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Abstract—In the function computation problem, certain nodes
of an undirected graph have access to independent data, while
some other nodes of the graph require certain functions of
the data; this model, motivated by sensor networks and cloud
computing, is the focus of this paper. We study the maximum
rates at which function computation is possible on a capacitated
graph; the capacities on the edges of the graph impose constraints
on the communication rate.

We consider a simple class of computation strategies based
on Steiner-tree packing (so-called computation trees), which does
not involve block coding and has minimal delay. With a single
terminal requiring function computation, computation trees are
known to be optimal when the underlying graph is itself a
directed tree, but have arbitrarily poor performance in general
directed graphs. Our main result is that computation trees
are near optimal for a wide class of function computation
requirements even at multiple terminals in undirected graphs.

The key technical contribution involves connecting approx-
imation algorithms for Steiner cuts in undirected graphs to
the function computation problem. Furthermore, we show that
existing algorithms for Steiner tree packings allow us to compute
approximately optimal packings of computation trees in polyno-
mial time. We also show a close connection between the function
computation problem and a communication problem involving
multiple multicasts.

I. INTRODUCTION

In several communication scenarios, a receiver is interested
in computing a function of data from different agents spread
over a network. For example, in a sensor network, a fusion
node is interested in computing a function of the various
sensors. Similarly, in a cloud computing scenario, the data
may be stored in a distributed manner, with different types of
information about the same record stored in different locations.
In such a scenario, one may be interested in computing a
function of the data.

The problem of function computation has been studied in
the setting when there are many nodes that have independent
data but only one destination demanding a certain function of
the data. In this paper, we generalize this in two different
directions. First, we consider the problem of multi-session
function computation, where there are multiple independent
function computation sessions, all sharing a common com-
munication infrastructure. Second, we consider the problem
of function multicasting, where many destinations want to
compute the same function of the independent sources. In fact,
we study the general version of the problem, which we call
multi-session function multicasting, which comprises of many

independent function multicasting sessions sharing a common
communication infrastructure. We will use K to denote the
number of sessions and S, D to be the number of source and
destination nodes involved in each multicasting session.

We assume that the communication infrastructure is spec-
ified by an undirected capacitated graph. By an undirected
graph, we mean that on each edge e = uv with capacity c(e),
node u can communicate to node v and vice versa, such that
the sum of the rates of communication in the two directions
does not exceed c(e).
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Fig. 1: Multi-session Example

We begin by considering the setting of multi-session func-
tion computation and then extend it to multi-session function
multicasting. This scenario has several practical applications:
in a sensor network, a communication infrastructure may be
shared by several sensors of different modalities like heat,
pressure, infrared and each of these modalities has a distinct
or common fusion center.

For an instance of the multi-session function computation
problem, see Fig. 1, where there are 2 sessions. In the first ses-
sion, sensing nodes a and d have temperature information X3
and X5 and node b, which is the fusion node for temperature
sensing, wants to compute the average temperature %
In the second session, sensing nodes b,e,d have pressure
information Y7, Y5, Y3 and node ¢, which is the fusion node
for pressure sensors, wants to compute the average pressure
Y; +3;2 +V3

We consider the setting of block function computation,
where receiver ¢ is interested in computing R;T" function
evaluations at the end of 7' time instants (the nodes in the
network can forward arbitrary functions of data that they
receive). The performance of the scheme is measured by the



set of rates (Ry, ..., Rx ), which can be achieved, this is called
the computation capacity region C.

A natural achievable strategy in this context is the use of
computation trees. By computation tree, we mean strategies
where a tree spanning the vertices involved in function com-
putation is constructed (called a Steiner tree), and along the
tree, in-network computations are performed in such a way
that the function can be computed at the destination. Note
that this is a very simple in-network computation strategy
and does not involve block coding of data. Furthermore, this
strategy avoids inter-session network coding, i.e., mixing of
information across the different sessions (or modalities). These
features make it a feasible practical scheme. We will show the
surprising result that such a simple strategy can achieve near
optimal performance.

The proposed achievable strategy is universal, i.e., it works
for the computation of an arbitrary function. However, the
performance of the strategy depends on a property of the
function called A-divisibility. A function f is said to be Ay-
divisible if the function can be computed in a divide-and-
conquer fashion with every intermediate computation requiring
at most Ay symbols to store and communicate. In other words,
every Steiner tree can be used for computation of the function,
i.e., every Steiner tree is a computation tree with computation
rate i Every function on S variables is A y-divisible for some
Ay <|S|. For efficient computation of the function, we would
like Ay to be as small as possible.

It turns out that we can write a cut-set upper bound for
computation of a class of functions that satisfy the marginal-
injectivity property. A function is said to be marginally injec-
tive, if it is injective with respective to every variable, given
any realization of the remaining variables. Note that, for a
marginally injective function f, Ay > 1. For example, linear
functions over fields or groups are marginally injective, and
have Ay = 1.

In this paper, we show that for function computation in a
graph G with K sessions and S non-overlapping sources per
session, computation trees achieve Rcomp such that

¢
Ar(5)g(S, K)

where C is the cut-set bound, where

C Reomp € C, (D

1 if G is a tree
g(S,K) < 2 if K =1,
klogSK if K > 1,

where x is a universal constant. Furthermore, there are
polynomial-time algorithms to find the computation trees that
achieve these performance guarantees.

For the more general case of function multicasting, we get
the following result. For K -session function multicasting with
S sources and D destinations per session, computation trees
achieve Reomp such that

C
2X0¢(8)g(S+ D, K)
where ¢(S, K) is defined above. Note that the result for the

general function multicasting case is only a factor of 2 weaker
than the result for function computation.

C Reomp C C, @)

These results are based on existing results for approximating
“sparsest Steiner cuts” [2], [3], [4], and incorporates several
special cases: when S = 1, it is the multiple unicast problem
with K source-destination pairs, for which the seminal work of
Leighton and Rao [12] shows a O(log K) gap between routing
and cuts; when K = 1, it is the function computation scenario
with a single receiver being interested in a function of S nodes.
For all of these cases, we demonstrate that there is a close
connection between the function computation problem and the
multiple multicast communication problem, where there are
K independent sources each of which wants to send common
messages to a set of S destinations.

This result demonstrates that undirected graphs are funda-
mentally different from directed graphs in various aspects.
While directed graphs with cycles are more general than
undirected graphs, the special structure imposed by directed
graphs allows very efficient packings of Steiner trees, thereby
achieving performance close to the cut. For general directed
graphs, Steiner tree packing can achieve a performance arbi-
trarily far away from the cut [32] when K = 1. For general
K and S = 1, the problem reduces to that of multiple unicast
for which Steiner tree packing reduces to routing. In this case,
it is known that routing and the cut-set bound can be far away
[24].

Furthermore, there are no known algorithms to compute the
best Steiner tree packings within a constant factor approxima-
tion in directed graphs [31], whereas there is a polynomial time
algorithm to compute a factor-2 approximation for Steiner tree
packings in undirected graphs [7]. It shouldtip be noted that the
presence of cycles in undirected graphs allows for interactive
function computation. Nevertheless, our results show that,
for a wide class of functions, simple non-interactive function
computation is near optimal.

A. Related Work

1) Communication Complexity: The problem of function
computation has been well studied in the communication
complexity literature. The basic setup is that there are two
nodes, having values x and y, and both of them wish to
compute a function f(z,y) of these nodes. The goal is to
minimize the total number of bits communicated in the worst
case. This problem was originally formulated by [19] and the
reader is referred to [20] for a treatment of this problem.
However, this setting does not allow for a block computation
of the function.

2) Function Computation in Random Graphs: The problem
of block function computation was originally formulated by
Giridhar and Kumar [11]. They studied the scaling laws for
computing several classes of functions in a random wireless
network. In their work, the wireless nature of the medium is
dealt with using scheduling (to avoid interference) and then in-
network computation is performed by aggregating data through
spanning trees. In contrast, in this paper, we do not deal with
the wireless aspects and consider the problem of function
computation on any specified undirected graph.

3) Computation Trees: Computation trees, where Steiner
trees are used for computation, have been a popular strategy,



see [11], [10], [9], although the name was coined later in
[39]. Such trees are optimal for function computation when
the graph is itself just a directed tree [10], [9]. In an arbitrary
directed acyclic graph, [9] proposed a strategy where several
such trees can be packed and the rate of computation can be
linked to the Steiner packing number. However, as pointed out
earlier, in directed graphs, the Steiner packing number can be
arbitrarily far away from the cut [32].

In undirected graphs, packing of specific computation trees
resembling the structure of the function, were considered and
algorithms for packing computation trees were provided in
[39]. However, there are no guarantees on the computation
rates achieved by this algorithm and it is unknown what the
gap to capacity is.

4) Linear Coding: Another popular achievable strategy is
linear coding where each intermediate node forwards a linear
combination of the incoming symbols. For general directed
graphs, when the function to be computed is linear, random
linear coding is known to be optimal [33]. In [17], it is
shown that linear coding is insufficient when the function to be
computed is nonlinear and the potential loss due to employing
linear coding is quantified.

5) Undirected Graphs: The problem of determining func-
tion computation capacity in undirected graphs is considered
harder in general, due to the presence of cycles in the graph,
which allow for interaction in function computation. Single-
shot function computation in the 2-node setting has been
a central problem of study in the field of communication
complexity [19], [20]. Even allowing for block computation,
for general functions, seemingly simple 2-node problems can
become hard (see [40]). For a class of sum-threshold functions
on undirected trees, this capacity is characterized in [10] using
carefully orchestrated interactive strategies. In this paper, we
show that for many function classes of practical interest, non-
interactive function computation using computation trees can
give near-optimal performance.

6) Function Multicasting: One particular problem that has
attracted attention is the case where there are several sources,
and each destination demands the sum of the sources [34],
[35], [37]. In our terminology, we call this the function multi-
casting problem; in this case, the function happens to be linear
as well.In [37], the case of a directed acyclic communication
graph is considered and several negative results demonstrating
the insufficiency of scalar and vector linear coding is shown,
deriving inspiration from similar results for multiple unicast
in directed networks. In contrast, in this paper, it is shown
that if the communication graph is undirected, simple coding
schemes can achieve within a constant factor of the optimal.
Function multicasting was also considered in the different
context of linear deterministic networks in [18].

7) Multi-session Function Computation: The case of func-
tion computation with multiple sessions has not received much
attention, partly because even the single terminal scenario
is sufficiently complicated and unsolved in general directed
graphs. We are not aware of any existing work that studies
this setting.

8) Correlated sources: Information theoretic approaches
to function computation in simple settings with correlated

sources was studied by [21], [22], [25]. Function computation
through noisy channels was studied in [29], [30], [26] and
through Gaussian wireless channels was studied in [27], [28].
However, these results are restricted to simple functions. In
this paper, we only consider independent sources and noiseless
channels but focus on general graphs and a wide class of
functions.

B. Organization

We will first discuss the mathematical formulation of the
multi-session function computation problem and describe the
classes of functions considered in the paper with examples
in Section II. Next, we describe our proposed scheme and
outer bound in Section III. We state our main result and
discuss its ramifications, especially the connection between
the computation problem and a dual communication problem,
in Section IV. We show how these results extend to the setting
of multi-session function multicasting in Section V. We prove
the main result in Section VI and conclude the paper in
Section VII.

II. PROBLEM FORMULATION

The communication network is represented by an undirected
graph G = (V, F), and edge capacity function ¢ : E — R™T.
There are K “sessions”, each session involving independent
variables and the computation of a specified function at a
terminal. The sources for session k are denoted by X, where

X = {O-lkao'Qk'"aO-Sk} C Va k= 1727 "'7K7 3

each with its corresponding destination px,k = 1,2,.., K.
Define Gy, := 3 U {pr} as the group of vertices involved
in session k. We assume for notational simplicity that each
session involves the same number of variables; in the general
case that session k involves |Xj| variables, we can replace
SK in the results by >, |X| and the results will continue to
hold.

The source o;; has several instances of an information
variable Xj;;, which takes values over a common alphabet
A. We do not impose a statistical structure on the messages.
Alternatively, it is possible to set up the sources as independent
random variables, in which case, the results in the paper will
continue to hold with modification of notation. The destination
pr is interested in computing a function f : A5 — B, ie., it
wishes to reconstruct f(X1x, Xok.., Xgx). While X and 3/
could in general overlap, we assume that the information of
interest to destination pj is distinct from the information of
interest to destination py.

This function computation happens several times and there-
fore we consider a block function computation problem as
follows. The network can potentially employ in-network com-
putation (network coding) in order to compute the function.
Formally, a coding scheme of block length 7" and achieving a
rate tuple (Ry, ..., Ry) is described as follows:

e The source Oik has messages
Xir(1), Xir(2), ..., Xi(R;T). The destination py
is interested in computing f(X1x(t), Xog(t), ..., Xsk(t))
fort =1,2,..., RyT. The message set of source v = o



TABLE I: Function Examples

Function Name flx1,...,zs) A (S)-divisible Marginally
Injective?
1 Linear (field) 1 Dx2 D ..T8 1 v
2 Addition (abelian group) r1 P2 ®d...x35 1 v
3 Arithmetic Sum (A := |A]) z1+..+xg log 4 {S(A—1)+1} v
4 Real Sum over
A={0:6:1} 1+ ...+ xs log 4{S(A—1)+1} v
sds 5 £p-norm
suitably quantized = + .. 42 log 4{S(A—1)+1} v
6 Histogram Hist(z1, ..., zs) logA{(S+g_1)} v
7 Symmetric f(z1,...,5) < logA{(SJ’g*l)} Depends
8 Maximum max(z1,...,Tg) 1 No
9 Sum threshold Vo) +oototag>m] | 1084{S(A-1)+1} No

is denoted by W, where |W,] |A|B<T. For
simplicity of notation, if a given node v & X, then we
set Wy = 0.

« Since the network graph is undirected the capacity c(e)
on edge e has to be shared between the forward and
reverse direction, let the fraction on forward direction
be a(e). Once the « is fixed, then the network becomes
a directed network. Let us scale this network to have
integral capacities and represent this network as a directed
multigraph, potentially having multiple edges between
the same nodes.

o At each node v, at each time ¢, there is a mapping

o+ AMONED S Wy S W x Wi — AW

where In(v) and Out(v) denote the set of incoming edges
and the set of outgoing edges of node v. The function
gv,+ thus specifies a mapping from the messages on
the incoming edges till time ¢ — 1 and the node’s own
messages to the outgoing edge message at time t.

o The decoding map at destination py, is given as a function
of its incoming edges till time ¢

¥ AT gRT, (5)

e The coding scheme is said to achieve rate tuple
(Rq, ..., Rg) if each destination correctly recovers the
function of its desired nodes.

The set of all achievable rate tuples (R, ..., Rx) is called

the computation capacity region C.

A. Function Classes

We will define certain classes of functions which we will be
interested in. A function f : AS — B is called \ ¢-divisible,
if for every index set I C [S], there exists a finite set B and
a function £’ : Al — B; such that the following hold:

n [ =g

2) |1 < AP

3) For every partition {I1,...,I;} of I, there exists a
function g : By, X -+ x By, — By such that for every
xe AT

[l

@) = g(f(@n), .. fU (21))- (6)
If a function is Ag-divisible, then it means that it can be
computed in a divide-and-conquer manner such that every
intermediate computation needs only Ay symbols to store and
transmit. Every function is |S|-divisible in a trivial manner,
(49ince retaining all the information is sufficient to compute the
function. Our interest will be in functions f for which Ay is
small. Ay-divisible functions can be seen to be equivalent to
Ar-bounded functions defined in [9], we prefer the alternate
name and definition since it is more suggestive. Divisible
functions as defined in [11], [38] and [9] are A-divisible with
A = log| 4| |B|. For example, a linear function over a finite
field has Ay = 1. We refer the reader to Table I for a listing
of Ay for various functions.
A function f : A% — B is called marginally injective if, for
any variable 4, for any fixed assignment on the other variables,
the function can take on A distinct values as x; varies over

A, ie.,

Vi, Yyispi € ALYt A= B, (7)

defined by v (z;) = f(x,y(s)\4) is injective.

Several functions of interest satisfy this property, as listed
in Table I. An example of a function which is not marginally
injective is the max-function over an ordered set. The value
of the maximum does not depend on any other variable if one
of the variable is assigned the maximum possible value.



B. Examples

Various examples of functions are provided in Table 1. Also
listed is whether the function is marginally injective or not,
and the value of Ay for which f is Ay-divisible (the value of
Ay could in general depend on the number of variables S).

1) The linear function over a finite field is an obvious ex-
ample of a function which is 1-divisible and marginally
injective. For linear function computation with a single
terminal, linear coding is known to be optimal [33], but
the case of multiple terminals has not been studied.

2) The case of addition over an Abelian group is very
similar to the finite field sum. However, for addition
over an Abelian group, existing random linear coding
techniques do not apply due to the lack of the field
structure, whereas our computation tree based approach
naturally extends to this case.

3) The arithmetic sum is log 4 B-divisible since maintain-
ing the arithmetic sum of the subsets is sufficient, and
it is also marginally injective.

4) Real sum over a quantized alphabet on [0,1] (quantized
to a fixed precision J) is only a disguised version of
the arithmetic sum since after scaling by %, we have
converted it into the arithmetic sum. If precise quanti-
zation is not required in the application, then we can
maintain quantized versions of the sum (to accuracy d)
throughout the computation tree, thus having an effective
A of 1. This function is practically relevant in sensor
networks, since sum of the LLR (log-likelihood-ratio) is
a sufficient statistic in some cases [41].

5) {p-norm is basically just a real sum, except for the fact
that we need z! to be quantized to a precision of 4.
This is again a practically important function in sensor
networks.

6) The histogram is a function from A% to B with A := | A|
and B := |B|. Using a simple enumeration it can
be computed that the histogram can take on one of
B = (S+§71) values. The histogram is log 4 B-divisible
because, for any subset, the histogram of the subset is a
sufficient statistic to maintain. For the case of computing
a histogram of S nodes at a single terminal, our method
leads to a 2A\; = 2log, (S+f_1) approximation as
opposed to the method in [9] of using the binary
arithmetic sum, which leads to a bigger factor gap of
(A —1)log,(AS) (adapted to undirected graphs). For
example, when A = 16, S = 50, 2\ = 23.6, whereas
(A—1)log,(AS) = 36.1.

7) Any symmetric function (which is invariant to permuta-
tions of input symbols) depends only on the histogram.
Thus the histogram is a sufficient statistic to compute
any symmetric function.

8) Maximum is an example of a function which is clearly
1-divisible, however it is not marginally injective. Con-
sider the alphabet 0,1,2,..,a — 1. If we know that
max(xg, ...,xg) = A—1, then the function f no longer
depends on z; and is therefore not marginally injective.
While the achievable strategies in this paper continue to
hold, the outer bound is no longer valid for this function.

9) Sum-threshold functions are basically of the form
L2y 422+...05>m]- The arithmetic sum of the variables is
a sufficient statistic to compute the function and hence
the function has

Ap <loga{S(A—-1)+1}. (8)

The function is not marginally injective, because, if the
variables other than z; have a sum of greater than m,
the function no longer depends on z;.

III. INNER AND OUTER BOUNDS

In this section, we present our achievable scheme based on
computation trees and the outer-bound on the rates for multi-
session function computation in undirected graphs. Similar
bounds have been previously studied in the context of single-
session function computation in directed acyclic graphs [9].

A. Cut-set Bound

The cut-set bound defined in [9] is special to directed acyclic
graphs and does not generalize to cyclic graphs. We use the
technical condition of marginal injectivity in order to establish
a simple cut bound on the communication rate based on the
separation of one node from the rest of the nodes in the
session. Note that we call this simple bound as the cut-set
bound in this paper. This bound can be strengthened by taking
into account the effect of separating multiple nodes from each
other; however, we do not need that generality to prove the
results of this paper.

Given a set ) C V, define

K(Q) :={k:GynQ#£0,G,NQe £ 0}, )

as the set of sessions disconnected by €2 and define

Cut(Q) := >

(ij)EEHEN,jEQC

(). (10)

Then, for any scheme computing a marginally injective func-
tion, for any 2 C V, define

C={R: > Ri<Cuy(Q) v}
kEK(Q)

Y

The main observation is that C C C. We will prove this for
the case of K = 1, the general case is similar. When K =1,
we only need to consider € such that K(Q) = 1, i.e., the
cut separates Gy,. Let () be such that p; € 2¢ and for some ¢,
o1 € Q. The information on edges between {2 and ¢ can take
ACHET possible values. The function is marginally injective,
and therefore this should atleast convey as much information
as one of the sources, o1;. Thus

|A|Cut(Q)T 2 |A|R1T, (12)

and so Ry < Cut(2) which proves the required bound.

Informally, the marginal-injectivity property suggests that
even in the presence of feedback or interaction, each node
needs to convey its information symbol in order for func-
tion computation to succeed. Therefore, we can think of
marginally-injective functions as functions for which interac-
tion does not help much. On the other hand, if a function is
not marginally injective, interaction can in general help.



B. Achievable Strategy
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Fig. 2: Multi-session Example

We first formally define Steiner trees. An undirected Steiner
tree on a set G is defined as an undirected tree 7 which
includes G in its vertex set. A directed Steiner tree rooted
at p on a vertex set S is defined as a directed tree rooted at p
that includes S in its vertex set. Given an undirected Steiner
tree on Gy := {pr} U Xy, there is a (unique) orientation of
edges such that we get a directed Steiner tree on Xj rooted
at pi. Note that whenever we mention about Steiner tree, we
refer to a tree with unit capacity edges.

Let 7 be the set of Steiner trees on Gy, and 7 = Ui Ti. A
fractional Steiner packing of 7y, ..., mx is said to be achievable
if so many trees can be packed simultaneously: i.e., there exist
fr,7 € T such that

™ = Y [ kelK] (13)
TETk
S f < cle) VeeE. (14)
TET :e€ET

Let R, be the Steiner packing rate region, i.e., the set of
all fractional Steiner packing rates (my,...,7x ), which are
achievable.

The achievable strategy is based on using computation trees.
The key observation is that, if a function is Ay-divisible, then
any Steiner tree with unit capacity can be used to compute the

function at a rate . Thus a rate tuple
1

Agp”

7RK) = )\7‘}(‘(7(-1771—2’
can be achieved for computing any A -divisible function. We
denote the set of all rate tuples achievable by this computation
tree scheme as Reomp. Thus

(Ri, .. 7K, (15)

Rs
A
For a demonstration of our achievable strategy for the
example function computation problem in Fig. 1, see Fig. 2.
In this strategy, there are two Steiner trees for session 1, the
first one is comprised of edges da and ab, and the second
one is comprised of edges ae, de and eb. There is one Steiner
tree for session 2 which has edges bc, ec and dc. This Steiner
packing strategy achieves the best sum rate among all possible
strategies. This can be observed by taking the cut separating b
from the rest of the nodes; since the cut separates both sessions
the corresponding value of the cut is a bound on the sum rate.
Note that in general, in our achievable strategy, the capacity of

Rcomp = (16)

each edge could be shared between several Steiner trees; this
is called fractional Steiner packing, as opposed to the integral
Steiner packing demonstrated in this example.

We note that both our achievable rate and outer bound
depend only on the definition of the sets GG and not on the
particular way in which G = X U {px} is divided into
sources X and the destination py. Thus if the destination py
swaps its role with one of the sources in Y, the achievable
rate and the outer bound remains the same. It is not clear
if this property holds for any achievable strategy and outer
bound; in particular, it is interesting to study this question for
the capacity region.

IV. MAIN RESULT

We first state our main result, which shows a factor approx-
imation for the capacity region.

Theorem 1. For computation of M-divisible functions in
a graph G with SK sources and K terminals demanding
functions of S non-overlapping variables, computation trees
achieve Reomp such that

¢
Ar(9)g(S; K)

where C is the cut-set bound, and

€ Reomp, a7

1 if G is a tree
g(S,K)S 2 if K =1,
klogSK if K > 1,

where K is a universal constant that does not depend on the
number of nodes in the network or the specific function to be
computed. Furthermore, if the function is marginally injective,
ccc.

In the most general case, this result shows that our achiev-
able strategy is optimal to within a factor A;(S)O(log SK).
For functions which have a small Af, (for example, linear
functions which have A;(S) = 1), the dominating factor in the
approximation is O(log SK). We will compare this to some
simple bounds obtainable by other methods.

Firstly for S = K = 1, the max-flow min-cut theorem states
that the rate suggested by cut-set bound is achievable. Now one
simple strategy is to time-share between the various sessions;
this will take K time instants. Furthermore, in each session, the
function can be computed by first routing each source to the
sink and then computing the function at the destination. This
process will take a total of SK time instants to achieve the cut-
set bound; thus the cut-set bound is achievable within a factor
SK by using this strategy. A smarter strategy is to choose one
source per session to communicate to its corresponding sink
simultaneously, so that we get a multiple unicast problem,
for which Leighton and Rao [12] showed a O(log K) gap
between flows and cuts. Since we are time sharing between the
S sources, we get a factor O(S log K') between our achievable
strategy and the cut-set bound. In comparison to these results,
we see that our approximation factor of O(log SK') is much
stronger. Furthermore, we observe that a well provisioned
network will have capacities scaling linearly with K, the
number of sessions. Thus, the cut-set bound will scale as K



and hence our achievable rates will scale at least on the order
K
of log SK* . . .
Theorem 1 is proved by first showing a connection between
Steiner packing rates and the cut-set bound,

CR,CC, (18)

.

9(S, K)
where R is the Steiner packing rate region, and using the
fact that

19)

X1 X

(b) A Multicast Network

(a) A Network for Function
Computation

Fig. 3: Dual Communication and Computation Networks

Our results are strongly motivated by an analogy between
the function computation problem and a multi-session com-
munication problem, and analogous results available for the
communication problem. This “dual” communication problem
is obtained by reversing the nature of the sources and des-
tinations. In particular, in a function computation session, a
single sink node computes the function of many sources; in the
communication problem, many destinations demand the same
information from the single source (this is called multicasting).
The key observation is that for the computation problem, every
Steiner tree is a computation tree and for the communication
problem, every Steiner tree is a multicasting tree. In the
computation problem, whenever information streams merge
in the Steiner tree, in-network computation is performed.
In the dual communication problem, whenever information
streams bifurcate in the Steiner tree, replication is performed.
Thus, viewed in this manner, replication and computation
are dual operations. Therefore, the achievable rates have a
natural relationship. It turns out that the cut-set bound for the
computation problem in this paper also has a natural analog
for the communication problem.

Formally, given a function computation network, we will
define the communication problem as the following: the com-
munication graph G is the same with the same capacities.
In the computation problem, there are K functions to be
computed. In the communication problem, there are K in-
dependent messages to be communicated. For each message

k, there is a source p* and S destinations defined by the set
3k, each of which desire the message. The k£ messages are
independent. This problem is called as the multiple multicast-
ing problem in the network coding literature. Thus, for every
multi-session computation problem, there is a dual multiple
multicast communication problem.

We refer the reader to Fig. 3 for an example of a function
computation problem over an undirected butterfly network,
and the dual problem of multicasting. In Fig. 3a, there are
two sources with messages X; and X» and one destination
demanding X; + X,. A Steiner tree connecting the three
nodes is also shown in the figure with dotted lines. Till the
two streams meet, the information X; and X5 are passed
along separately, and when they meet the function X; + X5
is computed and forwarded along. The dual communication
problem in Fig. 3b has a single source X which needs to be
multicast to two destinations. Again, the Steiner tree is shown
in dotted lines; in this multicast problem, when the Steiner
tree bifurcates, the information X is replicated on both the
outgoing edges.

1) Achievable Strategy: We will now see that both our
achievable strategy and the cut-set bound for the computation
problem have a natural analog in the communication problem
as well. First, we focus on the achievable strategy. For the
computation problem, our achievable strategy is based on
packing Steiner trees for the various Gj. For the commu-
nication problem also, packing Steiner trees forms a natural
achievable strategy, since a Steiner tree can be used to dis-
seminate a message from one of the nodes in G, namely py
to the rest of the nodes X;. Thus given any fractional Steiner
packing (1, ..., Tk ), a rate tuple (1, ..., Tk ) can be achieved
for the multiple-multicasting problem. Let R, denote the
achievable region for the multiple multicast problem. By the
above observation, this equals the Steiner packing region, i.e.,
Rm.m. = Rs~

2) Outer Bound: Given any set Q@ C V, define K(Q)
as before K(Q) = {k : G, NQ # 0,G, N Q° # 0} as
the set of sessions disconnected by €2 and define Cut(Q2) :=
2(ijyeprica,jeqe ¢(17). This implies that if we separate {2 and
¢, for each k € K(Q), at least one destination is separated
from the source and thus
C={R: Y  Ri<Cu(Q)VvQ}, (20)

kEK(Q)

is an outer bound on the set of rates achievable for the
multiple-multicast problem.

3) Capacity Approximation: Since the achievable strategy
is given by Steiner packing and the outer bound is given by
cut-set bound, we can now bound the gap between the two as,

L S Rm.m, S C_7

21
9(S, K) @b

where ¢(S, K) is as defined in Theorem 1. Thus we see
that the function computation problem and the communication
problem have a natural duality for the proposed achievable
strategy and the outer bound.



4) Linear Function Computation: Consider the special case
when the source alphabet A is a field and the function to
be computed is linear over the field. The linear function has
Ay = 1 and is marginally injective (see Sec. II-B). Thus we
have

C _
9(57 K) g Rcomp g C.

For the case of a single session K = 1, ¢(S, K) < 2, which
implies that the achievable rate region using Steiner packings
and the cut-set bound are approximately the same, to within
a factor of 2. This is the dual of the corresponding result for
multicasting [13], which shows that Steiner packing and cut
are within a factor of 2, thus bounding the gain due to network
coding in undirected graphs.

The single-session linear-function-computation problem has
been well studied, and for directed graphs (potentially cyclic),
it is known that the cut-set bound is achievable [33]. The
achievable strategy is given by random linear coding and is
inspired by the strategy used for the dual multicasting problem.
The duality between linear coding for single-session linear-
function computation and linear coding for multicasting was
observed in [33]. However, there is no natural way to extend
this duality (or even the achievable strategy) to the computa-
tion of general functions. Furthermore, our strategy of Steiner
packings enables us to tackle the case of multi-session linear-
function computation and show a provable approximation ratio
of k(log SK') between the achievable strategy and the cut-set
bound.

(22)

B. Proof of Theorem 1 for the special case, K =1

In this setup, one node wants to compute a function of
all the sources. Since K = 1, the regions collapse to single
numbers, for which we use small case letters. There is a close
relationship between the fractional Steiner packing number
R, = 7 and the cut C' (which is also called the Steiner cut).
This relationship is based on the Tutte-Nash-Williams theorem
[14], [15] and Mader’s undirected splitting-off theorem [16]
and was elucidated in the multicast setting by Li and Li [13]:

%Cgngé. (23)

Therefore, by using this fractional Steiner packing, and

Reomp = ﬁRs, we get the desired result,

1 -
—C Cc Rcomp'

7 (24)

V. MULTI-SESSION FUNCTION MULTICASTING

A natural duality relationship between function computation
and multicasting was shown in Sec. IV-A. In this section we
extend our theory to encompass these distinct problems into
the general problem of function multicasting.

In the general problem of multi-session function multicas-
ting, there are K sessions. For session k, there is a set of
S sources X = {o1%,...,05k} and a set of D destinations
P, = {pik, ..., ppr}. Each source o, has several instances
of an information variable X;; over a common alphabet A.

For session k, each destination p;;, Vi wants to compute the
same function of the sources f(Xi, ..., Xgx) taking values in
alphabet B.

This problem captures the multi-session function computa-
tion problem as a special case by setting D = 1, i.e., there
is only one destination per session and it captures the multi-
session multicasting (also called multiple multicasting) as a
special case by setting S = 1, i.e., there is only one source per
session and all the destinations demand the identity function
of that source.

A. Outer Bound

Define G, = X;UPy to be the group of terminals associated
with session k (note that this definition of G, generalizes the
definition in Sec. II). Consider any cut that separates one node
in Gy, from the rest. If this node happens to be a destination,
the rate of function multicasting is upper bounded by the value
of the cut since information needs to be delivered to this
destination. Alternately if this node happens to be a source,
then the rate of function computation is upper bounded by
the value of the cut under the marginal injectivity assumption.
Thus the cut-set bound proposed in Sec. III-A is valid for
the function multicasting problem under the same marginal
injectivity assumption and the updated definition of Gy,. Thus
C C C, where C is the capacity region of the multi-session
function multicasting problem and C is as defined in Sec. II

B. Achievable Strategy

As in the case of multi-session function computation, the
achievable strategy keeps information flow separate for each
session, i.e., there is no inter-session network coding. The key
idea of the proposed strategy is to break down the problem of
function multicasting into two distinct tasks:

o First, the requisite function is computed at one of the
destination nodes. This is done using a computation tree
constructed from a Steiner packing.

« Second, the computed function is multicast to all the other
destination nodes.

For doing the first task, we need a Steiner tree connecting
the sources to a specific destination. For accomplishing the
second task, we need a Steiner tree connecting all the destina-
tions. In order to find the best achievable rate among all such
strategies, we may have to further optimize the particular node
at which the function is initially computed. This optimization
problem may turn out to be hard to solve and therefore we
resort to a further simplification.

In our proposed scheme, the destination at which the
function is computed in the first stage is not optimized but
chosen arbitrarily from Py, let us fix it to pix, the first element
of the set P,. We first construct a Steiner tree between all the
sources and all the destinations, i.e., a Steiner tree spanning
the set GG, of nodes. We then use this Steiner tree in two
phases to do function multicasting. In the first phase, the
Steiner tree is used to compute the function at p;; (by using
the achievable strategy described in Sec. III-B for function
computation). By the analysis in Sec. III-B, if we have a



Steiner tree of rate A7(.S), we can do function computation at
rate 1. Next, we use the same Steiner tree to do multicasting
of the function. The function takes value in the alphabet B
while the source symbols are from an alphabet .A. Thus,
if we are given a Steiner tree of rate log 4 [B|, we can
multicast the computed function at rate 1. Thus, in order to
do function multicasting at rate 1, we need a Steiner tree of
rate A\f(S) + log) 4 [B] < 2A¢(S). Stated differently, given a
Steiner tree of rate 1, we can do function multicasting at rate

1 s> 1
Ap(S)Hog 41 Bl = 2A5(5)”

C. Performance of the Proposed Strategy

In this section, we examine the performance achieved by
the proposed strategy. The rate region achievable for function
multicasting using the proposed achievable strategy is related
to the Steiner packing rate as follows,

R S 1

Ar(S) +log a) 1Bl = 2A4(S)’
where R, is the Steiner packing rate region. Now R is related
to the cut-set bound as shown in (18),

R = (25)

C _
m CRsC C; (26)
where
1 if G is a tree
g(S+D,K)={ 2 if K =1, Q27
k(log(S+ D)K) if K > 1,

with £ a universal constant.
Thus we have proved the following theorem characterizing
the capacity region of the function multicasting problem.

Theorem 2. For the problem of function multicasting in a
graph G with K sessions and each session having S sources
and D destinations demanding marginally-injective functions
of nomn-overlapping variables, the proposed strategy achieves
rates R such that

C
205(S)g9(S + D, K)
where C,C are the capacity region and the cut-set bound
respectively and g(S + D, K) is specified in (27).

C Ry €C CC, (28)

VI. PROOF OF MAIN RESULT

We will now prove this result for general K using connec-
tions to algorithmic work showing approximation algorithms
for “sparsest Steiner cuts” [2], [3], [4].

We first give a description of rate regions using the max-
concurrent flow representation in Sec. VI-A, which is fairly
standard in the algorithmic literature. Then we compute the
dual of this linear program in Sec. VI-B. This is used in
Sec. VI-C to compute the gap between Steiner tree packing
and cuts in tree networks. ! In Sec. VI-D we state existing
results that imply logarithmic gaps between Steiner packings
and cuts. We also describe existing polynomial time algorithms
that achieve these rate guarantees.

'While this calculation is elementary, to our knowledge, it is not available
as it is elsewhere.

A. Description of Rate Regions

For the case of multiple sessions, we have to deal with
rate regions and cut-set regions. In order to deal with these
regions in a compact manner, we use the max-concurrent flow
representation. In this representation, we deal with all possibly
rays in the capacity region, we call the vector of length K,
denoting a ray as a demand vector. For example, the ray given
by the demand vector (1,1, ...,1) corresponds to the direction
signifying symmetric rates for all the sessions. In general, let
(D1, ..., Dk) be a given demand vector for sessions 1,..,K. In
this formulation, we want to achieve a rate proportional to the
given demands, i.e., we want to achieve a rate tuple

aDK)a

where we would like to find the maximum value of a such
that a(D1, ..., D) is in the capacity region C. The idea here
is that by understanding the best o for each demand vector is
equivalent to characterizing the convex capacity region C.

The achievable rate for the proposed scheme is given by
%(771, .y TK ), Where (71, ..., T ) is a simultaneous fractional
Steiner packing, i..e, we can pack m; trees simultaneously for
each session. We set (1, ...,mx) = v(D1, ..., D) and want
to maximize -y, this problem is called the maximum concurrent
Steiner flow problem. The maximum value ~* is called the
(maximum concurrent) Steiner packing rate.

The maximum concurrent Steiner flow problem can be
written as

(Rl,...,RK) :Oé(Dl,... (29)

~* = max«y S.t. (30)
> fr = ADy Vke€|[K] 3D
TETK
Z Z fr < cle) VeeE. (32)
k TETy:e€eT
The cut-set bound on C now translates to
a Y Dy < Cu(Q) (33)
kEK(Q)
Cut(Q?)
=:v(Q 4
a < D) v(§2), (34)

where D(Q) := >, k() Dk is the total demand separated
by the cut, and v(Q)) defined here is referred to as the sparsity
of the cut ). Thus

(35)

a <v*:=min v(Q),
Qcv
where the minimizer 2* is called the sparsest Steiner cut. The
cut-set bound also bounds the Steiner packing rate and hence,
v < vF (see [2]).

We note that while we have defined cuts using subset of the
vertex set ) C V/, there is an alternate way of defining the
cuts using subsets of edges F' C 2. We define the sparsity of
edge cut F' as

Cut(F)
F)=—2
WP = gy
where Cut(F) = > ;o c(f) and D(F) =3~ c r(py D, and
K (F) is the set of sessions separated by F, i.e., at least one

(36)



node of GG, is disconnected from another node of GG in the
graph (V, E\ F). In general, cuts based on edge sets and vertex
sets can be very different, but for undirected graphs, the two
turn out to be equivalent (see [6]), i.e.,

Cut(Q?) Cut(F)

T 0lv D(Q)  FeE D(F)

*

. 37

B. Dual of the Steiner flow problem

We would like to show provable bounds on the ratio between
~* (Steiner packing rate) and v* (the cut). This can then be
translated into bounds on the ratio between « (computation
rate) and v* (the cut). In order to do this, we first write the dual
of the linear program for v*. By strong duality, the optimal
value of the linear program is equal to the optimal value of the
dual program. In the dual program, there is a dual variable yy,
for each k, corresponding to the constraints (31) in the primal
and a dual variable /. for each e € E corresponding to the
constraints (32) in the primal. For each primal variable f., we
write a constraint (39) and there is a single constraint (40). We
note that we can treat the graph as fully connected without loss
of generality (since the capacity of non-existent edges can be
set to zero). The dual can be written as follows:

v = mianeﬁe s.t. (38)
eeE
> le =y VreTyVkeK] (39)
eecT
> D > L (40)
kE[K]

Let wy(7) be the weight of the tree T with weights ¢, i.e.,
edge e has weight /.,

we(T) = Z L.

eecT

(41)

Furthermore we define wy(Gy;) as the minimum weight of the
Steiner tree with nodes G.:

we(Gr) = ;TGH% we(T). (42)

With this notation the yj in the optimization problem is set
equal to we(G}) and therefore can be rewritten as follows:

= InianeZ@ s.t.

Z Dkwg(Gk) Z 1.
ke[K]

(43)

C. Tree networks

We will first consider the case when the network graph is
an undirected tree. We would like to show that g(S, K) = 1.
Since the graph is a tree, there is only one Steiner tree 7 for
each set Gy, i.e.,

T ={m} Vke[K]. (44)

Therefore,
Vk € [K].

wz(Gk) = u}g(Tk) (45)

Thus the dual program for Steiner tree packing can be
rewritten as

= mianeée s.t.

ecE

> Dpwe(n) > L (46)

ke[K]

We would like to compare the optimal value of this program
to the sparsest cut. We start with the optimal solution £(e) Ve €
E for this dual program and then try to obtain a cut 2 whose
sparsity v(2) is close to the value of this dual program.

When the graph is a tree, we show that there is a sparsest
cut among the cuts that remove a single edge. For an edge
e, we define D(e) as the total sum of demands separated by
removing the edge e (similar to the definition of D(Q2)). We
write e|Gy, to denote that edge e disconnects at least one node
of Gj, from another node of GGi. Thus

D(e)= Y L, D

ke[K]

(47)

In this notation we can also write the Steiner tree 75, for Gy,
as

e ={e:e|Gy} Vk € [K], (48)

since 7, includes every edge that separates G.
We start with the optimal dual variables ¢(e), e € F, which
is feasible for the dual program.

v* = min CL(F) min cle) = min
FCE D(F) ~— ecE D(e)
ZeeEgec@)
ZeeE £.D(e)
ZEEE Lec(e)
>cer le 2oneix) LielGu Dk
®) 2 cer tec(e)
Zke[K} Dk{ZeErk le}
ZeeE Zec(e)
Zke[K] Dywe(Tk)

< Z Lec(e)

eclk

INE

= 7,
where (a) follows due to the standard inequality
. a4 Z-ai
o i
min b =S
(b) follows from (48), the inequality (c) follows because ¢ is

feasible for the dual program and hence satisfies the constraints
in (46),

(49)

> Dywy(r) > 1, (50)
]

ke[K

and (d) is immediate from (46) as well.

Since, v* < v* always, we have that v* = v* and the value
of the sparsest cut is equal to the maximum concurrent Steiner
flow, if the graph is a tree.



D. General Network

Now, we move on to considering a general network. For a
general network, the following result is known [2]:

1

71/* < * < 1/*,
O(og? 5K). =1 =

(51
where the function O(log” SK) does not depend on the num-
ber of nodes, capacity of edges in the network or the demands
Dy, ..., Dk. The approximation factor was refined to O(logn)
in [3] (see Section 3.1 there) and then to O(log| Uy Gi|) in
[4]. Note that | Ur G| < SK. Therefore, we can write,

1
k(log S’K)V

for some universal constant .

This result is implicit in [3] and [4], and we refer the reader
there for the proof of this result. The basic idea of the proof
is to connect Steiner flows and cuts in general networks to
Steiner flows and cuts in tree networks. This is done using
the notion of embeddings of general metric spaces into “tree
metrics”.

Now, we can use the relationship between Steiner packing
and cuts in order to derive approximations for function com-
putation capacity. Using (19), we get a = 2= This implies

B 2 (52)

-

that, for computation of A -divisible functionsf,
;1/* <a (53)
Ak(logSK) ™ —

Since this approximation factor O(log SK) between the
achievable rate and the cut does not depend on the demand
vector D1, ..., Dk, we can show that this approximation factor
holds for the entire rate region,
1
Ark(log SK)

which proves the achievable portion of the result.

(54)

(a) A Weighted Network

(b) Reduced Graph

Fig. 4: Restricted Steiner Trees

1) Algorithm for finding Steiner packings: First, we observe
that the Steiner tree packing problem in general graphs (even
for the case of a single session) is NP-hard [7]. We will
describe a polynomial time algorithm, proposed in [2], for
computing Steiner tree packing whose packing number is
within a factor of two of the optimal Steiner tree packing. The
ellipsoid method [7] gives a way of converting optimization
problems into feasibility checking. In particular, given an
assignment of the variables, if there is a polynomial time
algorithm (called the separation oracle) that will either say

it is feasible or produce a separating hyperplane that separates
the feasible set and the assigned variables, then we can use
this separation oracle to do optimization in polynomial time
as well.

We will apply the ellipsoid method to the dual program of
Steiner tree packing as formulated in (43). Given an assign-
ment of ¢(e), checking the feasibility is very easy once we
compute wy(Gy), i.e., the minimum weight of the Steiner tree
with nodes G'i,. This minimum weight Steiner tree problem is
NP-hard , however there is a factor 2 approximation algorithm
that runs in polynomial time [7]. We briefly describe this
algorithm. Given a set of distances ¢(e), create a graph Hy,
which has vertices G and is fully connected. The distance
between two nodes u and v in Hj is the distance of the
shortest path P,, between u and v in the original graph G
with distance ¢(e) on edge e = uv. Now, we find a minimum
weight spanning tree with edges Ej in Hj using Prim’s or
Kruskal’s algorithm [8]. This yields a Steiner tree 7, with edge
set Uyy:(uv)e B, Puv ON the original graph G (we may have to
delete certain edges to get a tree). Steiner trees obtained in this
manner are called restricted Steiner trees. It can be shown that
the weight of the restricted Steiner tree, denoted by wy(Gy),
is within a factor 2 of the minimum weight Steiner tree, i.e.,

'U}g(Gk) S lf)z(Gk) S QWZ(G]C) (55)

For an example of the minimum weight Steiner tree prob-
lem, see Fig. 4. A weighted graph is shown in Fig. 4a, where
we would like to construct a minimum weight Steiner tree
with nodes a,b, and d. To do so, we construct a graph H on
nodes a,b and d with weights equal to the minimum distance
between these nodes in the original graph. This graph is shown
in Fig. 4b. The minimum weight spanning tree in H is given
by the edges ba and ad of weight 4 — e. This corresponds
to a tree in the original graph with the edges ba, ae and ed.
The minimum weight Steiner tree in the original graph is of
weight 3, given by the edges be, ae and ed.

Since the objective function is linear, using this approx-
imation algorithm for minimum weight Steiner tree as the
separation oracle in ellipsoid method yields a packing which
is within a factor 2 of the best packing.

VII. CONCLUSIONS

In this paper, we studied computation of multiple functions
of independent data in undirected graphs. We proposed a
simple strategy for computation, based on packing Steiner
trees and performing in-network computation along the Steiner
tree. We showed that for a wide class of functions, the
achievable strategy and the proposed outer bound are close
by showing an approximation factor which is the product of
A and a logarithmic in the number of nodes involved in the
computation.

For functions which have a large Ay, this strategy is clearly
not optimal. A large Ay implies that different links in the com-
putation tree use widely varying amounts of capacity. How-
ever, in our analysis and algorithms, we have only dealt with
unit capacity computation trees (Steiner trees) and therefore,
we take a performance hit. One possible research direction



is to model the varying amounts of information conveyed by
the different links in a computation tree. We can then design
new algorithms for packing Steiner trees, which have differing
capacity constraints on distinct links. In particular, we can
use certain sub-modularity properties and the structure of the
function in order to both design these algorithms and to obtain
tighter gaps between these polymatroidal Steiner packings and
generalized cut bounds.
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