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A Deterministic Approach to Throughput Scaling in
Wireless Networks
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Abstract—We address the problem of how throughput in a
wireless network scales as the number of users grows. Following
the model of Gupta and Kumar, we consider identical nodes
placed in a fixed area. Pairs of transmitters and receivers wish to
communicate but are subject to interference from other nodes.
Throughput is measured in bit-meters per second.

We provide a very elementary deterministic approach that gives
achievability results in terms of three key properties of the node
locations. As a special case, we obtain 
 throughput for a
general class of network configurations in a fixed area. Results for
random node locations in a fixed area can also be derived as special
cases of the general result by verifying the growth rate of three pa-
rameters. For example, as a simple corollary of our result we obtain
a stronger (almost sure) version of the log throughput
for random node locations in a fixed area obtained by Gupta and
Kumar. Results for some other interesting non-independent and
identically distributed (i.i.d.) node distributions are also provided.

Index Terms—Ad hoc networks, capacity, deterministic, indi-
vidual sequence, multihop, random, scaling, throughput, wireless
networks.

I. INTRODUCTION

THE past decade has seen an emergence of wireless com-
munication in a rapid and pervasive manner. Several inno-

vations at the physical layer (smart use of multiple antennas at
the transmitter and receiver and interference suppression tech-
niques such as multiuser detection being some important exam-
ples), combined with advances in low-power very large scale
integration (VLSI) that allow synthesis of these algorithmic ad-
vances at the physical layer in hardware have driven this revo-
lution. However, from an overall architecture point of view of
wireless networks, the primary structure has been that of base
stations connected with each other by a wired infrastructure.
The base station performs duplex communication with mobiles
in its neighborhood and acts as an access point for the mobile
device to the wired network. A systematic study of the funda-
mental tradeoffs involved in the joint design of the wireless and
wired architecture is a very important area of research; one that
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will significantly impact the way future wireless systems will
be designed. In particular, the study of all wireless systems (or
wireless ad hoc networks) is one aspect of the agenda, the pro-
tocols for which are being studied [7], [17], [18], [1].

One important facet of this research will be to shed light on
how a completely wireless system scales with space and the
number of users. Some significant steps toward such a system-
atic study have been initiated recently [3], [2], [4]. In [3], the
authors studied a distributed all-wireless communication model
focusing on the case when the nodes are not mobile (or equiv-
alently, the desired time scale of communication is assumed to
be much faster than the mobility of the nodes). They showed
that regardless of the initial location of the nodes and traffic
pattern in a fixed area, the throughput in bit-meters per second
cannot grow faster than , and for a very special arrangement
of nodes and traffic pattern a throughput can be achieved,
where is the number of nodes. They also considered a random
traffic pattern and random node distribution. In this case, they
showed that the total throughput (in bits per second) can grow
no faster than , and they gave an achievability result
that achieved this growth rate.

These results assumed a simple communication model where
the nodes only act as relays and the reliable reception of each
transmission depends only on the signal-to-noise/interference
ratio (SNR) at the receiver. If the transmitters are close to their
corresponding receivers, then reliable communication will
cause little interference to the other nodes and the scenario is
essentially that of a set of noninterfering point-to-point commu-
nication systems. However, in general, the transmitter–receiver
pairs are not arbitrarily close to each other and an important
physical insight that followed from the work of [3] was the
need for local communication and use of multiple hops to reach
the destination. The fact that nearest neighbors get closer as
grows means that the number of hops to reach the destination
increases, which imposes a fundamental limit on the way
throughput of the entire network scales as a function of .
Other related studies are [5], [12].

In this paper, we revisit the throughput scaling problem of
[3]. Our key contribution is the identification of deterministic
properties in the location of the nodes that combined with a
simple deterministic algorithm provides a throughput that is
very easily computed. For example, we obtain the order
growth of bit-meters per second for a general class of trans-
mitter–receiver locations in a fixed area.

Moreover, our results capture fundamental properties of the
set of node locations that affect throughput growth and can
be easily calculated for different distributions of random node
locations. Thus, the deterministic approach can be used to
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make almost-sure statements for various random node location
and traffic patterns. As one special case, we easily derive, and
strengthen, the main results of [3]. That is, for independent and
identically distributed (i.i.d.) uniform node locations in a fixed
area and random transmitter–receiver pair case our algorithm
obtains a throughput of almost surely. We also
consider some interesting non-i.i.d. node distributions.

II. DETERMINISTIC LOWER BOUNDS

We begin with a description of the physical model that is very
similar to the one introduced in [3]. The area of communication
is assumed to be restricted to a square of area meter-square.
Assuming nodes in the network, we denote the physical loca-
tion of the node by

with and representing the two physical location coordi-
nates. We assume that the nodes are not moving (at least, rel-
ative to the time scale of communication). In [3], the authors
show that for every configuration of node locations and traffic
patterns, the total throughput cannot grow faster than
bit-meters per second and also demonstrate a specific instance
of physical node locations and traffic pattern where the growth
is indeed of that order.

For expositional ease, we restrict ourselves to a simple model
of communication between the nodes, one of the models in [3]
called the Protocol model. Suppose node transmits to node .
We assume that the transmission is successful if the distance be-
tween the two nodes is smaller by a constant factor than the dis-
tance between and any other node that is simultaneously trans-
mitting. In our notation, we have a successful transmission if for
every other node that is transmitting simultaneously with

Here, is a fixed positive constant that represents the guard
zone in the protocol model. Since the performance measure is
the rate of growth of throughput as a function of the number of
nodes, the role of the separation parameter is insignificant.
We assume that time is slotted (and each slot is 1 second long,
for simplicity) and a successful transmission in any slot conveys
a fixed amount of data (denoted by a “packet,” henceforth).

A. Deterministic Structure and Conditions

With nodes, the node configuration is defined by the set
of physical node locations , together with a
specification of transmitter–receiver pairs. We assume that half
of the nodes are designated as transmitters and the other half as
receivers, with each receiver identified uniquely with one trans-
mitter node. We emphasize that all nodes are identical and act
as both transmitters and receivers. The specific designation of a
node as a transmitter means that new traffic originates from that
node. Since we are interested in how the throughput grows with

, we actually consider a sequence of configurations, indexed
by the number of nodes .

If the transmitter–receiver pairs are arbitrarily close to each
other but far from other transmitter–receiver pairs, the commu-
nication problem reverts to a set of noninterfering point-to-point
communication problems with a well-understood solution. The

results in [2] can be rephrased to conclude that if every trans-
mitter–receiver distance is of the order , and far from
other transmitter–receiver pairs, then we are in the point-to-
point noninterfering scenario. On the other hand, if all the trans-
mitter–receiver pairs are close to one another, then we can ef-
fectively scale the area of the domain under consideration. Thus,
here we are interested in the scenario when the transmitter and
corresponding receivers are not arbitrarily close to each other.
In particular, we will require the sum of the transmitter–receiver
pair distances to be . We will show that this condition
is satisfied almost surely when the transmitters and receivers are
placed randomly according to various distributions. We write

to denote the set of functions that satisfy the prop-
erty for a fixed constant and for all large
enough. Similarly, we write to denote the set of functions

that satisfy the property for a fixed constant
and for all large enough.

These issues also relate to the use of bit-meters per second
to measure throughput as opposed to simply bits per second. If
bits per second is used then is a uniform upper bound for
every configuration of the nodes. We could construct configu-
rations with transmitters arbitrarily close to the corresponding
receivers yet far from other nodes, and thereby achieve
bits per second by simply avoiding interference. However, as
shown in [3], this problem is avoided by using bit-meters per
second, so that upper bounds on throughput can be obtained
for every configuration. For the lower bounds as presented here,
the throughput results (scaled down by ) would also hold
using bits per second, and in fact, in this case we would not need
the condition that the sum of transmitter–receiver distances be

. Here we use bit-meters per second and impose the
condition on the sum of transmitter–receiver distances.

We are now ready to describe the additional structure we im-
pose on the configurations, summarize our deterministic con-
dition, and describe the corresponding simple scheduling algo-
rithm. Consider a fixed sequence of configurations. For every

, we divide the unit area into squares of area each by
drawing equally spaced lines horizontal and vertical lines with
spacing . We refer to these smaller squares as squarelets and
we require each squarelet to have at least one node.

An important quantity in our scheduling algorithm and net-
work throughput is captured by the crowding factor of nodes
in the squarelets. The crowding factor, denoted by , is de-
fined to be the maximum number of nodes in any of the
squarelets. depends on the number of nodes , the physical
node locations, and our choice of squarelet size . For any se-
quence of node locations, as the squarelet area size increases,
the crowding factor generally increases and always satisfies the
relation .

We summarize the parameters and conditions on the structure
as follows.

1) Tx–Rx Distances: The sum of transmitter–receiver dis-
tances grows at least as .

2) Nonempty Squarelets: is such that for sufficiently
large , no squarelet is empty.

3) Crowding Factor: is the maximum number of nodes
in any squarelet.
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Fig. 1. An example of an equivalence class of squarelets with K = 5. The
shaded squarelets all belong to the same equivalence class.

B. Equivalence Classes of Squarelets

To maximize throughput, we would like to schedule many si-
multaneous transmissions. Toward this end, in our scheduling
algorithm, transmission will occur only between neighboring
squarelets. That is, when a given node is scheduled to transmit,
it will send packets only to nodes in the four squarelets adjacent
to itself. Since this is a local transmission, other squarelets suf-
ficiently far away (depending on the parameter as discussed
later) could simultaneously transmit without interference. This
allows us to define “equivalence classes” of squarelets such that
one node in each squarelet of the equivalence class can transmit
simultaneously without interfering with one another.

For a systematic method, for each squarelet, we define its
equivalence class to be those squarelets that are a vertical and
horizontal distance of exactly some multiple of an integer
number of squarelets away. The shaded squarelets in Fig. 1
represent one such equivalence class.

The distance needed to allow squarelets in the same equiv-
alence to simultaneously transmit without interference can be
computed in terms of as follows. Let be an integer such
that squarelets in an equivalence class are integer multiples of

apart.
Suppose node is transmitting to node . Since transmis-

sions will be between neighboring squarelets, the maximum
distance between and is . The closest another simul-
taneously transmitting node (in a different squarelet of the
same equivalence class) could be to node is . (For
example, see the arrangement at the bottom right of Fig. 2,
and the node in the top right.) To avoid interference, we need

, so that . Thus,
we can take . Note that there are only a
finite number of equivalence classes (namely, of them).

Fig. 2. A zoomed in version showing several squarelets and nodes within the
squarelets. The arrangement resulting in maximum transmission distance of a
single hop is shown in the bottom right. This together with the node in the top
right shows the arrangement governing the bound onK .

C. Scheduling Algorithm and Throughput

As a prelude to describing the scheduling algorithm, we re-
view a closely related problem studied extensively in the par-
allel and distributed computing research community. Consider
a square of processing units (PUs) with in each row and
column as shown in Fig. 3. Each processing unit can commu-
nicate with its immediate vertical and horizontal neighbors in a
single slot, i.e., every PU can receive and transmit to its neigh-
bors (no more than four) simultaneously. Here we are continuing
the assumptions of slotted time, communication occurring over
slots, communication occuring between neighboring PUs, and
each transmission comprising a packet of some fixed number of
bits. Suppose each PU is the source and destination of exactly

packets. The problem of routing the total packets to their
destinations is a well-studied problem in the literature under the
nomenclature permutation routing. The following result
characterizes the performance of permutation routing al-
gorithms with minimal queue length requirements at the PUs.
We write to denote the set of functions that satisfy
the property as .

Lemma 2.1: [11], [9] permutation routing in a
mesh can be performed deterministically in steps
with maximum queue size at each PU equal to . Further, every
routing algorithm takes at least steps.

We can now use the permutation routing algorithms of
packets across a mesh of PUs to our ad hoc wireless network.
Let us fix , the number of users. The first correspondence is
between PUs and squarelets by letting . Next, we
let each user have packets and since a squarelet can have no
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Fig. 3. A mesh network of PUs each connected to its vertical and horizontal
neighbors.

more than users, the total number of packets in any squarelet
is no more than . By letting and observing that the
users in each squarelet transmit and receive no more than
packets, we have formed a correspondence in the traffic pattern
between our wireless network and the mesh network of PUs,
i.e., we associate the packets associated with a PU with the
packets of the users contained in the corresponding squarelet.
By allowing a buffer of size for each user, we are ready
to transfer the routing algorithm of Lemma 2.1 to one on the
wireless network.

Communication in the mesh of PUs allows vertical and hori-
zontal neighbors to communicate in a single step. Thus, each PU
can transmit and receive up to four packets in the same slot. In
our wireless network, we restrict communication to be between
users in neighboring squarelets (vertical and horizontal neigh-
bors), but only users in the equivalence classes of squarelets can
transmit over the same slot. Further, a user can only transmit one
packet in each slot. We make the routing protocol on the mesh of
PUs sequential to meet these two constraints. First, we make se-
quential the transmissions of the PUs which are not in the same
equivalence class. Since there are equivalence classes, this
increases the total number of steps by this factor. Second, we
make sequential the transmissions of a given PU. Since there
are no more than four simultaneous transmissions of any PU
(corresponding to the maximum number of neighbors), this in-
creases the total number of steps by no more than a factor of .

Thus, we can convert the routing protocol on the mesh of PUs
to the wireless network and conclude that the packets of each
of the users reach their destination in number of slots equal
to

Further, due to our condition on Tx–Rx distances, the total dis-
tance traveled by the packets is at least order .
This allows us to make the following statement.

Proposition 2.1: The throughput in bit-meters per second
(and bits per second) for a network with squarelet size and
crowding factor is at least .

In particular, when the node location sequence is such that
can be chosen to be and the crowding factor is of order

, then we recover the largest possible growth of throughput
bit-meters per second.

III. I.I.D. NODE LOCATIONS

In this section, we show how to use our deterministic results
to easily recover the achievability result of [3] with random node
locations. Suppose the nodes are equally divided into transmit-
ters and corresponding receivers and their locations are chosen
independently and randomly from a uniform distribution on the
square. Our main result is the following. The almost sure state-
ment is made with respect to the probability space of the infinite
sequence of node locations.

Proposition 3.1: A throughput is achiev-
able almost surely.

This result will follow immediately from our deterministic
result of the previous section (Proposition 2.1) and the following
claim.

Claim 3.1:

1) For squarelet size

no squarelet is empty almost surely.

2) For as above, the crowding factor satisfies
almost surely.

3) The sum of the distances between transmitter–receiver
pairs is meters almost surely.

Once we show this claim, we have from Proposition 2.1 that,
for almost every realization of transmitter and receiver node lo-
cations the throughput growth is at least of the order bit-

meter per second. Since the average distance between a trans-
mitter–receiver pair is of the order , this result recovers the
bit-per-second result of [3] in the random node location case.
Much of the technical difficulty of [3] in proving that no node
is overloaded is easily avoided here by exploiting our determin-
istic structure and a simple scheduling algorithm. We now pro-
ceed to show Claim 3.1.

Nonempty Squarelets In an -node system, the probability
that any fixed squarelet is empty is equal to . From
a simple union bound and using the fact that there are
squarelets, we conclude that the probability that at least one
squarelet is empty is upper-bounded by
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Using the fact that and with the value of

equal to , we have that

and hence, that

Using the Borel–Cantelli lemma, we conclude that almost surely
no squarelet is empty for sufficiently large .

Crowding Factor We fix and look at one particular
squarelet. The number of nodes in this squarelet (denoted
by, say, ) is a binomial random variable with parameters

. By a standard Chernoff bound we have, for all

(1)

Now

Choosing and in (1) we arrive at

Using a simple union bound we see that

Using the Borel–Cantelli lemma, we conclude that, almost
surely, the crowding factor is no more than .

Tx–Rx Distances Finally, we need to estimate the sum of
the transmitter–receiver pair distances. First, let us scale down
all distances by a factor of . Now each scaled distance is
less than and the square of the scaled distance is less than
the product of and the scaled distance. Further, the sum
of scaled distances is lower-bounded by the sum of squared
scaled distances. The squared scaled distance between any
transmitter and receiver has the same distribution as that of

with being i.i.d. uniform
on random variables. Further, the squared distances
between the transmitter–receiver pairs (there are such pairs)
are all i.i.d. Hence, we have, for

sum of distances between transmitter–receiver pairs

(2)

where and are i.i.d. uniform on random variables. Now

(3)

Substituting (3) in (2) and choosing and we
arrive at

sum of distances between transmitter–receiver pairs

(4)

Appealing to the Borel–Cantelli lemma and using (4) we con-
clude that almost surely the sum of the distances between trans-
mitter–receiver pairs grows at least linearly with . This
concludes the proof of the claim.

IV. SOME NON-I.I.D. EXAMPLES

To further show the power of the deterministic approach, in
this section we consider some examples where the node loca-
tions are random but with some dependence between nodes.
With our approach, again we need only quantify the growth rates
of and , and verify that no squarelet is empty and that the
sum of transmitter—receiver distances grows as . In
the following examples, the lack of independence only slightly
complicates the analysis.

A. Users on Roads

Consider the node locations drawn randomly as follows.
In the square of area , independently draw horizontal
lines uniformly, and independently draw vertical lines
uniformly. On each of the lines, draw nodes indepen-
dently and uniformly on the line. We can think of the lines as
“roads” and the nodes as users randomly placed along the roads.

From the intuition in the previous sections, we might expect
the throughput to suffer somewhat since the users will be more
concentrated in some sense. Hence, we might expect to need a
larger to guarantee that no squarelet is empty, but this might
result in a larger crowding factor . However, it turns out that
we do not lose much in the throughput as the following result
shows.

Proposition 4.1: For nodes distributed along lines as de-
scribed above, a throughput is achievable
almost surely.

As before, this result will follow immediately from Proposi-
tion 2.1 once we show the following claim.



1046 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 6, JUNE 2004

Claim 4.1:

1) For squarelet size

no squarelet is empty almost surely.

2) For as above, the crowding factor satisfies
almost surely.

3) The sum of the distances between transmitter–receiver
pairs is meters almost surely.

Nonempty Squarelets First, consider a fixed squarelet.
The probability that no node from a particular line falls in this
squarelet is given by

no node from one line falls in fixed squarelet

since with probability the line does not even intersect
the squarelet, and when it does (with probability ), each of
the nodes has an independent probability of of not
falling in the squarelet.

Therefore, with independent lines, the probability that a
fixed squarelet is empty is

a fixed squarelet is empty

Hence, with a union bound, the probability of at least one
squarelet being empty satisfies

at least one squarelet empty

since

using again

If we take , then ,
so that

at least one squarelet empty

for

Hence, by the Borel–Cantelli lemma, almost surely no squarelet
is empty for sufficiently large .

Crowding Factor We fix and focus on one specific
squarelet. The number of nodes that fall in this squarelet is

where is a binomial random variable with parameter
denoting the number of lines (both horizontal and

vertical) that pass through this squarelet. are i.i.d.
random variables that are binomial distributed with parameter

. denotes the number of nodes in line that
fall in a squarelet through which the line passes. From the
structure of the node locations, these random variables are
jointly independent of . As before, by a standard Chernoff
bound we have, for all

(5)

Now

(6)

Now, we have

(7)
Choosing

in (7) and substituting in (6) we arrive at

(8)

Here we used the value of to be . Since

as

by choosing we have with the value of
above that

(9)

for all large enough . Substituting (8) and (9) in (5) we have,
for all large enough

Using a simple union bound we see that

Using the Borel–Cantelli lemma, we conclude that, almost
surely, the crowding factor is no more than .

Tx–Rx Distances Let us first scale down all distances
by a factor of . Then all distances are less than , the
distance squared is less than the product of and the distance.
The marginal distribution of this squared distance is either
that of or that of with

being i.i.d. uniform on random variables
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depending on whether the transmitter and receiver lie on the
same line (horizontal or vertical) or on different ones. A small
technical complication, as compared to the i.i.d. node location
case, arises since the distances are not jointly independent. To
overcome this, we first observe that each distance squared term
contains at least one term of the form (for i.i.d.
uniform on ). Further, conditioned on every realization
of source and destination pairs being located on either the
horizontal or vertical line) there is a choice of these terms for
each source and destination pair that are jointly independent.
One way to see this choice is by considering the horizontal
(vertical) distance squared from source to destination if the
source lies on a horizontal (vertical) line. Hence, the probability
that the sum of the squared distances is smaller than is
upper-bounded by

for every with being i.i.d. uniform on for
. Now using the upper-bound technique of (2) and the

upper bound of (3) and choosing and , we
arrive at (analogous to (4))

sum of distances between transmitter–receiver pairs

An appeal to the Borel–Cantelli lemma concludes the proof of
our claim that the sum of the distances between transmitter–re-
ceiver pairs is almost surely.

B. Users in Neighborhoods

Now consider the node locations drawn randomly as fol-
lows. Fix a “neighborhood” size with . In a

square concentric with the orig-
inal unit square, independently draw locations. These loca-
tions will be the “centers” of neighborhoods around which users
will be clustered. For each neighborhood center, nodes are
placed uniformly and independently in a square
about the neighborhood center. Thus, the neighborhood lo-
cations are randomly chosen, and users are randomly placed
in each neighborhood, for a total of users.

As with users on roads, we might expect the throughput
to suffer somewhat since the users will be more concentrated
in some sense. However, it turns out that we do not lose any
throughput as compared to the i.i.d. node location case, as the
following result shows. In our considerations, the squarelet
size while the neighborhood size is fixed. Since we
are interested in properties for sufficiently large , we assume
without loss of generality that .

Proposition 4.2: For nodes distributed in neighborhoods as
described above, a throughput is achievable
almost surely.

As before, this result will follow immediately from Proposi-
tion 2.1 once we show the following claim.

Claim 4.2:

1) For squarelet size

no squarelet is empty almost surely.

2) For as above, the crowding factor satisfies
almost surely.

3) The sum of the distances between transmitter–receiver
pairs is meters almost surely.

Nonempty Squarelets As before, we first bound the proba-
bility that a fixed squarelet is empty, and then use a union bound
to bound the probability of no empty squarelets. Unlike the case
of users on roads, here there are edge effects. The four corner
squarelets have the largest probability of being empty. Thus, an
upper bound for these will also provide an upper bound for all
other squarelets.

The probability that none of the nodes from a fixed neigh-
borhood falls in one of the corner squarelets is

where the first term is the probability that the neighborhood does
not intersect the squarelet and the second term is the probability
of no nodes in the squarelet in the case that they intersect. We
conclude that the probability that no node from one neighbor-
hood falls in any fixed squarelet is upper-bounded by

Therefore, with independent neighborhoods, the probability
that a fixed squarelet is empty satisfies

a fixed squarelet is empty

Hence, with a union bound, the probability of at least one empty
squarelet satisfies

at least one empty squarelet

In the intermediate step above, we used
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which follows from . If we take
, then , so that

at least one empty squarelet

Hence, by the Borel–Cantelli lemma, almost surely no squarelet
is empty for sufficiently large .

Crowding Factor We fix and focus on one specific
squarelet. The central squarelet has the largest probability of
crowding due to the nature of node locations. Thus, an upper
bound on the crowding probability in the central squarelet also
provides a corresponding upper bound for any other squarelet.
Now consider any specific neighborhood with respect to the
central squarelet. Depending on the location of this neighbor-
hood, there may be no intersection with the central squarelet
and no node in this neighborhood will contribute to crowding in
the central squarelet. Hence, an upper bound to the probability
of any one node in the specific neighborhood under considera-
tion lying in the central squarelet is provided by assuming that
the central squarelet is a subset of the neighborhood. This upper
bound is equal to , the ratio of the area of the squarelet to
that of the neighborhood. Since there are nodes uniformly
distributed in every neighborhood, the probability that of
them lie in the central squarelet is upper-bounded by

where is a binomial random variable with parameters
. Since each neighborhood is chosen according to

an i.i.d. distribution, the probability that the crowding factor in
the central squarelet is larger than is upper-bounded by

where are i.i.d. binomial random variables with

parameters . Using a standard Chernoff bound, we
now have, for all

Number of nodes in central squarelet

(10)

As before, we have

Substituting this in (10), we arrive at

Nodes in central squarelet

(11)

(12)

We used the inequality in arriving at (11) and sub-
stituted the value of in arriving at (12). Choosing and

in (12), we conclude that

Number of nodes in any fixed squarelet

As before, using a simple union bound we have

Using the Borel–Cantelli lemma, we conclude that, almost
surely, the crowding factor is no more than .

Tx–Rx Distances A random variable is stochastically
larger than another random variable if for every , the
probability that is larger than is an upper bound to the
probability that is larger than , see [14]. We first observe
that the distance between a transmitter and receiver node pair
is stochastically larger when the two nodes are in different
neighborhoods as compared to the situation when they lie in the
same neighborhood. Hence, the probability that the sum of the
distances between transmitter–receiver pairs is less than is
upper-bounded by the probability of the same event conditioned
on the situation when the transmitter and receiver lie in the
same neighborhood. This latter probability is the calculation of
i.i.d. node locations in an area of size . This calculation
was done in Section III for but since is fixed (with
respect to the scaling in ) we conclude, using the calculation
of (4), that almost surely the sum of transmitter–receiver pair
distances is .

V. CONCLUSION

In this paper, we have demonstrated the power of a determin-
istic approach to studying the scaling of throughput with the
number of nodes in a wireless network. This deterministic struc-
ture combined with a simple scheduling algorithm allows us to
easily obtain achievability results on throughput for general con-
figurations. From the deterministic results, we can also recover
results for random node locations by verifying that appropriate
conditions hold almost surely. For example, we get a simple
derivation of the achievability results of [3], and we also show
that our conditions can be useful in calculating the throughput
scaling of networks where the initial node locations are not uni-
formly and independently located in the network. For example,
the initial node locations could be along straight lines (modeling
train lines or streets/highways), or nodes could be more densely
located in particular parts of the network (modeling neighbor-
hoods or other high-density areas). In each case, verifying some
simple conditions leads to corresponding lower bounds on the
throughput scaling. The deterministic view taken in this paper is
in line with recent work on individual sequences in information
theory, statistics, and learning theory (cf. [6], [10], [16], [15]).

Fundamental upper bounds to throughput (as those promised
by network information theory) are an important area of re-
search that will shed insight into how good the current achiev-
ability results are. Recent results in [13], [8] show upper bounds
that are tight in the scaling law sense (for the scenario when
is growing linearly with ).
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