

...

dw3 + dw2 ≤ I2 − I4,

dw2 ≤ I2 − I3,

d2 + dw + dwk−1
+ dwk−2

+ · · ·+ dw2 ≤ max{I2, C2},
d2 + dwk−1

+ dwk−2
+ · · ·+ dw2 ≤ max{I2 − Ik, C2},

d2 + dwk−2
+ · · ·+ dw2 ≤ max{I2 − Ik−1, C2},

...

d2 + dw3 + dw2 ≤ max{I2 − I4, C2},
d2 + dw2 ≤ max{I2 − I3, C2},

d2 ≤ C2.

(16)

At receiver k:

dw ≤ Ik,

dk + dw ≤ max{Ik, Ck},
dk ≤ Ck.

(17)

We also add the following obvious bounds:

−d0 + dw + dwk−1
+ dwk−2

+ · · ·+ dw1 + du ≤ 0,

d0 − dw − dwk−1
− dwk−2

− · · · − dw1 − du ≤ 0,

−du ≤ 0,

−dw1 ≤ 0,

...

−dw ≤ 0.

(18)

We assume that we get the degree of freedom region as described in Theorem 3.1 for
(k + 1)-node network after performing FM elimination.
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In particular, after eliminate du from (14) and (18), we have the following bounds

d0 ≤ C0,

d0 − dw ≤ (C0 − Ik)+,

d0 − dw − dwk−1
≤ (C0 − Ik−1)+,

...

d0 − dw − dwk−1
− · · · − dw2 ≤ (C0 − I2)+,

d0 − dw − dwk−1
− · · · − dw2 − dw1 ≤ (C0 − I1)+,

dw + dwk−1
+ · · ·+ dw1 ≤ C0,

dwk−1
+ dwk−2

+ · · ·+ dw1 ≤ (C0 − Ik)+,

...

dw1 ≤ (C0 − I2)+,

−d0 + dw + dwk−1
+ · · ·+ dw1 ≤ 0,

−dw1 ≤ 0,

...

−dw ≤ 0.

(19)

Step 3: (k + 2)-node network.
We have

x0 = xw + xwk + xwk−1
+ xwk−2

+ · · ·+ xw1 + xu.

If we examine all the constraints for (k+2)-node network, we have the following non-
trivial constraints at each receiver:

At receiver 0:

dw + dwk + dwk−1
+ · · ·+ dw1 + du ≤ C0,

dwk + dwk−1
+ dwk−2

+ · · ·+ dw1 + du ≤ (C0 − Ik+1)+,

dwk−1
+ dwk−2

+ · · ·+ dw1 + du ≤ (C0 − Ik)+,

dwk−2
+ · · ·+ dw1 + du ≤ (C0 − Ik−1)+,

...

dw1 + du ≤ (C0 − I2)+,

du ≤ (C0 − I1)+.

(20)
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At receiver 1:

dw + dwk + dwk−1
+ dwk−2

+ · · ·+ dw1 ≤ I1,

dwk + dwk−1
+ dwk−2

+ · · ·+ dw1 ≤ I1 − Ik+1,

dwk−1
+ dwk−2

+ · · ·+ dw1 ≤ I1 − Ik,
dwk−2

+ · · ·+ dw1 ≤ I1 − Ik−1,

...

dw2 + dw1 ≤ I1 − I3,

dw1 ≤ I1 − I2,

d1 + dw + dwk + dwk−1
+ dwk−2

+ · · ·+ dw1 ≤ max{I1, C1},
d1 + dwk + dwk−1

+ dwk−2
+ · · ·+ dw1 ≤ max{I1 − Ik+1, C1},

d1 + dwk−1
+ dwk−2

+ · · ·+ dw1 ≤ max{I1 − Ik, C1},
d1 + dwk−2

+ · · ·+ dw1 ≤ max{I1 − Ik−1, C1},
...

d1 + dw2 + dw1 ≤ max{I1 − I3, C1},
d1 + dw1 ≤ max{I1 − I2, C1},

d1 ≤ C1.

(21)

At receiver 2:

dw + dwk + dwk−1
+ dwk−2

+ · · ·+ dw2 ≤ I2,

dwk + dwk−1
+ dwk−2

+ · · ·+ dw2 ≤ I2 − Ik+1,

dwk−1
+ dwk−2

+ · · ·+ dw2 ≤ I2 − Ik,
dwk−2

+ · · ·+ dw2 ≤ I2 − Ik−1,

...

dw3 + dw2 ≤ I2 − I4,

dw2 ≤ I2 − I3,

d2 + dw + dwk + dwk−1
+ dwk−2

+ · · ·+ dw2 ≤ max{I2, C2},
d2 + dwk + dwk−1

+ dwk−2
+ · · ·+ dw2 ≤ max{I2 − Ik+1, C2},

d2 + dwk−1
+ dwk−2

+ · · ·+ dw2 ≤ max{I2 − Ik, C2},
d2 + dwk−2

+ · · ·+ dw2 ≤ max{I2 − Ik−1, C2},
...

d2 + dw3 + dw2 ≤ max{I2 − I4, C2},
d2 + dw2 ≤ max{I2 − I3, C2},

d2 ≤ C2.

(22)

At receiver k + 1:

dw ≤ Ik,

dk+1 + dw ≤ max{Ik+1, Ck+1},
dk+1 ≤ Ck+1.

(23)
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We also add the following obvious bounds:

−d0 + dw + dwk + dwk−1
+ · · ·+ dw1 + du ≤ 0,

d0 − dw − dwk − dwk−1
− · · · − dw1 − du ≤ 0,

−du ≤ 0,

−dw1 ≤ 0,

...

−dw ≤ 0.

(24)

Comparing the bounds at receiver l+ 1 in step 3 with the bounds at receiver l in step
2 for l = 1, 2, · · · , k, we can see that if we make change of Ij to Ij+1, Cj to Cj+1, dj to
dj+1, and dwj to dwj+1

for j = 1, 2, · · · , k in the bounds at receiver l in step 2, we get
exactly the bounds at receiver l + 1 in step 3. The idea is to show that the bounds we
get after FM elimination of du and dw1 in step 3 have a similar relation with the bounds
(19) that we get after FM elimination of du in step 2.

After eliminating du and dw1 from (20), (21), (24), and getting rid of redundant
bounds, we have the following bounds:

d1 ≤ C1,

d0 ≤ C0,

d0 − dw ≤ (C0 − Ik+1)+,

d0 − dw − dwk ≤ (C0 − Ik)+,

...

d0 − dw − dwk − · · · − dw3 − dw2 ≤ (C0 − I3)+,

d0 − dw − dwk − · · · − dw2 ≤ (C0 − I2)+,

d1 + d0 ≤ max{I1, C1}+ (C0 − I1)+,

d1 + d0 − dw ≤ max{I1 − Ik+1, C1}+ (C0 − I1)+,

d1 + d0 − dw − dwk ≤ max{I1 − Ik+1, C1}+ (C0 − I1)+,

...

d1 + d0 − dw − dwk − · · · − dw3 − dw2 ≤ max{I1 − I3, C1}+ (C0 − I1)+,

d1 + d0 − dw − dwk − · · · − dw2 ≤ max{I1 − I2, C1}+ (C0 − I1)+,

dw + dwk + · · ·+ dw2 ≤ C0,

dwk + dwk−1
+ · · ·+ dw2 ≤ (C0 − Ik+1)+,

...

dw2 ≤ (C0 − I3)+,

−d0 + dw + dwk−1
+ · · ·+ dw2 ≤ 0,

−dw2 ≤ 0,

...

−dw ≤ 0.

(25)
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We can rewrite these bounds into two groups:

d1 ≤ C1,

d0 ≤ C0,

d0 − dw ≤ (C0 − Ik+1)+,

d0 − dw − dwk ≤ (C0 − Ik)+,

...

d0 − dw − dwk − · · · − dw3 − dw2 ≤ (C0 − I3)+,

d0 − dw − dwk − · · · − dw2 ≤ (C0 − I2)+,

dw + dwk + · · ·+ dw2 ≤ C0,

dwk + dwk−1
+ · · ·+ dw2 ≤ (C0 − Ik+1)+,

...

dw2 ≤ (C0 − I3)+,

−d0 + dw + dwk−1
+ · · ·+ dw2 ≤ 0,

−dw2 ≤ 0,

...

−dw ≤ 0.

(26)

and

d1 + d0 ≤ max{I1, C1}+ (C0 − I1)+,

d1 + d0 − dw ≤ max{I1 − Ik+1, C1}+ (C0 − I1)+,

d1 + d0 − dw − dwk ≤ max{I1 − Ik+1, C1}+ (C0 − I1)+,

...

d1 + d0 − dw − dwk − · · · − dw3 − dw2 ≤ max{I1 − I3, C1}+ (C0 − I1)+,

d1 + d0 − dw − dwk − · · · − dw2 ≤ max{I1 − I2, C1}+ (C0 − I1)+,

dw + dwk + · · ·+ dw2 ≤ C0,

dwk + dwk−1
+ · · ·+ dw2 ≤ (C0 − Ik+1)+,

...

dw2 ≤ (C0 − I3)+,

−d0 + dw + dwk−1
+ · · ·+ dw2 ≤ 0,

−dw2 ≤ 0,

...

−dw ≤ 0.

(27)

It is easy to see that the bound in terms of d0, d1, d2, · · · , dk is the union of the set
of bounds derived by FM elimination using (26) with the rest of bounds at receiver 2 to
receiver k + 1 and the set of bounds derived by FM elimination by using (27) with the
rest of bounds at receiver 2 to receiver k + 1.
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Comparing the first group ((26)) with the bounds in equation (19) in step 2, we can
see that if we make change of Ij to Ij+1, Cj to Cj+1, dj to dj+1, and dwj to dwj+1

for
j = 1, 2, · · · , k in the bounds in equation (19) in step 2, we get exactly the bounds in
equation (26) in step 3. Thus if we use FM elimination on this set of equations, from
induction, we can get the bounds on

d0 +
∑
S
dS

as given in Theorem 3.1, where S ⊂ {2, 3, . . . , k+1}, and bounds on dj for j = 1, 2, · · · , k.
Compare the second group ((27)) with the bounds in equation (19) in step 2, we can

see if we change (C0 − Ij)+ in (19) to max{I1 − Ij+1, C1} + (C0 − I1)+, dwj to dwj+1
for

j = 1, 2, · · · , k, and d0 to d0 + d1, we get exactly the bounds in equation (27) in step 3.
Thus if we use FM elimination on this set of equations, from induction we can get the
bounds of

d0 + d1 +
∑
S
dS

as given in Theorem 3.1, where S ⊂ {2, 3, . . . , k + 1}.
Since these are all the bounds in Theorem 3.1, by induction, we have proven the

result.
An alternative inner bound for the case when SNRi ≥ INRi is demonstrated in Sec-

tion A.

4.2 Proof of Theorem 3.2

4.2.1 The outer bound

With k = 1, the channel equations are given by

Y0 = h00X0 + Z0,

Y1 = h01X0 + h11X1 + Z1.

Under the condition that SNR0 ≥ INR1, we can use the argument presented in [3] and
[5] to bound the capacity region of this network by the capacity region of a degraded
broadcast channel with equations

Ỹ0 = X̃ + Z0,

Ỹ1 = Ỹ0 + Z̃1,

where X̃ is subject to the power constraint

E[|X̃|2] ≤ SNR0 +
SNR1SNR0

INR1

,

and Z̃1 ∼ CN
(

0, SNR0

INR1
− 1
)

is independent of Z0 ∼ CN (0, 1). Hence, the outer bound

on the original channel is given by the minimum of the point-to-point interference-free
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capacities of the links and the rates achievable in the associated broadcast channel, i.e.,
the union, over all α ∈ [0, 1], of the regions

Router
0 ≤ log(1 + SNR0),

Router
0 ≤ log

(
1 + α

(
SNR0 +

SNR0SNR1

INR1

))
,

Router
1 ≤ log(1 + SNR1),

Router
1 ≤ log

(
1 +

(1− α)(SNR1 + INR1)

1 + α(SNR1 + INR1)

)
. (28)

For general k > 1, we can augment the outer bound region above with the bounds
Ri ≤ log(1 + SNRi), for i = 2, 3, . . . , k and call the resulting region by O1. This region
is then certainly an outer bound to the capacity region of the network since all but the
first interference link is set to zero. Since the capacity region of the network is contained
in each of the regions Oi, it is also contained in

⋂k
i=1Oi.

4.2.2 The inner bound

Again, we start with the k = 1 case. If the long-range user lowers its transmit SNR (by
lowering its power) from SNR to γSNR, for some γ ∈ [0, 1], and the short-range receiver
treats the interference as noise, the rate achieved by the two users is

Rinner
0 ≤ log(1 + γSNR0),

Rinner
1 ≤ log

(
1 +

SNR1

1 + γINR1

)
(29)

It is easy to check that the largest gap in R1 between the outer and inner bounds,
over all values of R0, happens at the point where

α =
INR1

(1 + SNR1)(SNR1 + INR1)

in the outer bound and

γ =
1

1 + SNR1

in the inner bound. Furthermore, if SNR1 ≥ INR1, this gap is less than one bit at this
point, therefore

Router
1 −Rinner

1 ≤ 1,

for all R0 ∈ [0, log(1 + SNR0)] under this condition.
Now consider the case with k > 1. To achieve any R0, the long-range user lowers its

power to γSNR for γ ∈ [0, 1]. By the result shown above, if each of the short-range users
treats the interference as noise, they are guaranteed to achieve a rate that is within one
bit of the highest rate they can get in the absence of other short-range users. Since the
presence of other short-range users cannot increase the capacity region, we conclude that
each short-range user i can achieve a rate within one bit of the boundary of the capacity
region of the network in the i-th direction. Hence we have proved the theorem.
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4.3 Proof of Theorem 3.3

4.3.1 The outer bound

We first focus on the k = 1 case, i.e., a network with a single short-range user. We can
apply the outer bound on the capacity region of the network, found in Section 4.1.1 of
[4]:

R0 ≤ (1 + SNR0),

R1 ≤ (1 + SNR1),

R0 +R1 ≤ log(1 + SNR0) + log

(
1 +

SNR1

1 + INR1

)
. (30)

for the regime in which SNR0 ≥ INR1.
The regime SNR0 ≤ INR1 corresponds to the “high-interference” regime and the exact

capacity region is the classical result of [2]:

R0 ≤ (1 + SNR0),

R1 ≤ (1 + SNR1),

R0 +R1 ≤ log(1 + SNR1 + INR1). (31)

We use the high-SNR approximations to obtain the outer bound on the degree-of-freedom
region of the k = 1 network

d0 ≤ C0,

d1 ≤ C1,

d0 + d1 ≤ max{I1, C1}+ (C0 − I1)+.

For the k > 1 case, we first form Di by removing all but the i-th interference link is
contained in the following region

d0 ≤ C0,

dj ≤ Cj, j = 1, 2, . . . , k;

d0 + di ≤ max{C0, Ii}+ (Ci − Ii)+.

Specializing to the case when SNRi ≥ INRi (Ci ≥ Ii) and SNR0 ≥ INRi (C0 ≥ Ii) for
i = 1, 2, . . . , k and taking the intersection of the above regions over all i = 1, 2, . . . , k, we
obtain the outer bound which matches the statement of the theorem.

4.3.2 The inner bound

We assume that INR1 ≥ INR2 ≥, . . . , INRk (equivalently, I1 ≥ I2 ≥, . . . , Ik) without loss
of generality, and we will refer to Fig. 3 since this is the shape of the degree-of-freedom
region of each of the underlying k = 1 networks of our problem. The approach taken is
to maximize the linear functional

d0 +
k∑
i=1

µidi,
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Ci + C0 − Ii

C0 d0

Ci ≥ Ii

C0 ≥ Ii

Ci

Ci − Ii

C0 − Ii

di

Ai

Bi

Figure 3: The shape of the degree-of-freedom region for the k = 1 case, under weak inter-
ference. Orthogonalization is strictly suboptimal as shown by the straight line connecting
Ci and C0.

over all achievable degree of freedom vectors (d0, d1, . . . , dk).

Case 1:
∑k

i=1 µi ≤ 1. Define

εi :=
µi∑k
j=1 µj

,

for each i = 1, 2, . . . , k. Then we can express the linear functional as

d0 +
k∑
i=1

µidi =
k∑
i=1

(µidi + εid0).

By the choice of εi, each of the individual linear functionals (µidi+εid0) is maximized
at the corner point Ai of Fig. 3, where d0 = C0 and di = Ci − Ii. These points
are simultaneously achieved if each of the users i = 1, 2, . . . , k reduces its transmit
power to SNR/INRi so that the long-range user 0 can obtain its full degrees of
freedom.

Case 2:
∑k

i=1 µi > 1.

µ1 ≥ 1: Write

d0 +
k∑
i=1

µidi = (µ1d1 + d0) +
k∑
i=1

µidi,

and observe that the first linear functional (µ1d1 + d0) is maximized at corner
point B1 of Fig. 3, while each of the individual degrees of freedom is maximized
at its point-to-point maximum degree of freedom di = Ci. The optimal scheme
is for user 0 to treat all the interference as noise and all the short range users
i = 1, 2, . . . , k to use full power. The dominant interference is due to user 1
which limits the degrees of freedom of user 0 to d0 = C0 − I1.
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µ1 < 1: This case is further broken into other cases:

µ2 ≥ 1− µ1: Write

d0 +
k∑
i=1

µidi = µ1(d1 + d0) +

(µ2d2 + (1− µ1)d0) +
k∑
i=3

µidi,

and observe that the second linear functional (µ2d2 + (1−µ1)d0) is maxi-
mized at the corner point B2, where d0 = C0−I2 and d2 = C2. This point
is achieved by user 0 treating the interference of all other users as noise.
User 1 can achieve the maximum sum of degrees of freedom (d1 + d0) at
the point where d0 = C0 − I2 and d1 = C1 − (I1 − I2) by lowering its
power to SNR(INR2/INR1). Each of the users i = 3, 4, . . . , k achieves its
individual point-to-point degree of freedom di = Ci.

µ2 < 1− µ1: In this case, we have further cases

µ3 ≥ 1− (µ1 + µ2): Express the linear functional as

d0 +
k∑
i=1

µidi =

µ1(d1 + d0) + µ2(d2 + d0) +

(µ3d3 + (1− (µ1 + µ2)d0) +
k∑
i=4

µidi.

User 0 treats all interference as noise; users i = 3, 4, . . . , k achieve
di = Ci; user 1 achieves d1 = C1 − (I1 − I3) by lowering its power to
SNR(INR3/INR1); and user 2 achieves d2 = C2 − (I2 − I3) by lowering
its power to SNR(INR3/INR2).

µ3 < 1− (µ1 + µ2): Again, we have further branching into two cases:
the case when µ4 ≥ 1 − (µ1 + µ2 + µ3) and the case when µ4 <
1− (µ1 + µ2 + µ3), which is then again split into two cases.

µj ≥ 1 − (
∑j−1

i=1 µi): In general, at the j-th stage of the binary tree,
for j = 2, 3, . . . , k, we use the linear functional decomposition given
by

j−1∑
i=1

µi(di + d0) +

(
µjdj +

(
1−

j−1∑
i=1

µi

)
d0

)

+
k∑

i=j+1

µidi.

The optimal scheme is for user 0 to treat all interference as noise; the
users i = j, j+ 1, . . . , k to use full power to achieve maximum degrees
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of freedom di = Ci; and the users i = 1, 2, . . . , j − 1 to lower their
power to SNR(INRj/INRi) to achieve di = Ci − (Ii − Ij), respectively.
The process continues in this fashion until the last case µk ≥ 1 −∑k−1

i=1 µi is reached. At this point the bifurcation terminates because
the condition is true by assumption. The proof is illustrated in Fig. 4.

µ1 ≥ 1 µ1 < 1

µ2 ≥ 1 − µ1 µ2 < 1 − µ1

µk−1 ≥ 1 −
∑

k−2

i=1
µi µk−1 < 1 −

∑
k−2

i=1
µi

µk ≥ 1 −
∑

k−1

i=1
µi

Figure 4: The case tree that illustrates the proof of the achievable scheme of Theorem 3.3.

5 The “Strong-Interference” Regime

If the condition SNR0 ≤ INRi is met for all i = 1, 2, . . . , k, in network of Fig. 2 (a), the
network is in the so-called “strong-interference” regime and the capacity region can be
exactly determined:

R0 ≤ (1 + SNR0),

Ri ≤ (1 + SNRi),

R0 +Ri ≤ (1 + SNRi + INRi), i = 1, 2, . . . , k.

This is a direct extension of the classical result in [2].
The optimal scheme is for the short-range transmitters to perform rate-splitting,

adjusted to the rate R0 ≤ (1 + SNR0) selected by the long-range transmitter. In this
scheme, each short-range transmitter performs superposition coding and the short-range
receiver successively decodes and cancels-off the high-powered, low-rate codeword of its
transmitter, followed by the codeword of the long-range transmitter, and then followed
by the low-power, high-rate codeword of its transmitter. In this way, each short-range
user can operate on the boundary of the capacity region of the channel that it would
experience in the absence of the other transmitters.
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A An alternative achievable scheme for Theorem 3.1

when SNRi ≥ INRi

In this section we describe an alternative achievable scheme which achieves the degree-
of-freedom region given in Theorem 3.1 under the assumption that SNRi ≥ INRi. Our
approach is to maximize the linear functional

d0 +
k∑
i=1

µidi,

over all achievable degree of freedom vectors (d0, d1, . . . , dk) ∈ D
({SNRi}ki=0, {INRi}ki=1

)
.

A.1 The “weak interference” regime: SNR0 ≥ INRi

Case 1:
∑k

i=1 µi ≤ 1. Define

εi :=
µi∑k
j=1 µj

,

for each i = 1, 2, . . . , k. Then we can express the linear functional as

d0 +
k∑
i=1

µidi =
k∑
i=1

(µidi + εid0). (32)

By the choice of εi, each of the individual linear functionals (µidi+εid0) is maximized
at the corner point Ai of Fig. 3, where d0 = C0 and di = Ci − Ii. These points
are simultaneously achieved if user 0 transmits at full power and each of the users
i = 1, 2, . . . , k treats the interference from user 0 as noise.

Case 2:
∑k

i=1 µi > 1. Suppose that INR1 ≥ INR2 ≥ . . . ≥ INRk, which can be
assumed without loss of generality.

µ1 ≥ 1: Write

d0 +
k∑
i=1

µidi = (µ1d1 + d0) +
k∑
i=1

µidi,

and observe that the first linear functional (µ1d1 + d0) is maximized at corner
point B1 of Fig. 3, while each of the individual degrees of freedom is maximized
at its point-to-point maximum degree of freedom di = Ci. The optimal scheme
is for user 0 to reduce its power to SNR/INR1 and each of the other users to
treat the interference as noise.
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µ1 < 1: This case is further broken into other cases:

µ2 ≥ 1− µ1: Write

d0 +
k∑
i=1

µidi = µ1(d1 + d0) + (µ2d2 + (1− µ1)d0) +
k∑
i=3

µidi,

and observe that the second linear functional (µ2d2 + (1−µ1)d0) is maxi-
mized at corner point B2, where d0 = C0−I2 and d2 = C2. If user 0 lowers
its power to SNR/INR2, then by treating interference as noise, the point
B2 is achieved for user 2, User 1 can achieve the maximum total degrees of
freedom (d1 + d0) at the point where d0 = C0− I2 and d1 = C1− (I1− I2)
and each of the users i = 3, 4, . . . , k achieves its individual point-to-point
degree of freedom di = Ci.

µ2 < 1− µ1: In this case, we have further cases

µ3 ≥ 1− (µ1 + µ2): Express the linear functional as

d0 +
k∑
i=1

µidi =

µ1(d1 + d0) + µ2(d2 + d0) + (µ3d3 + (1− (µ1 + µ2)d0) +
k∑
i=4

µidi.

User 0 reduces power to SNR/INR3 and all the other users treat in-
terference as noise to achieve di = Ci, for i = 3, 4, . . . , k, d1 =
C1 − (I1 − I3) and d2 = C2 − (I2 − I3).

µ3 < 1− (µ1 + µ2): Again, we have further branching into two cases:
the case when µ4 ≥ 1 − (µ1 + µ2 + µ3) and the case when µ4 <
1− (µ1 + µ2 + µ3), which is then again split into two cases.

µj ≥ 1 − (
∑j−1

i=1 µi): In general, at the j-th stage of the binary tree,
for j = 2, 3, . . . , k, we use the linear functional decomposition given
by

j−1∑
i=1

µi(di + d0) +

(
µjdj +

(
1−

j−1∑
i=1

µi

)
d0

)
+

k∑
i=j+1

µidi.

The optimal scheme is for user 0 to reduce its power to SNR/INRj
to achieve d0 = C0 − Ij. By treating interference as noise, the users
i = j, j + 1, . . . , k get degrees of freedom di = Ci and the users i =
1, 2, . . . , j − 1 achieve di = Ci − (Ii − Ij).
The process continues in this fashion until the last case µk ≥ 1 −∑k−1

i=1 µi is reached. At this point the bifurcation terminates because
the condition is true by assumption. The proof is illustrated in Fig. 4.
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A.2 The “strong interference” regime: SNR0 ≤ INRi

Case 1:
∑k

i=1 µi ≤ 1. As in Case 1 of Section A.1, we can decompose the linear
functional into the form given in (32). In this case, each of the linear functionals
(µidi + εid0) is maximized at corner point Ai, for i = 1, 2 . . . , k. These points are
achieved when user 0 transmits at full power to get a degree of freedom of d0 = C0

and when each of the other users performs superposition coding (a.k.a. power
splitting or rate splitting), to obtain di = Ci −C0. The following are the details of
this scheme:

1. User i, breaks its codeword into two parts and performs superposition coding
so that the overall codeword is Xi = Xu,i + Xw,i, with individual powers
Pu,i = (SNR INR1)/(SNR0 SNRi) and Pw,i = SNR.

2. The codeword Xw,i is decoded first, subtracted off, then the interfering code-
word of user 0, X0, is decoded and subtracted off, and finally the codeword
Xu,i is decoded.

Case 2:
∑k

i=1 µi > 1. As in Case 1 above, the linear functional can be decomposed
into form (32). Each of the linear functionals (µidi + εid0) is then maximized at
the same corner point where d0 = 0, i.e., the long range user is shut-off. Hence, all
the short-range users can achieve their point-to-point maximum degrees of freedom
di = Ci, i = 1, 2, . . . , k.

A.3 The heterogenous interference regime

Suppose that

SNR0 ≤ INRi for i = 1, 2, . . . , j, and

SNR0 ≥ INRi for i = j + 1, j + 2, . . . , k,

and that INRj+1 ≥ INRj+2 ≥ . . . ≥ INRk, both of which can be assumed without loss of
generality. Then, we have the familiar cases:

Case 1:
∑k

i=1 µi ≤ 1. This case is similar to Case 1 in Section A.2: user 0 uses full
power to achieve d0 = C0; users i = 1, 2, . . . , j perform superposition coding (power
splitting or rate splitting) to achieve di = Ci −C0; and users i = j + 1, j + 2, . . . , k
simply treat interference as noise to achieve di = Ci − Ii.
Case 2:

∑k
i=1 µi > 1. In this situation we have two subcases:

Subcase 1: There exists at least one i ∈ {1, 2, . . . , j} such that µi ≥ 1. Choose
one such index and call it i∗. Then we can express the linear functional as

(di∗ + d0) + (µi∗ − 1)di∗ +
∑

i6=i∗
µidi.

Each of the terms in the above linear functional is maximized at the point
where d0 = 0, i.e., the long range user is shut off, and each of the users
i = 1, 2, . . . , k achieves its point-to-point degree of freedom di = Ci.
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Subcase 2: µi < 1 for all i ∈ {1, 2, . . . , j}. In this case we further have two
subcases:

µj+1 ≥ 1−∑j
i=1 µi: We can decompose the linear functional as

j∑
i=1

µi(di + d0) +

(
µj+1dj+1 +

(
1−

j∑
i=1

µi

)
d0

)
+

k∑
i=j+2

µidi.

If the long-range user lowers its power to SNR/SNRj+1 (thus achieving a
degree of freedom of d0 = C0 − Ij+1), user j + 1 can treat interference as
noise to achieve the degree of freedom dj+1 = Cj+1 at corner point Bj+1.
With such a choice of d0, the linear functionals (di + d0) for i = 1, 2, . . . , j
are maximized at the point where users 1, 2, . . . , j achieve degrees of free-
dom di = Ci − (C0 − Ij+1). These degrees of freedom are achieved if the
users i = 1, 2, . . . , j perform superposition coding as described in Case 1
of Section A.2. Finally, the users j + 2, j + 3, . . . , k achieve their point-
to-point maximum degrees of freedom di = Ci by treating interference as
noise.

µj+1 < 1−∑j
i=1 µi: In this case, we have further cases:

µj+2 ≥ 1−∑j+1
i=1 µi: Write the linear functional as

j+1∑
i=1

µi(di + d0) +

(
µj+2dj+2 +

(
1−

j+1∑
i=1

µi

)
d0

)
+

k∑
i=j+3

µidi,

and repeat the analysis that was used in the case when µj+1 > 1 −∑j
i=1 µi. This time, dj+2 = Cj+2 at the corner point Bj+2, di = Ci for

i = j + 3, j + 4, . . . , k, both being achieved by treating interference as
noise. Similarly, di = Ci − (C0 − Ij+1) is achieved by superposition
coding for i = 1, 2, . . . , j and dj+1 = Cj+1 − (Ij+1 − Ij+2) which is
achieved by treating interference as noise.

µj+2 < 1−∑j+1
i=1 µi: In this case we again have two subcases depending

on whether µj+3 is larger or smaller than 1−∑j+2
i=1 µi: If it is larger,

we are done, but if it is smaller, then we again bifurcate into two
more cases. The process continues in this fashion until the last case
µk ≥ 1−∑k−1

i=1 µi is reached. At this point the bifurcation terminates
because the condition is true by assumption (see Fig. 4).
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