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Classification of Homogeneous Data
with Large Alphabets

Benjamin G. Kelly†, Aaron B. Wagner†, Thitidej Tularak†, and Pramod Viswanath‡

Abstract

Given training sequences generated by two distinct, but unknown, distributions sharing a common alphabet,
we study the problem of determining whether a third test sequence was generated according to the first or second
distribution using only the training data. To better model sources such as natural language, for which the underlying
distributions are difficult to learn, we allow the alphabet size to grow and therefore the probability distributions to
change with the blocklength. Our primary focus is the situation in which the underlying probabilities are all of the
same order, and in this regime we give conditions on the alphabet growth rate and distributions guaranteeing the
existence of universally consistent tests, i.e. tests having a probability of error tending to zero with the blocklength
for any underlying distributions. We show that some commonly used statistical tests are universally consistent
provided the alphabet is sub-linear but these tests are inconsistent for linear growth rates. We then propose a
classifier that is universally consistent with up-to quadratic alphabet growth and that no classifier can handle the
case in which the alphabet grows quadratically or faster. If the tester is given the underlying distributions in place
of the training data, we prove that consistent testing is possible regardless of the growth of the underlying alphabet.
Our results are then used to illuminate the problem of classifying arbitrary (i.e. non-homogeneous) distributions
on growing alphabets.

I. INTRODUCTION

SUPPOSE we are given two training sequences X and Y, where X is known to be related to topic
one and Y known to be related to a different topic two. We are then given a third sequence Z and

we perform a binary classification (i.e. a hypothesis test), to decide whether Z is related to topic one or
topic two.

One model for this problem is to suppose that X = Xn
1 is a realization of a discrete memoryless

source (DMS) emitting symbols with some fixed, but unknown, distribution p on a finite alphabet A
(and similarly Y = Y n

1 is generated by a DMS with a different unknown distribution q). The problem is
then to decide whether Z = Zn

1 was generated by distribution p or distribution q, using only X and Y.
The classical information-theoretic approach is to let the blocklength, n, increase so that we see longer
realizations, and be satisfied by a classifier that performs well in the limit as n goes to infinity.

For certain scenarios this classical asymptotic is inappropriate. For example in natural language, if we
take words as our base symbols, then X and Y are strings containing n words each generated according
to p and q. Studies of English text [1] however, suggest that 1) as the blocklength grows, so does the
number of words we encounter, without bound; and 2) English text tends to comprise a large number
of words that occur Θ(1) times. Yet in the traditional asymptotic with a fixed and finite alphabet, the
law of large numbers (LLN) applies, implying that all words will eventually appear and the count of any
word will increase without bound. Notice that this observation precludes the use of the Zipf-Mandelbrot
distribution, often used to model (ranked) word frequencies, because as the blocklength tends to infinity,
a string generated according to this distribution would still be dominated by Θ(1) words appearing Θ(n)
times. The presence of a LLN is roughly equivalent to being able to “learn” the underlying distributions
from the data via the convergence of empirical distributions, and can itself be another reason to reject the
asymptotic if such an assumption is unrealistic for the application. Note that if we model language with
some fixed-order Markov chain, similar issues arise.
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A. Contributions
We investigate the classification problem in an alternative asymptotic, where the (discrete) alphabet

and underlying distributions generating the data can vary with n. To tackle the problem we formulate it
as a sequence of composite1 binary hypothesis testing problems and ask under what conditions on the
distributions pn, qn and alphabet An is it possible to have universally consistent tests, i.e. a sequence of
tests (one for each n) that asymptotically makes no error for any sequence of pairs of distributions on
An. Note that this problem is non-trivial because here, unlike in the classical asymptotic, the empirical
distributions of the test and training data need not converge to the underlying distributions.

Our primary focus is the case in which the underlying distributions belong to the class of α-large-
alphabet distributions, i.e. distributions whose underlying symbol probabilities are all order n−α and
alphabet size order is order nα (see Def. 1, Sect II for a precise definition). For these sources we provide
a simple test and prove that it is universally consistent when 0 ≤ α < 2. We also show that universally
consistent classification for these sources is impossible when α ≥ 2. We also prove that two commonly
used tests from classical statistics, the chi-squared test and generalized likelihood ratio test (GLRT), are
universally consistent for 0 ≤ α < 1, but both tests fail when α = 1.

Our study of α-large-alphabet sources offers insights into the hypothesis testing problem for inhomoge-
neous sources (i.e. non α-large-alphabet sources whose symbol probabilities are arbitrary) with growing
alphabets. Firstly, our results show that universally consistent tests for up-to sub-linear alphabet growth
exist. Secondly, our converse result implies that testing for arbitrary sources is not possible when the
underlying alphabet grows quadratically or faster. Finally, we illustrate that a key problem in classifying
inhomogeneous data concerns how to handle symbols whose probabilities are of different orders. The chi-
squared test and GLRT employ a kind of normalization, which attempts to put the differences between
the symbol counts in the data on the same scale. Yet, for α-large alphabet sources these differences are
naturally on the same scale and we show that this normalization can cause a systematic inconsistency.
Our new test relies solely on the unnormalized counts, and we show that for inhomogeneous data our test
is inconsistent precisely due to its lack of normalization.

We conclude by proving that when given an infinite amount of training data (i.e. the classifier exactly
knows the underlying distributions pn and qn) consistent testing is possible for any rate of alphabet growth;
we also provide an achievable error exponent for this problem.

B. Related Work
The case of hypothesis testing between fixed distributions on a finite alphabet has been well studied.

For this simple-versus-simple case, a fundamental result on the existence of optimum tests is due to
Neyman and Pearson, [2]; Chernoff [3], [4] also provides exponential error guarantees. For the simple-
versus-composite case, a key result concerning the problem of asymptotically optimum tests (in an error
exponent sense) is Hoeffding [5].

The composite-versus-composite case with fixed distributions on finite alphabets has also received
some attention. The problem of determining a test with a prescribed exponential error decay under one
hypothesis and that is uniformly most powerful under the other is considered by Gutman [6] (see also
Ziv [7]). Feder and Merhav [8] propose a “competitive minimax” approach, in which one minimizes the
worst case ratio between the probability of error of a universal test and the minimum probability of error
attainable when the distributions are known.

For the case of growing alphabets, the existence of tests for the simple-versus-composite problem is
studied by Barron [9], Paninski [10] and Ermakov [11]. The works [9], [10] also address the converse
problem of determining the the smallest growth rate beyond which (respectively) uniformly exponentially
consistent and consistent tests do not exist.

1Using the nomenclature from statistics, a hypothesis is simple if the distribution is fully known and otherwise we say the hypothesis is
composite.
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An alternate line of investigation into the simple-versus-composite case with growing alphabets studied
the Pitman and Bahadur efficiencies of the likelihood and chi-square tests [12], [13]. Moderate and large
deviation results for these statistics in the same regime are also available [14]. In [15, Ch.4 §3] Read and
Cressie study the power divergence family with growing alphabets, which includes the chi-square and
likelihood tests as members; the Bahadur efficiency of this family with growing alphabets is investigated
in [16].

The composite-versus-composite case with growing alphabets is addressed in limited form by Wagner
et al. [17], who develop a probability estimator for the “rare-events” regime where underlying probabilities
are all order Θ(n−1) and therefore alphabet size is order Θ(n). Other practical approaches may also be
taken, see for example Orlitsky-Santhanam-Zhang (OSZ) [18], [19], support vector machines [20], and
techniques from pattern recognition and machine learning [21].

C. Outline
The remainder of the paper is organized as follows. In Section II we give definitions and formally state

the problem. Section III includes our main results on hypothesis testing for α-large-alphabet sources; we
state our test, study its performance, and derive a converse result on the maximum permissible growth rate
of the alphabet. In Section IV we study the performance of the GLRT and chi-squared test for α-large-
alphabet sources. Section V studies the hypothesis testing when the tester is given an “infinite” amount
of training data (i.e. given access to the underlying distributions). Section VI concludes with discussion
on the problem of classifying inhomogeneous sources and gives some suggestions for extensions. Proofs
of ancillary technical results are deferred to the appendices.

II. DEFINITIONS AND PROBLEM STATEMENT

Sets are usually denoted using calligraphic letters, e.g. A = {a1, . . . , a|A|}. The set A×n is the n-fold
cartesian product of A. Strings are denoted in bold face, e.g. x = x1 · · ·xn (usually the blocklength is
clear from the context). 1{A} is the indicator function for event A and

N(a|x) =
n∑
i=1

1{xi = a}.

We use Λx to denote the empirical distribution or type of string x, i.e.

Λx = n−1
[
N(a1|x) · · ·N(a|A||x)

]
.

The set of all discrete distributions on alphabet A is denoted P(A). The set of all sequences of length
n with type Q is denoted T nQ (again we usually omit n since it is clear from the context). The set of all
type variables Q ∈ P(A), i.e. those for which T nQ 6= ∅, is denoted Pn(A). For other information theoretic
notations we use the standard definitions, see e.g. [22]. If p is a distribution on A then pn is the n-fold
i.i.d. product measure on A×n, i.e.

pn(x) =
n∏
i=1

p(xi).

For triangular arrays, Xn,m, 1 ≤ m ≤ n, n ≥ 1, the notation Xn refers to the rows of the array, i.e.
Xn = Xn,1, . . . , Xn,n. We use ‖ · ‖p to denote the pth Euclidean norm and 〈·〉 to denote the standard inner
product.

For any distribution p on a finite set A, supp(p) denotes its support and we define

p̌ = min
a∈(A∩supp(p))

p(a) and p̂ = max
a∈A

p(a).

Our primary focus in the paper will be the following class of distributions.
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Definition 1. The sequence {pn, qn,An} is an α-large-alphabet source pair if for all n

č

nα
≤ min(p̌n, q̌n) ≤ max(p̂n, q̂n) ≤ ĉ

nα
, (1)

where č and ĉ are positive constants independent of n; and where

An = A′n ∪ Xn ∪ Yn
with

A′n = supp(pn) ∩ supp(qn)

Xn = supp(pn) ∩ {a : qn(a) = 0}
and Yn = supp(qn) ∩ {a : pn(a) = 0}.

Note that for any α-large-alphabet source, |An| = Θ(nα). This can easily be seen since

1 ≥
∑
a∈A′

n

pn(a) ≥ |A′n|
č

nα
and 1 ≤ |An|

ĉ

nα

which along with 1 ≥ |Xn| čnα and 1 ≥ |Yn| čnα implies

3nα

č
≥ |An| ≥

nα

ĉ
.

Such distributions may arise from sampling a probability density. For example, suppose f(x) is (almost
everywhere) continuous on [0, 1] satisfying

∫
f(x)dx = 1 and č ≤ f(x) ≤ ĉ. If X is a random variable

with density f and we define pn as the distribution of dnαXe, then the sequence {pn} is α-large-alphabet
with alphabet {1, . . . , nα}. As we will see later studying this class sheds light on the general classification
problem.

A. Problem Statement
For each n, let Xn,m, 1 ≤ m ≤ n be i.i.d. random variables with distribution pn and similarly let Yn,m,

1 ≤ m ≤ n be i.i.d. with distribution qn. We assume that pn and qn are unknown distributions with a
common finite alphabet An. We also assume that pn and qn satisfy

lim inf
n→∞

‖pn − qn‖1 = lim inf
n→∞

∑
a∈An

|pn(a)− qn(a)| > 0. (2)

For each n we observe independent realizations Xn and Y n, the nth rows of the corresponding triangular
arrays. Given a third independent row Zn,m, 1 ≤ m ≤ n generated i.i.d, we wish to test which of hypotheses

H0 : Zn ∼ pnn for all n,
or H1 : Zn ∼ qnn for all n

is in effect. One may think of Xn and Y n as being training data and the problem is to determine whether
Zn came from the unknown distribution pn or qn. We refer to this problem as the triangular array
hypothesis testing problem.

Let Pn = pnn × qnn × pnn and Qn = pnn × qnn × qnn . We will be concerned with the following asymptotic
properties of tests.

Definition 2 (α-Universal Consistency). For a given sequence of alphabets {An}∞n=1 with |An| = Θ(nα),
we say a sequence of tests Tn : A×nn × A×nn × A×nn → {0, 1} is α-universally consistent if for every
sequence {pn, qn} on {An} satisfying (1) and (2),

Pn(Tn(Xn, Y n, Zn) = 0)→ 1

and Qn(Tn(Xn, Y n, Zn) = 1)→ 1 as n→∞.
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Definition 3 (Universal Consistency). For a given sequence of alphabets {An}∞n=1 we say a sequence
of tests Tn : A×nn × A×nn × A×nn → {0, 1} is universally consistent if for every sequence of distributions
{pn, qn} on {An} satisfying condition (2),

Pn(Tn(Xn, Y n, Zn) = 0)→ 1

and Qn(Tn(Xn, Y n, Zn) = 1)→ 1 as n→∞.

Note: Implicit in both definitions of universal consistency is that the classifier knows the underlying
alphabet, however the classifiers considered in this work do not require knowledge of the symbols that
do not appear in the training data. When proving impossibility results, however, we assume the classifier
knows the alphabet.

III. TESTING OF α-LARGE-ALPHABET SOURCES

A. Achievability
In this subsection we show that α-large-alphabet sources can be handled with a simple test based on

Euclidean geometric considerations. Loosely speaking, the idea is that under hypothesis H0, ΛZn should
be “closer” to ΛXn than it is to ΛY n , despite the fact that ‖ΛXn − pn‖1 need not tend to zero when |An|
grows linearly or faster [23].

Theorem 1. If 0 ≤ α < 2 then the test

‖ΛZn − ΛXn‖2
2

H0

≶
H1

‖ΛZn − ΛY n‖2
2 (3)

is α-universally consistent.

To prove the result we need the following lemmas. Throughout we define

F = F (Xn, Y n, Zn) = ‖ΛZn − ΛXn‖2
2 − ‖ΛZn − ΛY n‖2

2.

Lemma 1.

E0[F ] =
∑
a∈An

−(pn(a)− qn(a))2 + n−1(q2
n(a)− p2

n(a))

and E1[F ] =
∑
a∈An

(pn(a)− qn(a))2 + n−1(q2
n(a)− p2

n(a))

Proof: Using Ei to denote expectation under Hi, we now compute

Ei[F (Xn, Y n, Zn)] = Ei[‖ΛXn‖2
2 − ‖ΛY n‖2

2 − 2〈ΛZn ,ΛXn − ΛY n〉].

We start with the two-norm of the type

Ei
[
‖ΛXn‖2

2

]
= n−2

∑
a∈An

Ei
[
N2(a|Xn)

]
.

Since N(a|Xn) is a binomial random variable with parameters (n, pn(a)),

Ei
[
‖ΛXn‖2

2

]
= n−2

∑
a∈An

npn(a)(1− pn(a)) + n2p2
n(a)

= n−1 +
∑
a∈An

p2
n(a)− n−1p2

n(a)
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Similarly

Ei
[
‖ΛY n‖2

2

]
= n−1 +

∑
a∈An

q2
n(a)− n−1q2

n(a).

For the final term

Ei
[
〈ΛZn , (ΛXn − ΛY n)〉

]
= n−2

∑
a∈An

Ei
[
N(a|Zn)(N(a|Xn)−N(a|Y n))

]
= n−1

∑
a∈An

Ei
[
N(a|Zn)](pn(a)− qn(a)).

Under hypothesis H0, the previous line is∑
a∈An

pn(a)2 − pn(a)qn(a)

and under hypothesis H1 is ∑
a∈An

−qn(a)2 + pn(a)qn(a).

Therefore

E0[F ] =
∑
a∈An

p2
n(a)− n−1p2

n(a)− q2
n(a) + n−1q2

n(a)− n−1p2
n(a) + 2pn(a)qn(a)

=
∑
a∈An

−(pn(a)− qn(a))2 + n−1(q2
n(a)− p2

n(a)),

and similarly

E1[F ] =
∑
a∈An

(pn(a)− qn(a))2 + n−1(q2
n(a)− p2

n(a)).

Lemma 2. For all 0 < α < 2 and for i = 0, 1

Vari[n
αF ]→ 0

Proof: Follows from direct calculation using binomial moments. See Appendix A for details.

Lemma 3. For any α-large-alphabet source pair {pn, qn,An}

č/3‖pn − qn‖2
1 ≤ nα‖pn − qn‖2

2

Proof: The result follows from the Cauchy-Schwarz inequality and the bound |An| ≤ 3nα

č
.

We are now in a position to prove achievability.
Proof of Theorem 1: Case 1 : 0 < α < 2. Notice that the test nαF ≶ 0 makes the same decision

as the test in the statement of the theorem. When hypothesis H1 is in effect (a subscript on operators
denotes this) Lemma 1 tells us

E1[F ] =
∑
a∈An

(pn(a)− qn(a))2 + n−1(q2
n(a)− p2

n(a)),



7

where both
∑
Xn p

2
n(a) and

∑
Yn q

2
n(a) are O(n−α). Therefore by Lemma 3 we have

lim inf
n→∞

E1[nαF ] = lim inf
n→∞

nα
∑
a∈An

(pn(a)− qn(a))2

≥ lim inf
n→∞

č

3
‖pn − qn‖2

1,

which is strictly positive by hypothesis. Invoking Lemma 2

Var1(nαF )→ 0

and the result follows from Chebyshev’s inequality2. The hypothesis H0 is handled analogously.
Case 2: α = 0. For this case we take square root of both sides of (3) so that we are working with

norms. Now the result may be be proved using the weak law of large numbers (see for example Lemma
10 in Section IV). Suppose hypothesis H0 is in effect. The lefthand side of (3) is

‖ΛXn − ΛZn‖2 ≤ ‖ΛXn − pn‖2 + ‖ΛZn − pn‖2

and both terms on the right of the previous display tend to zero in probability. For the righthand side,
note that by the reverse triangle inequality∣∣∣‖ΛY n − ΛZn‖2 − ‖pn − qn‖2

∣∣∣ ≤ ‖ΛY n − qn‖2 + ‖ΛZn − pn‖2

and so for n large enough ‖ΛY n − ΛZn‖2 is as close to ‖pn − qn‖2 as we desire. Finally note that the
hypothesis lim infn→∞ ‖pn − qn‖1 > 0 implies lim infn→∞ ‖pn − qn‖2 > 0 if the alphabet is not growing
with n.

B. Converse
We next show that the result in Theorem 1 cannot be improved.

Theorem 2 (Converse). If α ≥ 2, then there are alphabets with growth rate Θ(nα) for which there are
no α-universally consistent tests.

To prove the result we need the following additional machinery.

Definition 4 (Testing Affinity). Suppose P and Q are probability measures on some space X dominated
by λ with densities f and g. Let the density f ∧ g define the (sub-probability) measure P ∧Q, i.e.

(P ∧Q)(A) =

∫
A

(f ∧ g)dλ.

with f ∧ g denoting the pointwise minimum of f and g.

Note that 2(a ∧ b) = a+ b− |a− b|, and so we may also write

‖P ∧Q‖1 = 1− 1

2
‖P −Q‖1. (4)

Following Le Cam [24, Ch.16 §4] we associate with a hypothesis H0 (resp. H1) a set of measures, say
A (resp. B). Let 0 ≤ φ ≤ 1 be a randomized test function, i.e. a function which gives the probability of
accepting hypothesis H0. For a given φ and sets of measures A and B we define the worst case “average”
error probability as follows

R(A,B, φ) = sup
P∈A,Q∈B

[ ∫
(1− φ)dP +

∫
φdQ

]
,

2Sharper concentration results can be obtained using martingale techniques; see Theorem 9 in the Appendix for one such result.
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and define the minimax error probability (or risk) as

R(A,B) = inf
φ
R(A,B, φ)

i.e. R(A,B) is the best universally achievable risk. We recall the following result.

Lemma 4. [Kraft [24, Ch.16 §4, Lem. 1]]

R(A,B) = sup
P∈conv(A),Q∈conv(B)

‖P ∧Q‖

where conv(A) denote the convex hull of the set A.

Equality (4) and Lemma 4 allow us to express minimax risk in terms of L1 distances between convex
hulls. We will also need the following result.

Lemma 5. For any pair of probability measures P and Q, both dominated by a probability measure λ,

‖P −Q‖2
1 ≤

∫ (dP
dλ
− dQ

dλ

)2

dλ.

Proof: Applying the Cauchy-Schwarz inequality gives

‖P −Q‖1 =

∫ ∣∣∣dP
dλ
− dQ

dλ

∣∣∣dλ
≤

√∫
dλ

∫ (dP
dλ
− dQ

dλ

)2

dλ

=

√∫ (dP
dλ
− dQ

dλ

)2

dλ.

We now use these facts to establish a converse result. We first give a lower bound on the risk for a
suitably chosen hypothesis testing problem on the sequence of alphabets An = {1, . . . , dnαe2}, where
d·e2 denotes rounding up to the next even integer. Define sets

Cn,α,ε,č,ĉ = {(pn, qn) ∈ P(A×2
n ) : ‖pn − qn‖1 ≥ ε, čn−α ≤ min(p̌n, q̌n) ≤ max(p̂n, q̂n) ≤ ĉn−α

∀a ∈ An : max(pn(a), qn(a)) > 0},
An,α,ε,č,ĉ = {pnn × qnn × pnn : (pn, qn) ∈ Cn,α,ε,č,ĉ},

and Bn,α,ε,č,ĉ = {pnn × qnn × qnn : (pn, qn) ∈ Cn,α,ε,č,ĉ}.

Observe that for any choice of ε > 0 and constants č, ĉ any sequence of pairs distributions {pn, qn} with
the nth chosen from Cn,α,ε,č,ĉ is by definition α-large alphabet and moreover

lim inf
n→∞

‖pn − qn‖1 ≥ ε.

The following upper bound on the L1 distance between the convex hulls of the sets for this testing
problem combined with (4) give the aforementioned lower bound on the risk. The proof of the bound is
similar in spirit to that of [10, Th. 4], which in turn borrows ideas from [25], using a so-called “mixture
measure” to construct bad convex combinations. In our proof we apply the mixture measure idea to
address the composite-versus-composite problem studied here.

Lemma 6. Let 0 < ε < 1. For 0 < č ≤ 1−ε
3

< 1 + ε ≤ ĉ there exists Pn ∈ conv(An,α,ε,č,ĉ) and
Qn ∈ conv(Bn,α,ε,č,ĉ) so that

‖Qn − Pn‖1 ≤
√

2 exp
(n2ε4

2nα

)
.
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Proof: Define m = dnαe2. Let un be the uniform distribution on {1, . . . ,m}. Let Π = {−1, 1}×(m/2)

i.e. the set of all {−1, 1} vectors of length m/2. For any π ∈ Π let

ν(i, π) =

{
πi/2 i even
−π(i+1)/2 i odd,

and define the distribution qn,π as

qn,π(i) = (1 + εν(i, π))m−1 for i ∈ {1, . . . ,m}.

We note that

‖qn,π − un‖1 = ε for all π. (5)

Also since for all positive real x
x ≤ dxe2 ≤ x+ 2,

one has
1

3
≤ nα

m
≤ 1. (6)

Define measures
Pn,π = unn × qnn,π × unn and Qn,π = qnn,π × unn × unn

and observe that (5), and (6) combined with
1− ε
m
≤ min(ǔn, q̌n,π) ≤ max(ûn, q̂n,π) ≤ 1 + ε

m
imply that Pn,π ∈ An,α,ε,č,ĉ and Qn,π ∈ Bn,α,ε,č,ĉ for the ε, č and ĉ of the theorem. Let µ denote the uniform
distribution on the set Π and define mixtures

Pn =
∑
π∈Π

Pn,πµ(π) and Qn =
∑
π∈Π

Qn,πµ(π).

Note that Pn ∈ conv(An,α,ε,č,ĉ) and Qn ∈ conv(Bn,α,ε,č,ĉ) and further

Pn(x,y, z) = m−2n
∑
π∈Π

µ(π)qnn,π(y)

and
Qn(x,y, z) = m−2n

∑
π∈Π

µ(π)qnn,π(x).

We will now show that the stated L1 bound holds for this choice of Pn and Qn.
Taking λ = unn × unn × unn and invoking Lemma 5 we have

‖Pn −Qn‖2
1 ≤

∑
x,y,z

(Pn(x,y, z)−Qn(x,y, z)

λ(x,y, z)

)2

λ(x,y, z)

= Eλ

[(Pn(Xn, Y n, Zn)−Qn(Xn, Y n, Zn)

λ(Xn, Y n, Zn)

)2]
= Eλ

[(m−2n
∑

π∈Π µ(π)qnn,π(Y n)−m−2n
∑

π∈Π µ(π)qnn,π(Xn)

m−3n

)2]
= m2nEλ

[(∑
π∈Π

µ(π)qnn,π(Y n)−
∑
π∈Π

µ(π)qnn,π(Xn)
)2
]

≤ m2nEλ

[(∑
π∈Π

µ(π)qnn,π(Y n)
)2
]

+m2nEλ

[(∑
π∈Π

µ(π)qnn,π(Xn)
)2
]
.
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Noting that under λ, Y n and Xn have the same distribution and then expanding the square, we see that

‖Pn −Qn‖2
1 ≤ 2m2n

∑
π∈Π

∑
γ∈Π

µ(π)µ(γ)Eλ

[
qnn,π(Y n)qnn,γ(Y

n)

]

= 2m2n
∑
π∈Π

∑
γ∈Π

µ(π)µ(γ)Eλ

[
n∏
i=1

qn,π(Yi)qn,γ(Yi)

]
= 2m2n

∑
π∈Π

∑
γ∈Π

µ(π)µ(γ)
(
Eun [qn,π(Yi)qn,γ(Yi)]

)n
, (7)

where on the previous line we used the fact under λ the Yi are i.i.d. uniform random variables. Focusing
on the expectation alone

Eun [qn,π(Yi)qn,γ(Yi)] =
∑
i

un(i)(1 + εν(i, π))m−1(1 + εν(i, γ))m−1

= m−3
∑
i

1 + ε[ν(i, π) + ν(i, γ)] + ε2ν(i, π)ν(i, γ)

= m−3
∑
i

1 + ε2ν(i, π)ν(i, γ)

= m−2 +m−3ε2
∑
i even

πi/2γi/2 +
∑
i odd

π(i+1)/2γ(i+1)/2

= m−2 + 2m−3ε2
m/2∑
i=1

φ(πi, γi)

where φ(πi, γi) = 1 when πi = γi and φ(πi, γi) = −1 otherwise. Applying this calculation to (7) yields

‖Pn −Qn‖2
1 ≤ 2m2n

∑
π∈Π

∑
γ∈Π

µ(π)µ(γ)
(
m−2 + 2m−3ε2

m/2∑
i=1

φ(πi, γi)
)n

= 2
∑
π∈Π

∑
γ∈Π

µ(π)µ(γ)
(

1 + 2m−1ε2
m/2∑
i=1

φ(πi, γi)
)n

≤ 2
∑
π∈Π

∑
γ∈Π

µ(π)µ(γ) exp
(2nε2

m

m/2∑
i=1

φ(πi, γi)
)

where we used the inequality log(1 + x) ≤ x. Recalling that µ is uniform over {−1, 1}×(m/2) we may
write

‖Pn −Qn‖2
1 ≤ 2Eπ,γ

[
exp

(2nε2

m

m/2∑
i=1

φ(πi, γi)
)]

= 2
(1

2
exp

(
− 2nε2

m

)
+

1

2
exp

(2nε2

m

))m/2
.

Applying the inequality
1

2
(exp(u) + exp(−u)) ≤ exp

(u2

2

)
,

which follows from Hoeffding’s Lemma (or by simply comparing the series expansions), gives

‖Pn −Qn‖2
1 ≤ 2 exp

(2n2ε4

m2

)m/2
= 2 exp

(n2ε4

m

)
,
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i.e.
‖Pn −Qn‖1 ≤

√
2 exp

(n2ε4

2m

)
≤
√

2 exp
(n2ε4

2nα

)
.

We are now in a position to prove Theorem 2. Roughly the argument is as follows. Recall that the setup
of Lemma 6 provides the tester with ε, the minimum L1 distance between distributions and constants č, ĉ.
But even for this “easier” problem, there is some choice of č, ĉ, ε and distributions Pn ∈ conv(An,ε,č,ĉ)
and Qn ∈ conv(Bn,ε,č,ĉ) so that when α ≥ 2

lim sup
n→∞

‖Pn −Qn‖1 < 2

implying that no α-universally consistent test is exists.

Theorem (2). If α ≥ 2, then there are alphabets with growth rate Θ(nα) for which there are no α-
universally consistent tests.

Proof: Let α ≥ 2, An = {1, . . . , dnαe2} and suppose by way of contradiction that there exists {Tn},
a universally consistent test for the α-large-alphabet hypothesis testing problem having alphabet An. Now
fix 0 < ε < 1, 0 < č ≤ 1−ε

3
< 1 + ε ≤ ĉ and choose (pn, qn) ∈ Cn,α,ε,č,ĉ so that

pnn × qnn × pnn(Tn = 1) ≥ 1

2
sup

p̃n,q̃n∈Cn,α,ε,č,ĉ
p̃nn × q̃nn × p̃nn(Tn = 1).

Since {Tn} is α-universally consistent we have that

pnn × qnn × pnn(Tn = 1)→ 0

which in turn implies that

sup
p̃n,q̃n∈Cn,α,ε,č,ĉ

p̃nn × q̃nn × p̃nn(Tn = 1)→ 0. (8)

We now choose (rn, sn) ∈ Cn,α,ε,č,ĉ so that

rnn × snn × snn(Tn = 0) ≥ 1

2
sup

r̃n,s̃n∈Cn,α,ε,č,ĉ
r̃nn × s̃nn × s̃nn(Tn = 0),

and therefore again by universality we must have

sup
r̃n,s̃n∈Cn,α,ε,č,ĉ

r̃nn × s̃nn × s̃nn(Tn = 0)→ 0. (9)

Thus the existence of a α-universal test implies that

sup
Pn∈An,α,ε,č,ĉ

Pn(Tn = 1)→ 0

and
sup

Qn∈Bn,α,ε,č,ĉ
Qn(Tn = 0)→ 0

and therefore
sup

Pn∈An,α,ε,č,ĉ
Qn∈Bn,α,ε,č,ĉ

Pn(Tn = 1) +Qn(Tn = 0)→ 0.
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But

sup
Pn∈An,α,ε,č,ĉ
Qn∈Bn,α,ε,č,ĉ

Pn(Tn = 1) +Qn(Tn = 0) ≥ inf
T̃n

sup
Pn∈An,α,ε,č,ĉ
Qn∈Bn,α,ε,č,ĉ

Pn(T̃n = 1) +Qn(T̃n = 0) (10)

= R(An,α,ε,č,ĉ,Bn,α,ε,č,ĉ)

≥ 1−
√

2

2
exp

(n2ε4

2nα

)
(11)

where in (10) the infimum is over all (randomized) tests and where (11) follows from Lemma 6 and (4).
Note when α > 2 the exponential term goes to 1 as n → ∞ and 1−

√
2/2 is strictly greater than zero.

When α = 2 taking ε = (1/2 log 2)1/4 > 0 gives 1− 2−1/4 > 0. Thus for any α ≥ 2, choosing this ε and
taking limits we obtain the inequality

0 = lim
n→∞

sup
Pn∈An,α,ε,č,ĉ
Qn∈Bn,α,ε,č,ĉ

Pn(Tn = 1) +Qn(Tn = 0)

≥ lim
n→∞

1−
√

2

2
exp

(n2ε4

2nα

)
> 0

a contradiction, and thus no such α-universal test {Tn} exists.
Although we used a particular choice {An} to prove the converse, a slight modification of Theorem

2 goes through for any {An} with |An| = Θ(nα). Thus we can in fact state the following more general
theorem.

Theorem 3. Let {An} by any sequence of alphabets with |An| = Θ(nα). Then there are no α-universal
consistent tests for any α ≥ 2.

IV. GENERALIZED LIKELIHOOD RATIO AND CHI-SQUARED TESTS

In this section we study the performance of two commonly used statistical tests: the generalized
likelihood ratio and chi-squared tests. We show that both tests are α-universally consistent with sub-
linear alphabet growth and that both tests are inconsistent with linear alphabet growth. Note that for
both tests we actually prove universal consistency as opposed to merely α-universal consistency for up-to
sub-linear alphabet growth, we return to this point in the conclusion.

A. GLRT and its Consistency
The GLRT is derived from the maximum likelihood method, which compares the likelihood functions

evaluated with the most likely distribution in the hypothesis sets H0 and H1. This gives

max
pn,qn∈P(An)

pnn(Xn)qnn(Y n)pnn(Zn)
H0

≷
H1

max
pn,qn∈P(An)

pnn(Xn)qnn(Y n)qnn(Zn),

where the maximizations are over arbitrary distributions on the alphabet An. (Recall that the constants
č, ĉ defining the α-large-alphabet sequence are unknown by the tester and the L1 constraint is asymptotic
in nature any so any pn and qn are feasible.)

The following Lemma allows us to rewrite the GLRT in terms of Kullback-Leibler divergences.

Lemma 7. For any three probability distributions x, y and z on a common alphabet A

min
p,q∈P(A)

D(x||p) +D(y||q) +D(z||p) = D(x||p̂) +D(z||p̂),

where
p̂ = (x+ z)/2.
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Proof: Choosing q = y yields D(y||q) = 0. For the optimal p, the result follows from the parallelo-
gram identity [22, Ex 1.3.19],

D(x||p) +D(z||p) = D(x||(x+ z)/2) +D(z||(x+ z)/2)

+ 2D((x+ z)/2||p).

Using this Lemma combined with the well-known identity [22, Ch 1, Lemma 2.6]

pn(x) = exp(−n[D(Λx||p) +H(Λx)]) (12)

we see that the GLRT test is equivalent to

D(ΛXn||p̂n) +D(ΛZn||p̂n)
H1

≷
H0

D(ΛY n||q̂n) +D(ΛZn||q̂n), (13)

where p̂n = (ΛXn + ΛZn)/2 and q̂n = (ΛY n + ΛZn)/2. Later it we will find the following useful. Define
the functional

G(p, q,M) =
∑
a∈M

p(a) log
( 2p(a)

p(a) + q(a)

)
+ q(a) log

( 2q(a)

p(a) + q(a)

)
and notice we may equivalently write the GLRT (13) as

G(ΛXn ,ΛZn ,An)
H1

≷
H0

G(ΛY n ,ΛZn ,An).

We will also make use of the following result.

Lemma 8. Suppose p and q are distributions on an alphabet A, then

G(p, q,A) =
∑
a∈A

∑
i:even

1

i(i− 1)

(q(a)− p(a))i

(p(a) + q(a))i−1
.

Further,

p(a) log
2p(a)

p(a) + q(a)
+ q(a) log

2q(a)

p(a) + q(a)
≥ 0.

It turns out the growth-rate of the alphabet is of critical interest for proving consistency of the statistical
tests. The following result allows us to prove a “weak law” for empirical distributions (to be used later)
and Theorem 4, the consistency of the GLRT for sub-linear alphabet growth.

Lemma 9. If |An| = o(n) then3

n−1 log |Pn| → 0 as n→∞.

Proof: See [9, Lem. 1]

Lemma 10 (Empirical Weak Law). Let Xn,m, 1 ≤ m ≤ n be i.i.d. with distribution pn on alphabet An.
If |An| = o(n) then for any ε > 0

pnn(D(ΛXn||pn) > ε) ≤ e−n(ε−δn),

where δn(|An|)→ 0 as n→∞.

The final components of our proof of consistency of the GLRT (and chi-squared tests) are the following
concentration results, which we include here for completeness.

3The sequence an has the property an = o(bn) iff lim an
bn

= 0.
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Definition 5. A function g : An → R has the bounded differences property if for some non-negative
constants c1, . . . , cn,

sup
x1,...,xn,x′i∈A

|g(x1, . . . , xn)− g(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci, for 1 ≤ i ≤ n. (14)

Lemma 11 (Efron-Stein Inequality [26], [27]). Let A be any set and let gn : An → R be a function of
n variables. Define Z = g(X1, . . . , Xn), where X1, . . . , Xn are arbitrary independent random variables
taking values in A. Let X ′1, . . . , X

′
n be independent copies of X1, . . . , Xn and define

Z ′i = g(X1, . . . , X
′
i, . . . , Xn)

then

Var(Z) ≤ 1

2

n∑
i=1

E[(Z − Z ′i)2].

Corollary 1. Suppose g satisfies the hypothesis of Lemma 11 and has bounded differences with constant
c. Then

Var(Z) ≤ nc2

2
.

To establish consistency of the GLRT we also need

Lemma 12. The quantity
D(Λx||(Λx + Λz)/2)

viewed as a real-valued function of the vector (x, z) = (x1, . . . , xn, z1, . . . , zn) satisfies the bounded
differences property with the single constant

2

n
(1 + log 2 + log(1 + n)).

Proof: See Appendix B.

Theorem 4. If |An| = o(n) then the GLRT (13) is universally consistent.

Proof: Suppose hypothesis H0 is in effect. Define the set

Dεn = {(x, z) : G(Λx,Λz) > ε}.

By definition

Pn((Xn, Zn) ∈ Dεn) =
∑

(x,z)∈Dεn

pnn(x)pnn(z)

=
∑

QX∈Pn(An)

QZ∈Pn(An):

G(QX ,QZ)>ε

∑
x∈T (QX)

z∈T (QZ)

pnn(x)pnn(z).

Using identity (12) and the bound [22, Ch 1, Lemma 2.5]

|T (QX)| ≤ exp(nH(QX)),

it follows that ∑
x∈T (QX)

∑
z∈T (QZ)

pnn(x)pnn(z)

≤ exp(−n[D(QX ||pn) +D(QZ ||pn)]).
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Further, as in the proof of Lemma 7 we have for all distributions QX , QZ , pn

D(QX ||pn) +D(QZ ||pn) ≥ G(QX , QZ)

and therefore

Pn((Xn, Zn) ∈ Dεn) ≤ |{P(An)}|2e−nε.

By way of Lemma 9 and the hypothesis, this implies that for all ε > 0

Pn(D(ΛXn||p̂n) +D(ΛZn||p̂n) > ε)→ 0 as n→∞.

It remains to show that for some δ > 0

lim
n→∞

Pn(D(ΛY n||q̂n) +D(ΛZn||q̂n) > δ) = 1. (15)

Chebyshev’s inequality tells us for any δ > 0

Pn(|D(ΛY n||q̂n)− E[D(ΛY n||q̂n)]| > δ)

≤ Var(D(ΛY n||q̂n))

δ2
.

The bounded differences property (Lemma 12) and the Efron-Stein inequality (Lemma 11) imply that
this variance goes to zero. Thus it follows with probability tending to one, D(ΛY n||q̂n) + D(ΛZn||q̂n)
‘concentrates’ around E[D(ΛY n||q̂n)] + E[D(ΛZn||q̂n)]. Recalling D(p||q) is convex in the pair (p, q), by
Jensen’s inequality

E[D(ΛY n||q̂n)] + E[D(ΛZn||q̂n)]

≥ D(E[ΛY n ]||E[q̂n]) +D(E[ΛZn ]||E[q̂n])

= D(qn||(pn + qn)/2) +D(pn||(pn + qn)/2),

and from (2) and Pinsker’s inequality [22, Ex 1.3.17]

lim inf
n→∞

D(pn||(pn + qn)/2) +D(qn||(pn + qn)/2)

≥ lim inf
n→∞

1

4 log 2

( ∑
a∈An

|pn(a)− qn(a)|

)2

> 0.

Thus for n sufficiently large D(ΛY n||q̂n) + D(ΛZn||q̂n) concentrates around a strictly positive quantity,
which is enough to establish (15). Under hypothesis H1 the proof is similar.

We now show that when the alphabet growth is linear, i.e. α = 1, the GLRT is not α-universally
consistent. We do this by means of a particular counterexample which we will refer to throughout the
remainder of the paper.

We first need the following technical result.

Lemma 13. Let {pn, qn} be a sequence of pairs of distributions and denote by µ2
n(x, y) the shadow (see

[17]), i.e. the distribution of the random vector
(
npn(Xn), nqn(Xn)

)
when Xn ∼ pn. If µ2

n(x, y) converges
weakly to µ2(x, y), then under hypothesis H0 (i.e. Zn ∼ pnn)

E[D(ΛZn||p̂n)]→
∫ [ ∞∑

j=1

exp(−x)xj−1

(j − 1)!
log(2j)

−
∞∑
j=1

∞∑
k=0

exp(−x)xj−1

(j − 1)!

exp(−x)xk

k!
log(j + k)

]
dµ2(x, y)
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and

E[D(ΛZn||q̂n)]→
∫ [ ∞∑

j=1

exp(−x)xj−1

(j − 1)!
log(2j)

−
∞∑
j=1

∞∑
k=0

exp(−x)xj−1

(j − 1)!

exp(−y)yk

k!
log(j + k)

]
dµ2(x, y).

Proof: See Appendix B.

Theorem 5. There exists a sequence of alphabets having linear growth for which the GLRT (13) is not
α-universally consistent.

Proof: We let An = {1, . . . , 9n} and will show there exists a pair of α = 1 sources for which the
GLRT fails. Define distributions

pn(a) =

{
1

2n
if a ∈ {1, . . . , n}

1
16n

if a ∈ {n+ 1, . . . , 9n}

and qn(a) =


5

4n
if a ∈ {1, . . . , n/2}

1
4n

if a ∈ {n/2 + 1, . . . , n}
1

32n
if a ∈ {n+ 1, . . . , 9n}.

Using Lemma 13, and numerically evaluating the resulting integrals, we see that under hypothesis H0,

lim
n→∞

E[D(ΛXn||p̂n) +D(ΛZn||p̂n)] = 1.085

lim
n→∞

E[D(ΛY n||q̂n) +D(ΛZn||q̂n)] = 1.026

whereas under hypothesis H1,

lim
n→∞

E[D(ΛXn||p̂n) +D(ΛZn||p̂n)] = 1.026

lim
n→∞

E[D(ΛY n||q̂n) +D(ΛZn||q̂n)] = 0.773.

From the Efron-Stein inequality and bounded differences property (Lemma 12), the random variables
concentrate around their respective means, which by the previous calculation are converging to the values
above. It follows that under hypothesis H0, the test incorrectly declares H1. This is illustrated in section
IV-D.

Another well-known statistical procedure is chi-squared testing and we turn to that next.

B. Chi-Squared Test and its Consistency
For any distributions p and q on alphabet A, and any M⊆ A introduce the functional4

χ2(p, q,M) =
∑
a∈M

(p(a)− q(a))2

p(a) + q(a)
.

We will usually write χ2(p, q) when the set M is taken for the full alphabet A. Following [29, Ch 17,
Ex. 3], one can apply the following chi-squared procedure to the present problem∑

a∈An

(ΛXn(a)− p̂n(a))2

p̂n(a)
+

(ΛZn(a)− p̂n(a))2

p̂n(a)

H1

≷
H0

∑
a∈An

(ΛY n(a)− q̂n(a))2

q̂n(a)
+

(ΛZn(a)− q̂n(a))2

q̂n(a)
.

4For M = A this functional is sometimes called the triangular discrimination, see [28].
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After some manipulation, this yields

χ2(ΛXn ,ΛZn)
H1

≷
H0

χ2(ΛY n ,ΛZn), (16)

which we will refer to as the chi-squared test (see also [24, Ch.4 §2]).
As with the GLRT, the chi-squared test is consistent with sublinear alphabet growth, in particular for

0 ≤ α < 1. The proof is similar to that of the GLRT, and so only outline the argument.

Theorem 6. Suppose |An| = o(n), then the chi-squared test (16) is universally consistent.

Proof: Suppose hypothesis H0 is in effect, i.e. Xn, Y n, Zn ∼ Pn. We will show the left side tends to
zero in probability, while the other goes to something positive. For brevity we omit writing the alphabet
argument in χ2. Let ε > 0. By Lemma taking the first term of the expansion from Lemma 8 we have that

D(ΛXn||p̂n) +D(ΛZn||p̂n) ≥ 1

2
χ2(ΛXn ,ΛZn)

therefore the event {D(ΛXn||p̂n) +D(ΛZn||p̂n) < ε/2} implies χ2(p, q) < ε. Thus

Pn(χ2(ΛXn ,ΛZn) > ε) ≤ Pn(D(ΛXn||p̂n) +D(ΛZn||p̂n) > ε/2)

which goes to zero according to the proof of Theorem 4.
An easy argument (see Lemma 22 in Appendix B) shows that χ2(ΛY n ,ΛZn) viewed as a function from

R2n → R has the bounded differences property with constant 8n−1. Also, Jensen’s inequality and the joint
convexity of the function (p− q)2/(p+ q) in p, q imply that

EPn
[
χ2(ΛY n ,ΛZn)

]
=
∑
a

EPn
[(ΛY n(a)− ΛZn(a))2

ΛY n(a) + ΛZn(a)

]
]

≥ (EPn [ΛY n(a)]− EPn [ΛZn(a)])2

EPn [ΛY n(a)] + EPn [ΛZn(a)]

=
∑
a

(pn(a)− qn(a))2

pn(a) + qn(a)
.

Now by Cauchy-Schwarz we have

‖pn − qn‖2
1 =

(∑
a

|pn(a)− qn(a)|√
pn(a) + qn(a)

√
pn(a) + qn(a)

)2

≤ 2χ2(pn, qn),

therefore Efron-Stein implies the random variable χ2(ΛY n ,ΛZn) is concentrated around something strictly
greater than 1

2
‖pn − qn‖2

1, which is not tending to zero.
We also have a corresponding result about inconsistency of the chi-squared test when α = 1.

Lemma 14. Let {pn, qn} be a sequence of pairs of distributions and denote by µ2
n(x, y) the shadow (see

[17]), i.e. the distribution of the random vector
(
npn(Xn), nqn(Xn)

)
when Xn ∼ pn. If µ2

n(x, y) converges
weakly to µ2(x, y), then under hypothesis H0 (i.e. Zn ∼ pnn)

E[χ2(ΛXn ,ΛZn ,An)]→ 2

∫ ∞∑
j=1

∞∑
k=0

exp(−x)xj−1

(j − 1)!

exp(−x)xk

k!

(j − k)

j + k
dµ2(x, y)

and

E[χ2(ΛY n ,ΛZn ,An)]→
∫ ∞∑

j=1

∞∑
k=0

exp(−y)yj−1

(j − 1)!

exp(−x)xk

k!

(j − k)

j + k

y

x
dµ2(x, y)

+

∫
C2

∞∑
j=1

∞∑
k=0

exp(−x)xj−1

(j − 1)!

exp(−y)yk

k!

(j − k)

j + k
dµ2(x, y).
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Proof: See Appendix B.

Theorem 7. There exists a sequence of alphabets having linear growth for which the chi-squared test
(16) is not α-universally consistent.

Proof: Using the distributions from the proof of Theorem 5, applying Lemma 14, and numerically
evaluating the resulting integrals, we see that under hypothesis H0,

lim
n→∞

E[χ2(ΛXn ,ΛZn ,An)] = 1.57

lim
n→∞

E[χ2(ΛY n ,ΛZn ,An)] = 1.49

whereas under hypothesis H1,

lim
n→∞

E[χ2(ΛXn ,ΛZn ,An)] = 1.49

lim
n→∞

E[χ2(ΛY n ,ΛZn ,An)] = 1.14.

By a similar argument as used in the proof of Theorem 5, it follows that under hypothesis H0, the test
incorrectly declares H1.

C. Understanding the Inconsistency
The inconsistency of both the GLRT and chi-squared test for linear alphabets can be explained neatly

by relating these tests to the L2-norm test nF ≶ 0, where

F =
∑
a

n(ΛXn(a)− ΛZn(a))2 −
∑
a

n(ΛY n(a)− ΛZn(a))2.

Recall, from Lemmas 1 and 2 we know that the random variable nF concentrates around values which
guarantee consistent detection, i.e. asymptotically −E0[nF ] = E1[nF ] > 0. But unlike our L2-norm
test, which weights all terms equally (by n), the χ2 test weights the terms in the first sum of F by
(ΛXn(a) + ΛZn(a))−1 and those in the second sum by (ΛY n(a) + ΛZn(a))−1. There is no guarantee that
the inequality

E0[χ2(ΛXn ,ΛZn)− χ2(ΛY n ,ΛZn)] < 0

should hold for such weights.
For the case of the GLRT the same reasoning applies by reducing the GLRT to a chi-squared test via a

Taylor series expansion, see Lemma 8. For these distributions, numerical calculations show it suffices to
restrict attention to the case where the symbol count is zero in the training string and is positive in the test
string or vice versa (in fact with high probability N(a|Xn) = 0 and N(a|Zn) ∈ {1, 2, 3} or vice-versa).
This observation about the counts combined with Lemma 8 implies

G(ΛXn ,ΛZn ,A) ≈ log(2)χ2(ΛXn ,ΛZn ,A),

(Lemma 23 in Appendix B makes this slightly more rigorous).
Another frequently used test in statistics is the Hellinger metric, h(p, q), which for two mass functions

p and q is defined via

h2(p, q) =
1

2

∑
a∈A

(
√
p(a)−

√
q(a))2. (17)

At first glance one may be tempted to think that the test

h2(ΛXn ,ΛZn) ≶ h2(ΛY n ,ΛZn) (18)
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would not suffer from the same problems as the chi-squared test and GLRT since it does not involve
divisions by empirical distributions. However since (p− q)2 = (

√
p−√q)2(

√
p+
√
q)2, h(p, q) may also

be written as
h2(p, q) =

1

2

∑
a∈A

(p− q)2

(
√
p+
√
q)2

,

and again the test involves divisions by counts. We conjecture (for evidence see the next sub-section) that
the Hellinger test is not universally consistent for α = 15.

D. Simulation (α = 1 case)
In Figure 1 we show the empirical performance (over 10000 trials) of the L2-norm classifier (3), the

GLRT classifier (13), the chi-squared classifier (16) and the Hellinger classifier (18) for increasing n and
a uniform prior on the two hypotheses H0 and H1. The alphabet is An = {1, . . . , 9n}; Example A refers
to the distributions pn, qn appearing in the proof of Theorem 5; Example B is the same sequence pn
versus rn = 1/(9n), the uniform distribution. We see that in Example A the average error probability of
the GLRT and chi-squared classifier tends to 1/2, as predicted by Theorems 5 and 7; we also notice the
apparent inconsistency of the Hellinger test previously mentioned. In Example B, even though all tests
seem to be consistent, the fraction of errors for our new classifier converges to zero more quickly than
does the GLRT.

V. TESTING WITH INFINITE TRAINING DATA

In this section we suppose that the tester is given access to an “infinite” amount of training data, i.e. for
each n he or she knows (pn, qn,An), the underlying distributions and alphabets. The following theorem
answers the question for a sequence {pn, qn,An} satisfying

lim inf
n→∞

∑
a∈An

|pn(a)− qn(a)| > 0,

what, if any, are the conditions on the growth rate of the alphabet guaranteeing consistent testing between

H0 : Zn ∼ pnn
H1 : Zn ∼ qnn for all n.

Theorem 8. For any sequence of alphabets {An} and sequence of distributions {pn}, {qn} satisfying

lim inf
n→∞

∑
a∈An

|pn(a)− qn(a)| > 0

the likelihood ratio test
pnn(Xn) ≶H1

H0
qnn(Xn)

is exponentially consistent, i.e. if

Pe,n = pnn(pnn(Xn) < qnn(Xn)) + qnn(pnn(Xn) > qnn(Xn))

denotes the sum of the type I and type II errors, then

lim inf − 1

n
log
(
Pe,n

)
≥ lim inf

1

8

( ∑
a∈An

|pn − qn|
)2

.

5The missing ingredient is the concentration of the random variable h2(ΛXn ,ΛZn) about its mean. Once this is established one can
readily verify using a calculation similar to Lemma 14 that the numerical values of the means imply the inconsistency. Concentration would
also establish the consistency of the Hellinger test for sub-linear alphabet growth, since the inequality χ2(p, q) ≥ 2h2(p, q) [24, Ch.4 §2]
implies a proof along the lines of Theorem 6.
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Fig. 1. Simulation of the performance of L2-norm versus statistical tests. Example A illustrates the inconsistency of GLRT and Chi-squared
(Theorems 5 and 7) and suggests inconsistency of Hellinger test.
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Proof: By the Neyman Pearson theory the optimum test is the likelihood ratio test. Invoking Lemma
4 with the point sets An = {pnn}, Bn = {qnn}, we find the minimum error probability for this problem is

R(An, Bn) = 1− 1

2
‖pnn − qnn‖1.

To bound this probability, we follow [30, Cor. 13.1.1] and again make use of the Hellinger metric (17).
First we recall the inequality (see [31, Ch.3])

h2(p, q) ≤ 1

2
‖p− q‖1 ≤

√
2h(p, q). (19)

For product measures it is well known that the Hellinger metric factorizes (see [31, Ch.3]). Thus in the
i.i.d. case

h2(pn, qn) = 1− (1− h2(p, q))n.

Applying these results allows us to write the following chain of inequalities

R(An, Bn) = 1− 1

2
‖pnn − qnn‖1

≤ 1− h2(pnn, q
n
n)

= (1− h2(pn, qn))n

≤ exp(−nh2(pn, qn)),

where on the previous line we used the inequality 1 + x ≤ exp(x). Finally we use the right side of
inequality (19) to give

R(An, Bn) ≤ exp(−n1

8
‖pn − qn‖2

1).

But by hypothesis
lim inf
n→∞

‖pn − qn‖1 > 0,

which gives the result.
Note that this result extends the classical fixed distribution, fixed alphabet i.i.d. case which states that

the testing error, R({pn}, {qn}), decays exponentially fast with the blocklength n when p 6= q [30, Cor.
13.1.1]. In fact examining the proof we see that nh2(pn, qn)→∞ is sufficient.

VI. CONCLUSIONS AND FUTURE WORK

We conclude with some comments on the general-source triangular array hypothesis testing problem
(i.e. removing the α-source assumption). Firstly, Theorems 4 and 6 show that the GLRT and chi-squared
tests are universally consistent (i.e. can handle non-homogeneous sources) provided that the underlying
alphabet grows sub-linearly. Using Lemma 10 and bounding the L2 distances by relative entropies (via
Pinkser’s inequality), one can also show that the L2-test (3) is also universally consistent with sub-linear
alphabet growth, provided that the asymptotic separation occurs in L2, i.e. the assumption (2) is replaced
by

lim inf
n→∞

‖pn − qn‖2
2 > 0.

The counterexample from the proof of Theorem 5 shows that neither the GLRT nor chi-squared test are
universally consistent with linear alphabet growth. The following Lemma shows that the L2-test (3) is
also inconsistent for inhomogeneous sources with linear alphabet growth.

Lemma 15. Let p̃n and q̃n be a sequence of α = 1 large alphabet sources, defined on alphabet Ãn such
that n‖p̃n − q̃n‖2

2 = ε for every n. Denote by ω a special symbol that does not occur in any of Ãn and
define

An = Ãn ∪ {ω}.
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Let δx denote a point-mass at x and define pn = 1
2
p̃n + 1

2
δω and qn = 1

2
q̃n + 1

2
δω. Then the test

‖ΛXn − ΛZn‖2
2 ≶ ‖ΛY n − ΛZn‖2

2

is inconsistent.

Proof: See Appendix C.
Roughly speaking the proof uses the fact that the L2 distance for the α = 1 component converges in

probability to either ε
4

or − ε
4
, but the variance for the symbol ω is order 1 in probability, and so reliable

detection is impossible. Here the problem is that the L2 test relies on the unnormalized counts, and a
symbol with large probability can dominate the overall statistic. The GLRT and chi-squared test avoid
this problem by using normalized counts, but as we have seen, this normalization can eliminate the bias
necessary to ensure consistency.

Clearly it is desirable to know whether tests exist for the general-source triangular array hypothesis
testing problem that are universally consistent for (super)-linear alphabet growth rates, or whether a
converse along the lines of Theorem 2 can be proven. Theorem 2 provides an upper bound on the allowed
growth rate, stating that quadratic alphabet growth cannot be handled.

Another line of investigation could be to distinguish between consistency and exponential consistency,
following [9], and determine limits under the stricter exponential consistency requirement. A natural
extension of the present problem is to suppose that we are given training sequences of length N = N(n)
and a test sequence of length n and ask for which alphabet growth rates and relation between N and n is
universally consistent classification possible; for this problem, our Theorem 8 says that for any alphabet
growth rate, N =∞ and n→∞ can be handled.

APPENDIX A
PROOFS: SECTION III

This appendix is dedicated to the proof of Lemma 2, showing that the variance of F , the test random
variable used for α-sources tends to zero when 0 < α < 2. (Note, such a result does not follow via other
means, say Efron-Stein or bounded differences conditions.) We start by reproducing the moments of the
binomial distribution.

Lemma 16 (Higher Moments of the Binomial). Suppose N ∼ Binomial(n, p)

E[N2] = n2p2 + np(1− p)
E[N3] = n3p3 + 3n2p2 − 3n2p3 + np− 3np2 + 2np3

E[N4] = n4p4 + 6n3p3 − 6n3p4 + 7n2p2 − 18n2p3 + 11n2p4 + np

− 7np2 + 12np3 − 6np4

Proof: Direct calculation.
Computing the variance of F will require that the following results on covariance of multinomial

vectors.

Lemma 17. Suppose Xn ∼ pn. For a 6= b

E[N2(a|Xn)N2(b|Xn)] = n(n− 1)(n− 2)(n− 3)p2(a)p2(b)

+ n(n− 1)(n− 2)[p(a)p2(b) + p2(a)p(b)]

+ n(n− 1)p(a)p(b)

Proof: Start by writing

E[N2(a|Xn)]N2(b|Xn)] = E
[( n∑

i=1

1{Xi = a}
)2( n∑

i=1

1{Xi = b}
)]

=
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

E[1{Xi = a}1{Xj = a}1{Xk = b}1{Xl = b}]
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Now observe that only certain cases have positive expectation these are
1) i 6= j 6= k 6= l which occurs n(n− 1)(n− 2)(n− 3) times.
2) i = j and k 6= l with i 6= k and i 6= l, which occurs n(n− 1)(n− 2) times
3) k = l and i 6= j with k 6= i and k 6= j, which occurs n(n− 1)(n− 2) times.
4) i = j and k = l with i 6= k which occurs n(n− 1) times.

Lemma 18. Suppose Xn ∼ pn. For a 6= b

E[N2(a|Xn)N(b|Xn)] = n(n− 1)(n− 2)p2(a)p(b) + n(n− 1)p(a)p(b)

= (n3 − 3n2 + 2n)p2(a)p(b) + (n2 − n)p(a)p(b)

Proof: We have

E[N2(a|Xn)N(b|Xn)] =
n∑
i=1

n∑
j=1

n∑
k=1

E[1{Xi = a}1{Xj = a}1{Xk = b}]

As in the proof of Lemma 17 only cases i = j 6= k and i 6= j 6= k yield a positive expectation.
To simplify the analysis we will use the following lemma to discard terms that vanish in the limit.

Lemma 19 (Discarding Rule). Suppose 0 < α < 2 and for all a, b ∈ An that p(a) = O(n−α) and
q(b) = O(n−α) . For integers i, j such that 4 ≥ j ≥ i ≥ 2

1. n2α−4
∑
a∈An

nipj(a)→ 0 as n→∞.

For positive integers i, j, k such that 4 ≥ j + k > i ≥ 2 or j + k = 4 and i = 1

2. n2α−4
∑
a,b∈An

nipj(a)qk(b)→ 0 as n→∞.

Proof: For the first property

n2α−4
∑
a∈An

nipj ≤ n2α−4 3nα

č
ni
( ĉ

nα

)j
= nα(3−j)−4+i3ĉ

j

č

Since α < 2, examining the exponent alone we have for 3 ≥ j

α(3− j)− 4 + i < 2− 2j + i

≤ 2− 2i+ i

≤ 2− i
≤ 0

i.e α(3− j)− 4 + i < 0. When j = 4 we have

−α− 4 + i,

so for i = 3 the exponent is −α− 1 < 0 and for i = 4 it is −α < 0.
For the second property, argue with cases:

n2α−4
∑
a,b∈An

nipj(a)qk(b) ≤ n4α−4−(j+k)α+i9ĉ
j+k

č2
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when i = 2, j + k = 3 the sum behaves like nα−2, for i = 2, (j + k) = 4 it behaves like n−2 and for
i = 3, (j + k) = 4 it behaves like n−1, thus in all three cases the sum goes to zero when 0 < α < 2 as
n→∞. For j + k = 4 and i = 1 the sum behaves like n−3, which again goes to zero as n→∞.

Lemma (2). For i = 0, 1
Vari[n

αF ]→ 0

for all 0 < α < 2.

Proof: Throughout we suppose hypothesis H1 is in effect and simply write E for E1, the other case
is handled analogously.

E[F 2] = E[‖ΛXn‖4
2]− 2E[‖ΛXn‖2

2]E[‖ΛY n‖2
2]

− 4E[‖ΛXn‖2
2〈ΛZn ,ΛXn − ΛY n〉] + E[‖ΛY n‖4

2]

+ 4E[‖ΛY n‖2
2〈ΛZn ,ΛXn − ΛY n〉]

+ 4E[〈ΛZn ,ΛXn − ΛY n〉2].

Notice that every term in the expansion above has a common factor n−4 and therefore we will be dealing
with terms such as

n2αE[‖ΛXn‖4
2] = n2α−4E

[( ∑
a∈An

N2(a|Xn)
)2]

= n2α−4E
[ ∑
a,b∈An

N2(a|Xn)N2(b|Xn)
]

= n2α−4
[ ∑
a∈An

E[N4(a|Xn)] +
∑

a6=b∈An

E[N2(a|Xn)N2(b|Xn)]
]
. (20)

Using the discarding rule (Lemma 19) we can safely ignore terms that vanish in the limit. For example
since N(a|Xn) is binomial, recalling Fact 16 we see

n2α−4
∑
a∈An

E[N4(a|Xn)] = n2α−4
∑
a∈An

n4p4
n(a) + 6n3p3

n(a)− 6n3p4
n(a) + 7n2p2

n(a)− 18n2p3
n(a)

+ 11n2p4
n(a) + npn(a)− 7np2

n(a) + 12np3
n(a)− 6np4

n(a)

' n2α−4
∑
a∈An

npn(a) = n2α−4n, (21)

where the notation
an ' bn means lim

n→∞
an − bn = 0.

For the “cross-terms”, by Lemma 17 we have∑
a6=b

E[N2(a|Xn)N2(b|Xn)] =
∑
a6=b

n4p2
n(a)p2

n(b)− 6n3p2
n(a)p2

n(b) + 11n2p2
n(a)p2

n(b)− 6np2
n(a)p2

n(b)

+ (n3 − 3n2 + 2n)p2
n(a)pn(b) + (n3 − 3n2 + 2n)p2

n(b)pn(a)

+ (n2 − n)pn(a)pn(b)

Note that ∑
a6=b

p(a)qi(b) =
∑
b

qi(b)(1− p(b)) =
∑
a

qi(a)− qi(a)p(a)
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therefore∑
a6=b

E[N2(a|Xn)N2(b|Xn)] =
∑
a6=b

n4p2
n(a)p2

n(b)− 6n3p2
n(a)p2

n(b) + 11n2p2
n(a)p2

n(b)− 6np2
n(a)p2

n(b)

+ 2(n3 − 3n2 + 2n)
[∑

a

p2
n(a)− p3

n(a)
]

+ (n2 − n)− (n2 − n)
∑
a

p2
n(a).

Applying the discarding rule we see the terms∑
a6=b

n4p2
n(a)p2

n(b) + 2n3
∑
a

p2
n(a) + n2 − n

are significant in the limit. Therefore combining the previous display and (21) calculations gives

n2αE[‖ΛXn‖4
2] ' n2α−4

(∑
a6=b

n4p2
n(a)p2

n(b) + 2n3
∑
a

p2
n(a) + n2

)
.

An analogous argument tells us that

n2αE[‖ΛY n‖4
2] ' n2α−4

(∑
a6=b

n4q2
n(a)q2

n(b) + 2n3
∑
a

q2
n(a) + n2

)
.

We now turn our attention to

n2αE[‖ΛXn‖2
2]E[‖ΛY n‖2

2]

= n2α−4
(∑

a

n2p2
n(a) + npn(a)− np2

n(a)
)(∑

a

n2q2
n(a) + nqn(a)− nq2

n(a)
)

= n2α−4
(
n+

∑
a

n2p2
n(a)− np2

n(a)
)(
n+

∑
a

n2q2
n(a)− nq2

n(a)
)

= n2α−4
(
n2 +

∑
a

(n3q2
n(a)− n2q2

n(a)) +
∑
a

(n3p2
n(a)− n2p2

n(a))

+
∑
a,b

(n2p2
n(a)− np2

n(a))(n2q2
n(b)− nq2

n(b))
)

In the final sum, the expansion starts with n4p2
n(a)q2

n(b) plus terms of lower order in n (still with a product
of 4 probabilities), therefore applying our discarding rule we see

− 2n2αE[‖ΛXn‖2
2]E[‖ΛY n‖2

2]

' −2n2α−4
(
n2 +

∑
a

n3q2
n(a) +

∑
a

n3p2
n(a) +

∑
a,b

n4p2
n(a)q2

n(b)
)
.

Now we turn to

E[‖ΛXn‖2
2〈ΛZn ,ΛXn − ΛY n〉] = E[‖ΛXn‖2

2〈ΛZn ,ΛXn〉]− E[‖ΛXn‖2
2]E[〈ΛZn ,ΛY n〉] (22)

The first term on the right is

n−4E
[(∑

a

N2(a|Xn)
)(∑

a

N(a|Zn)N(a|Xn)
)]

= n−4
∑
a,b

E[N2(a|Xn)N(b|Xn)]E[N(b|Zn)]

= n−4
∑
a

E[N3(a|Xn)]E[N(a|Zn)] + n−4
∑
a6=b

E[N2(a|Xn)N(b|Xn)]E[N(b|Zn)]. (23)
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Applying Fact 1 and the discarding rule to the first sum in (23) gives

n2α−4
∑
a

E[N3(a|Xn)]E[N(a|Zn)] = n2α−4
[∑

a

(n3p3
n(a) + 3n2p2

n(a)− 3n2p3
n(a) + npn(a)

− 3np2
n(a) + 2np3

n(a))nqn(a)
]

' 0.

For the second sum of (23), applying Lemma 18 gives

n−4
[∑
a6=b

(n4 − 3n3 + 2n2)p2
n(a)pn(b)qn(b) + (n3 − n2)pn(a)pn(b)qn(b)

]
and we see only terms

n−4
[∑
a6=b

n4p2
n(a)pn(b)qn(b) + n3pn(a)pn(b)qn(b)

]
are significant. Turning to the second term of the right of (22) we have

E[‖ΛXn‖2
2]E[〈ΛZn ,ΛY n〉] = n−4

∑
a,b

[npn(a) + n2p2
n(a)− np2

n(a)]n2q2
n(b)

and it follows that the significant terms are

n−4
∑
a6=b

n3pn(a)q2
n(b) + n4p2

n(a)q2
n(b).

Therefore

− 4n2αE[‖ΛXn‖2
2〈ΛZn ,ΛXn − ΛY n〉]

' −4n2α−4
(∑
a6=b

n4p2
n(a)pn(b)qn(b) + n3pn(a)pn(b)qn(b)− n3pn(a)q2

n(b)− n4p2
n(a)q2

n(b)
)
.

The term
E[‖ΛY n‖2

2〈ΛZn ,ΛXn − ΛY n〉]

can be handled as above and we see that

4n2αE[‖ΛY n‖2
2〈ΛZn ,ΛXn − ΛY n〉]

' 4n2α−4
(∑
a6=b

n4q2
n(a)qn(b)pn(b) + n3qn(a)qn(b)pn(b)− n3qn(a)q2

n(b)− n4q2
n(a)q2

n(b)
)
.
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The final term is

E[〈ΛZn ,ΛXn − ΛY n〉2]

= n−4E
[(∑

a

N(a|Zn)
(
N(a|Xn)−N(a|Y n)

))2]
= n−4

∑
a,b

E
[
N(a|Zn)

(
N(a|Xn)−N(a|Y n)

)
N(b|Zn)

(
N(b|Xn)−N(b|Y n)

)]
= n−4

∑
a,b

(
E[N(a|Zn)N(b|Zn)]E[N(a|Xn)N(b|Xn)]− E[N(a|Zn)N(b|Zn)]E[N(a|Xn)]E[N(b|Y n)]

− E[N(a|Zn)N(b|Zn)]E[N(a|Y n)E[N(b|Xn)] + E[N(a|Zn)N(b|Zn)]E[N(a|Y n)N(b|Y n)]
)

= n−4
∑
a

[nqn(a) + (n2 − n)q2
n(a)][npn(a) + (n2 − n)p2

n(a)]− [nqn(a) + (n2 − n)q2
n(a)]n2pn(a)qn(a)

− [nqn(a) + (n2 − n)q2
n(a)]n2qn(a)pn(a) + [nqn(a) + (n2 − n)q2

n(a)][nqn(a) + (n2 − n)q2
n(a)]

+
∑
a6=b

(n2 − n)2qn(a)qn(b)pn(a)qn(b)− (n4 − n3)qn(a)qn(b)pn(a)qn(b)

− (n4 − n3)qn(a)qn(b)qn(a)pn(b) + (n2 − n)2qn(a)qn(b)qn(a)qn(b).

In the last line of the previous display, terms in the summation over a are such that every probability is
accompanied by an n of the same or lesser power and therefore these terms vanish in the limit. In the
summation over a 6= b every term involves four probabilities so we only keep the n4 terms. Hence

E[〈ΛZn ,ΛXn − ΛY n〉2]

∼ 4n2α−4
(
n4
∑
a6=b

qn(a)qn(b)pn(a)qn(b)− qn(a)q2
n(b)pn(a)− q2

n(a)qn(b)pn(b) + q2
n(a)q2

n(b)
)
.

Combining all the above we have shown that

E[n2αF 2] ' n2α−4

[(
n2 + 2

∑
a

n3p2
n(a) +

∑
a6=b

n4p2
n(a)p2

n(b)
)

− 2
(
n2 +

∑
a

n3q2
n(a) +

∑
a

n3p2
n(a) +

∑
a6=b

n4p2
n(a)q2

n(b)
)

− 4
(∑
a6=b

n4p2
n(a)pn(b)qn(b) + n3pn(a)pn(b)qn(b)− n3pn(a)q2

n(b)− n4p2
n(a)q2

n(b)
)

+
(∑
a6=b

n4q2
n(a)q2

n(b) + 2
∑
a

n3q2
n(a) + n2

)
+ 4
(∑
a6=b

n4q2
n(a)qn(b)pn(b) + n3qn(a)qn(b)pn(b)− n3qn(a)q2

n(b)− n4q2
n(a)q2

n(b)
)

+ 4
(∑
a6=b

n4qn(a)qn(b)pn(a)qn(b)− n4qn(a)q2
n(b)pn(a)

− n4q2
n(a)qn(b)pn(b) + n4q2

n(a)q2
n(b)

)]
.

In the above there are several simplifications, for example all of the n3 terms self-cancel (note

n3
∑
a6=b

pn(a)q2
n(b) = n3

∑
a

q2
n(a)− q3

n(a) ∼ n3
∑
a

q2
n(a)).
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After performing the cancellations we have

E[n2αF 2] ' n2α
(∑
a6=b

p2
n(a)p2

n(b)− 4p2
n(a)pn(b)qn(b) + 2p2

n(a)q2
n(b)

+ q2
n(a)q2

n(b) + 4qn(a)qn(b)pn(a)qn(b)− 4qn(a)q2
n(b)pn(a)

)
.

We now compute

n2αE[F ]2 = n2α
( ∑
a∈An

(pn(a)− qn(a))2 + n−1(q2
n(a)− p2

n(a))
)2

= n2α
∑
a,b∈An

(
(pn(a)− qn(a))2 + n−1(q2

n(a)− p2
n(a))

)(
(pn(b)− qn(b))2 + n−1(q2

n(b)− p2
n(b))

)
Since every term in the above sum involves a quartic product of probabilities it follows that

n2αE[F ]2 ' n2α
∑
a6=b

((pn(a)− qn(a))2((pn(b)− qn(b))2

= n2α
∑
a6=b

(p2
n(a)− 2pn(a)qn(a) + q2

n(a))(p2
n(b)− 2pn(b)qn(b) + q2

n(b))

= n2α
∑
a6=b

p2
n(a)p2

n(b)− 2p2
n(a)pn(b)qn(b) + p2

n(a)q2
n(b)

− 2pn(a)qn(a)p2
n(b) + 4pn(a)qn(a)pn(b)qn(b)− 2pn(a)qn(a)q2

n(b)

+ q2
n(a)p2

n(b)− 2q2
n(a)pn(b)qn(b) + q2

n(a)q2
n(b)

= n2α
∑
a6=b

p2
n(a)p2

n(b)− 4p2
n(a)pn(b)qn(b) + 2p2

n(a)q2
n(b)

+ 4pn(a)qn(a)pn(b)qn(b)− 4pn(a)qn(a)q2
n(b) + q2

n(a)q2
n(b).

Therefore we have shown for 0 < α < 2

n2αE[F 2] ' n2αE[F ]2

giving the result.
We note that concentration results sharper than those obtained with Chebyshev’s inequality and the

variance calculation can be obtained in some cases using Martingale techniques. For α = 1 one such
result is as follows.

Theorem 9. For α = 1 and any γ > 0

Pr
(
|F − E[F ]| > γ

)
≤ 2 exp

(
− ε2γ2n

96(n1/3 + Θ(1))2

)
(24)

+
(

1 +
Θ(1)

γ(1− ε)

)
3n exp

(
− (n1/3 −Θ(1))2

2(ĉ+ (n1/3 −Θ(1))/3)

)
. (25)

Proof:

ty(j) =

{
j − n if j ∈ {n+ 1, . . . , 2n}
0 otherwise

and tz(j) =

{
j − 2n if j ∈ {2n+ 1, . . . , 3n}
0 otherwise.
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Let {Fj}3n
j=1 be a filtration defined as

Fj = σ(Xj
1 , Y

ty(j)
1 , Z

tz(j)
1 )

and define a Doob Martingale {Wj}3n
j=0 as follows

Wj =

{
E[F (Xn, Y n, Zn)] if j = 0

E[F (Xn, Y n, Zn)|Fj] j ∈ {1, . . . , 3n}.

Let Dj = Wj−Wj−1 be the resulting martingale difference sequence (MDS) and a∗ ∈ An be a most likely
symbol over the measures pn, qn. Using the bounds established in Lemma 20 we have for j ∈ {1, . . . , n}

Pr(|Dj| > α) ≤ Pr
( 2

n
(N(Xj|Xj−1

1 ) + Θ(1)) > α
)

≤ Pr(N(a∗|Xn) + Θ(1) > (n/2)α).

Taking α = 2
n
(n1/3 + Θ(1)) gives

Pr
(
|Dj| >

2

n
(n1/3 + Θ(1))

)
≤ Pr(N(a∗|Xn) > n1/3)

We now make use of the following ‘Chernoff Inequality’ [32], which states that if X is binomial, then

Pr(X ≥ E[X] + λ) ≤ exp
(
− λ2

2(E[X] + λ/3)

)
.

Now using λ = n1/3 − ĉ in Chernoff Inequality, we have6 for j ∈ {1...n}

Pr(|Dj| >
2

n
(n1/3 + Θ(1))) ≤ exp

(
− (n1/3 − ĉ)2

2(ĉ+ (n1/3 − ĉ)/3)

)
,

similar bounds apply for j ∈ {n+ 1, . . . , 3n}. A result of [33], [34] states for any MDS (Dj), for every
γ > 0 and each sequence of positive numbers (wj) and any 0 < ε < 1,

Pr
(
|
∑
j

Dj| > γ
)
≤ 2 exp

( −ε2γ2

8
∑n

j=1w
2
j

)
+
(

1 +
‖D∗‖∞
γ(1− ε)

) n∑
j=1

Pr(|Dj| > wj),

where ‖D∗‖∞ = supi ‖Di‖∞. For our particular set of Di, it follows from Lemma 20 that the worst case
jump is only Θ(1), therefore ‖Di‖∞ ≤ Θ(1). Choosing wj = 2

n
(n1/3 + Θ(1)), j = 1, . . . , 3n gives

Pr
(
|
∑
j

Dj| > γ
)
≤ 2 exp

(
− ε2γ2n

96(n1/3 + Θ(1))2

)
+
(

1 +
Θ(1)

γ(1− ε)

)
3n exp

(
− (n1/3 −Θ(1))2

2(ĉ+ (n1/3 −Θ(1))/3)

)
.

6Recall Pr(B(n, p) > x) is monotonic increasing in p and for rare events sources pn(a) ≤ ĉ
n
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Lemma 20. Let {Dj} be the martingale difference sequence appearing in the proof of Theorem 1 and t
be the function defined there, then

|Dj| ≤



2
n
(N(Xj|Xj−1

1 ) + Θ(1)) j ∈ {1, . . . , n}
2
n
(N(Yty(j)|Y ty(j)−1

1 )

+ Θ(1)) j ∈ {n+ 1, . . . , 2n}
2
n
(N(Ztz(j)|Y n)

+N(Ztz(i)|Xn) + Θ(1)) j ∈ {2n+ 1, . . . , 3n}.

Proof: We will only do the third case, the others are similar. Let j ∈ {2n+ 1, . . . , 3n}, let Z̃tz(j) be
an independent copy of Ztz(j) define Z̃n = (Z1, . . . , Z̃tz(j), . . . , Zn), then

|Dj| =
1

n

∣∣∣ ∑
a∈An

E[(N(a|Xn)−N(a|Zn))2

− (N(a|Y n)−N(a|Zn))2 −N((a|Xn)−N(a|Z̃n))2

+ (N(a|Y n)−N(a|Z̃n))2|Fj]
∣∣∣.

Expanding the squares and cancelling gives

|Dj| =
1

n

∣∣∣ ∑
a∈An

E[2N(a|Xn)(N(a|Z̃n)−N(a|Zn))

+ 2N(a|Y n)(N(a|Zn)−N(a|Z̃n))|Fj]
∣∣∣

=
2

n

∣∣∣ ∑
a∈An

E[N(a|Xn)(1{Z̃tz(j) = a} − 1{Ztz(j) = a})

+N(a|Y n)(1{Ztz(j) = a} − 1{Z̃tz(j) = a})|Fj]
∣∣∣

=
∣∣∣ 2
n

∑
a∈An

(N(a|Y n)−N(a|Xn))1{Ztz(j) = a})

+ (N(a|Xn)−N(a|Y n))E[1{Z̃tz(j) = a})]

where on the previous line we used the fact that Xn, Y n, Ztz(j) are measurable with respect to Fj . Applying
the triangle inequality and the bound pn(a) ≤ ĉ/n for all a ∈ An gives

|Dj| ≤
2

n

(
N(Ztz(j)|Xn) +N(Ztz(j)|Y n)

+
∑
a∈An

(N(a|Xn) +N(a|Y n))
ĉ

n

)
=

2

n
(N(Ztz(j)|Xn) +N(Ztz(j)|Y n) + 2ĉ).

APPENDIX B
PROOFS: SECTION IV

Lemma (8). Suppose p and q are distributions on an alphabet A, then

G(p, q,A) =
∑
a∈A

∑
i:even

1

i(i− 1)

(q(a)− p(a))i

(p(a) + q(a))i−1
.



31

Further,

p(a) log
2p(a)

p(a) + q(a)
+ q(a) log

2q(a)

p(a) + q(a)
≥ 0.

For another proof along the same lines see [28, Th. 1].
Proof: Suppose first that supp p = supp q = A, then

D
(
p
∣∣∣∣∣∣p+ q

2

)
=
∑
a

p(a) log
( 2p(a)

p(a) + q(a)

)
=
∑
a

p(a) log
(

1 +
p(a)− q(a)

p(a) + q(a)

)
=
∑
a

[p(a) + q(a)

2
+
p(a)− q(a)

2

]
log
(

1 +
p(a)− q(a)

p(a) + q(a)

)
=
∑
a

[p(a) + q(a)

2
+
p(a)− q(a)

2

] ∞∑
i=1

(−1)i+1
(p(a)− q(a)

p(a) + q(a)

)i1
i

=
∑
a

∞∑
i=1

(−1)i+1 1

2i

(
(p(a)− q(a))i

(p(a) + q(a))i−1
+

(p(a)− q(a))i+1

(p(a) + q(a))i

)
.

Similarly

D
(
q
∣∣∣∣∣∣p+ q

2

)
=
∑
a

∞∑
i=1

(−1)i+1 1

2i

(
(q(a)− p(a))i

(p(a) + q(a))i−1
+

(q(a)− p(a))i+1

(p(a) + q(a))i

)
.

Combining the terms and using the fact that for i odd (x− y)i + (y − x)i = 0, we get

D
(
p
∣∣∣∣∣∣p+ q

2

)
+D

(
q
∣∣∣∣∣∣p+ q

2

)
=
∑
a

∑
i:odd

1

i

(q(a)− p(a))i+1

(p(a) + q(a))i
−
∑
i:even

1

i

(q(a)− p(a))i

(p(a) + q(a))i−1

=
∑
a

∑
i:even

1

i(i− 1)

(q(a)− p(a))i

(p(a) + q(a))i−1
.

Turning to mismatched supports. Firstly whenever p(a) > 0 and q(a) = 0, by continuity conventions

D(p(a)||(p(a) + q(a))/2) +D(q(a)||(p(a) + q(a))/2) = D(p(a)||p(a)/2)

= p(a) log(2)

where D(p(a)||q(a)) = p(a) log(p(a)/q(a)), but since in this case∑
i:even

1

i(i− 1)

(q(a)− p(a))i

(p(a) + q(a))i−1
= p(a)

∑
i:even

(−1)i

i(i− 1)

= p(a) log(2)

the expansion is valid. An analogous argument holds for q(a) > 0 and p(a) = 0 concluding the proof.

Lemma (10). Let Xn,m, 1 ≤ m ≤ n be i.i.d. with distribution pn on alphabet An. If |An| = o(n) then
for any ε > 0

pnn(D(ΛXn||pn) > ε) ≤ e−n(ε−δn),

where δn(|An|)→ 0 as n→∞.
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Proof:

pnn(D(ΛXn||pn) > ε) =
∑

Q∈Pn(An):

D(Q||pn)>ε

∑
x∈T (Q)

pnn(x)

=
∑

Q∈Pn(An):

D(Q||pn)>ε

|T (Q)|e−n[D(Q||pn)+H(Q)]

≤
∑

Q∈Pn(An):

D(Q||pn)>ε

e−nε

≤ |Pn(An)|e−nε.

Applying Lemma 9 gives the result.

Lemma 21.

sup
j∈[0,n),k∈[0,n]

∣∣∣j + 1

n
log

2(j + 1)

j + 1 + k
− j

n
log

2j

j + k

∣∣∣
≤ 1

n
(1 + log 2 + log(1 + n)) (26)

and sup
j∈[0,n),k∈[0,n]

∣∣∣k
n

log
2k

k + j + 1
− k

n
log

2k

k + j

∣∣∣ ≤ 1

n
. (27)

Proof: First we prove (26). Suppose j 6= 0, then∣∣∣j + 1

n
log

2(j + 1)

j + 1 + k
− j

n
log

2j

j + k

∣∣∣
=

1

n

∣∣∣j log
2(j + 1)

j + 1 + k

j + k

2j
+ log

2(j + 1)

j + 1 + k

∣∣∣
≤ 1

n

(∣∣∣j log
j2 + jk + j + k

(j + 1 + k)j

∣∣∣+ log 2 +
∣∣∣ log

j + 1

j + 1 + k

∣∣∣)
≤ 1

n

( k

(j + 1 + k)
+ log 2 + log

(
1 +

k

j + 1

))
.

Using the monotonicity of log(1 + x) gives the bound of the lemma. For j = 0, continuity gives∣∣∣j + 1

n
log

2(j + 1)

j + 1 + k
− j

n
log

2j

j + k

∣∣∣
=

1

n

∣∣∣ log
2

1 + k

∣∣∣
≤ 1

n
(log 2 + log(1 + k))

≤ 1

n
(log 2 + log(1 + n)),
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but since the bound of the lemma is larger, we have the result. To show (27), observe for k 6= 0 we have∣∣∣k
n

log
2k

k + j + 1
− k

n
log

2k

k + j

∣∣∣ =
1

n

∣∣∣k log
2k

k + j + 1

k + j

2k

∣∣∣
=

1

n

∣∣∣k log
k + j + 1

k + j

∣∣∣
≤ 1

n

k

k + j

≤ 1

n
,

where the previous line follows from k ≤ k + j. The case k = 0 is handled by continuity.

Lemma (12). The quantity
D(Λx||(Λx + Λz)/2)

viewed as a real-valued function of the vector (x, z) = (x1, . . . , xn, z1, . . . , zn) has the bounded differences
property with constant

2

n
(1 + log 2 + log(1 + n)).

Proof: Consider the difference

|D(Λx||(Λx + Λz)/2)−D(Λx′||(Λx′ + Λz)/2)|

where x′ is identical to x except for one position. Without loss of generality suppose the change from
x to x′ replaced an occurrence of a ∈ An with b ∈ An where a 6= b. It follows from the definition of
relative entropy that

|D(Λx||(Λx + Λz)/2)−D(Λx′||(Λx′ + Λz)/2)|

≤
∣∣∣N(a|x)

n
log

2N(a|x)

N(a|x) +N(a|z)

− N(a|x′)
n

log
2N(a|x′)

N(a|x′) +N(a|z)

∣∣∣
+
∣∣∣N(b|x)

n
log

2N(b|x)

N(b|x) +N(b|z)

− N(b|x′)
n

log
2N(b|x′)

N(b|x′) +N(b|z)

∣∣∣. (28)

Let

j + 1 = N(a|x) and k = N(a|z), then j = N(a|x′),

then the first absolute value in the righthand side of (28) is of the form∣∣∣j + 1

n
log

2(j + 1)

(j + 1) + k
− j

n
log

2j

j + k

∣∣∣
which is bounded by 1

n
(1 + log 2 + log(1 + n)) from Lemma 21. For the second summand, suppose

j = N(b|x) and k = N(b|z), then (j + 1) = N(b|x′),

and it follows the same bound holds. Now instead consider the difference

|D(Λx||(Λx + Λz)/2)−D(Λx||(Λx + Λz′)/2)|
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where z′ is identical to z except for one position. Again, without loss of generality suppose that the change
replaced an occurrence of a ∈ An with b ∈ An where a 6= b. It follows that

|D(Λx||(Λx + Λz)/2)−D(Λx||(Λx + Λz′)/2)|

≤
∣∣∣N(a|x) log

2N(a|x)

N(a|x) +N(a|z)

−N(a|x) log
2N(a|x)

N(a|x) +N(a|z′)

∣∣∣
+
∣∣∣N(b|x) log

2N(b|x)

N(b|x) +N(b|z)

−N(b|x) log
2N(b|x)

N(b|x) +N(b|z′)

∣∣∣. (29)

Let

j + 1 = N(a|z) and k = N(a|x), then j = N(a|z′),

then by way of Lemma 21 the first absolute value of (29) is bounded by 1
n

. The second term is handled
analogously. Since 2

n
< 2

n
(1 + log 2 + log(1 + n)), the bounded differences property is established.

Lemma (13). Let {pn, qn} be a sequence of pairs of distributions and denote by µ2
n(x, y) the shadow (see

[17]), i.e. distribution of the random vector
(
npn(Xn), nqn(Xn)

)
when Xn ∼ pn. If µ2

n(x, y) converges
weakly to µ2(x, y), then under hypothesis H0 (i.e. Zn ∼ pnn)

E[D(ΛZn||p̂n)]→
∫
C2

[ ∞∑
j=1

exp(−x)xj−1

(j − 1)!
log(2j)

−
∞∑
j=1

∞∑
k=0

exp(−x)xj−1

(j − 1)!

exp(−x)xk

k!
log(j + k)

]
dµ2(x, y)

and

E[D(ΛZn||q̂n)]→
∫
C2

[ ∞∑
j=1

exp(−x)xj−1

(j − 1)!
log(2j)

−
∞∑
j=1

∞∑
k=0

exp(−x)xj−1

(j − 1)!

exp(−y)yk

k!
log(j + k)

]
dµ2(x, y).

Proof: For notational convenience let

gnk (x) =

(
n

k

)(x
n

)k(
1− x

n

)n−k
and gk(x) =

xk exp(−x)

k!
,

and note for all sequences xn → x, gnk (xn)→ gk(x). Now we compute

E[D(ΛZn||p̂n)] = n−1
∑
a∈An

E[N(a|Zn) log 2N(a|Zn)]

− E[N(a|Zn) log(N(a|Xn) +N(a|Zn))]. (30)
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Starting with the second term on the righthand side (recalling the convention that 0 log 0 = 0)

n−1
∑
a∈An

E[N(a|Zn) log(N(a|Xn) +N(a|Zn))]

=
∑
a∈An

n∑
j=1

j

n

(
n

j

)
pn(a)j(1− pn(a))n−j

×
n∑
k=0

(
n

k

)
pn(a)k(1− pn(a))n−k log(j + k)

=
n∑
j=1

n∑
k=0

[ ∑
a∈An

pn(a)gn−1
j−1 ((n− 1)pn(a))× gnk (npn(a))

]
log(j + k).

Using B(n, p) to denote a Binomial(n, p) random variable we have for all n ≥ č

1 =
∑
a∈An

n−1E[B(n, pn(a))]

=
∑
a∈An

n∑
j=0

j

n

(
n

j

)
pn(a)j(1− pn(a))n−j

=
n∑
j=1

n∑
k=0

∑
a∈An

pn(a)gn−1
j−1 ((n− 1)pn(a))gnk (npn(a))

=
n∑
j=1

n∑
k=0

∫
C

gn−1
j−1

(n− 1

n
x
)
gnk (x)dµn(x),

where µn(·) =
∫
C
µ(·, y)dy. Thus it follows there exist a pair of random variables (Jn, Kn) taking values

in {1, . . . , n} × {0, . . . , n},

Pr(Jn = j,Kn = k) =
∫
C
gn−1
j−1

(
n−1
n
x
)
gnk (x)dµn(x) j ∈ {1, . . . , n},

k ∈ {0, . . . , n}.
0 otherwise.

Since npn(Xn) converges in distribution to W with distribution µ(·) =
∫
C
µ2(·, y)dy, we can create a

sequence of random variables {Wn} such that Wn =d npn(Xn) and converges to W almost surely. Then
since gnk (Wn)→ gk(W ) almost surely and gnk is bounded,

lim
n→∞

E[gn−1
j−1

(n− 1

n
Wn

)
gnk (Wn)] = E[gj−1(W )gk(W )],

and there are random variables (J,K) taking values in {1, . . .} × {0, . . .} with joint distribution so that

Pr(J = j,K = k) ={
E[gj−1(W )gk(W )] j, k ∈ {1, . . .} × {0, . . .}
0 otherwise,
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and (Jn, Kn) converge in distribution to the pair (J,K). Now,

E[(Jn +Kn)] =
n∑
j=1

n∑
k=0

(j + k)

∫
C

gn−1
j−1

(n− 1

n
x
)
gnk (x)dµn(x)

=

∫
C

n∑
j=1

n∑
k=0

(j + k)gn−1
j−1

(n− 1

n
x
)
gnk (x)dµn(x)

=

∫
C

(1 + 2x− x

n
) dµn(x)

→ 1 +

∫
C

2x dµ(x)

and

E[J +K] =
∞∑
j=1

∞∑
k=0

∫
C

(j + k)
e−xxj−1

(j − 1)!

e−xxk

k!
dµ(x)

=

∫
C

∞∑
j=1

∞∑
k=0

(j + k)
e−xxj−1

(j − 1)!

e−xxk

k!
dµ(x)

=

∫
C

(1 + 2x) dµ(x).

Hence E[(Jn+Kn)]→ E[J+K] implying that Jn+Kn is uniformly integrable. It follows that log(Jn+Kn)
is uniformly integrable and by way of monotone convergence

E[log(Jn +Kn)]→ E[log(J +K)].

which gives the convergence of the second term on the right of (30). A similar argument applies to the
first term. Therefore

E[D(ΛZn||p̂n)]→
∫
C

[ ∞∑
j=1

exp(−x)xj−1

(j − 1)!
log(2j)

−
∞∑
j=1

∞∑
k=0

exp(−x)xj−1

(j − 1)!

exp(−x)xk

k!
log(j + k)

]
dµ(x).

An analogous argument establishes the second claim of the lemma.

Lemma (14). Let {pn, qn} be a sequence of pairs of distributions and denote by µ2
n(x, y) the shadow (see

[17]), i.e. distribution of the random vector
(
npn(Xn), nqn(Xn)

)
when Xn ∼ pn. If µ2

n(x, y) converges
weakly to µ2(x, y), then under hypothesis H0 (i.e. Zn ∼ pnn)

E[χ2(ΛXn ,ΛZn ,An)]→ 2

∫
C2

∞∑
j=1

∞∑
k=0

exp(−x)xj−1

(j − 1)!

exp(−x)xk

k!

(j − k)

j + k
dµ2(x, y)

and

E[χ2(ΛY n ,ΛZn ,An)]→
∫
C2

∞∑
j=1

∞∑
k=0

exp(−y)yj−1

(j − 1)!

exp(−x)xk

k!

(j − k)

j + k

y

x
dµ2(x, y)

+

∫
C2

∞∑
j=1

∞∑
k=0

exp(−x)xj−1

(j − 1)!

exp(−y)yk

k!

(j − k)

j + k
dµ2(x, y)
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Proof: The proof immediately follows that of Lemma 13, once one notices that

E[χ2(ΛXn ,ΛZn ,An)] = n−1
∑
a∈An

E
[(N(a|Xn)−N(a|Zn))2

N(a|Xn) +N(a|Zn)

]
= n−1

∑
a∈An

E
[N(a|Xn)(N(a|Xn)−N(a|Zn))

N(a|Xn)−N(a|Zn)

]
+ E

[N(a|Zn)(N(a|Zn)−N(a|Xn))

N(a|Xn) +N(a|Zn)

]
= 2

∑
a∈An

n∑
j=1

j

n

(
n

j

)
pn(a)j(1− pn(a))n−j

×
n∑
k=0

(
n

k

)
pn(a)k(1− pn(a))n−k

(j − k)

j + k
.

Lemma 22. For all k ∈ [0, n] and j ∈ [0, n]∣∣∣∣∣
(
j+1
n
− k

n

)2

j+1
n

+ k
n

−

(
j
n
− k

n

)2

j
n

+ k
n

∣∣∣∣∣ ≤ 4

n

Proof:∣∣∣∣∣
(
j+1
n
− k

n

)2

j+1
n

+ k
n

−

(
j
n
− k

n

)2

j
n

+ k
n

∣∣∣∣∣ =
1

n

∣∣∣(j + 1− k)2

j + 1 + k
− (j − k)2

j + k

∣∣∣
=

1

n

∣∣∣((j − k)2 + 2(j − k) + 1)(j + k)

(j + 1 + k)(j + k)
− (j − k)2(j + 1 + k)

(j + k)(j + 1 + k)

∣∣∣
=

1

n

∣∣∣−(j − k)2 + (2(j − k) + 1)(j + k)

(j + 1 + k)(j + k)

∣∣∣
≤ 1

n

∣∣∣ (j − k)2

(j + 1 + k)(j + k)
+

(2j + 2k + 1)

j + k + 1

∣∣∣
≤ 1 + 2 + 1

n

Where the final inequality uses the triangle inequality and the fact that (j − k)2 ≤ (j + k)2.

Lemma 23. Define the sets

Z ′n(p, q, i) =
{
a : p(a) = 0 and q(a) =

i

n

}
and Zn(p, q, j) =

j⋃
i=1

Z ′n(p, q, i) ∪ Z ′n(q, p, i).

For all j ≥ 1

G(p, q,A) ≥ log(2)χ2(p, q,Zn(p, q, j))

Proof: Note that from the proof of Lemma 8 we know that the summand in the definition of G(p, q,A)
is non-negative, therefore

G(p, q,A) ≥ G(p, q,Zn(p, q)).
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On the set Zn(p, q, j) either q(a) = 0 or p(a) = 0 and when q(a) = 0 we have that

p(a) log
( 2p(a)

p(a) + q(a)

)
+ q(a) log

( 2q(a)

p(a) + q(a)

)
= p(a) log(2)

and analogously the summand is q(a) log(2) when p(a) = 0. Therefore

G(p, q,Zn(p, q, j)) =
∑

a∈Zn(p,q,j)

p(a) log
( 2p(a)

p(a) + q(a)

)
+ q(a) log

( 2q(a)

p(a) + q(a)

)
= log(2)

∑
a∈Zn(p,q,j)

(p(a)− q(a))2

p(a) + q(a)

= log(2)χ2(p, q,Zn(p, q, j))

APPENDIX C
PROOFS: SECTION VI

In this appendix we prove the following result.

Lemma (15). Let p̃n and q̃n be a sequence of α = 1 large alphabet sources, defined on alphabet Ãn such
that n‖p̃n − q̃n‖2

2 = ε for every n. Denote by ω a special symbol that does not occur in any of Ãn and
define

An = Ãn ∪ {ω}.

Let δa denote a point-mass at a and define pn = 1
2
p̃n + 1

2
δω and qn = 1

2
q̃n + 1

2
δω. Then the test

‖ΛXn − ΛZn‖2
2 ≶ ‖ΛY n − ΛZn‖2

2 (31)

is inconsistent.

Throughout this appendix we assume the setup of Lemma 15, i.e. Xn ∼ pnn, Y n ∼ qnn and we will see
it suffices to consider the case Zn ∼ pnn, i.e. hypothesis H0 is in effect.

We use the notation Xn/i to mean Xn without the ith component, i.e.

Xn/i = X1, X2, . . . , Xi−1, Xi+1, . . . , Xn.

Lemma 24. For any i ∈ {1, . . . , n}

N2(a|Xn) = 1{Xi = a}(1 + 2N(a|Xn/i)) +N2(a|Xn/i).

Proof:

N2(a|Xn) =
(
1{Xi = a}+N(a|Xn/i)

)2

= 1{Xi = a}+ 2N(a|Xn/i)1{Xi = a}+N2(a|Xn/i)

= 1{Xi = a}(1 + 2N(a|Xn/i)) +N2(a|Xn/i).

Lemma 25.

E[N(a|Xn)N(b|Xn)] =

{
(n2 − n)pn(a)pn(b) if a 6= b

npn(a) + (n2 − n)p2
n(a) if a = b.

Proof: The proof is similar to that of Lemma 17 and so is omitted.
Let T denote the restriction of the L2-norm test (31) to Ãn, i.e.
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T (Xn, Y n, Zn) =
1

n2

∑
a∈Ãn

N2(a|Xn)−N2(a|Y n)− 2N(a|Zn)[N(a|Xn)−N(a|Y n)].

Lemma 26. Under distribution Pn = pnn × qnn × pnn
Var[nT (Xn, Y n, Zn)]→ 0.

Proof: Recall the Efron-Stein inequality, which states that

Var(nT ) = n2Var(T ) ≤ 1

2
n2

3n∑
i=1

E[(T − T̃i)2]

where T̃i is identical to T except that the ith argument of T is replaced with an independent copy having
the same distribution. Thus we now investigate what happens when we replace one of the Xi, Yi or Zi.

Denote by X̃n
i = X1, X2, . . . , Xi−1, X̃i, Xi+1, . . . , Xn, where X̃i =d Xi. Then for i ∈ {1, . . . , n}

T − T̃i = n−2
∑
a∈Ãn

N2(a|Xn)−N2(a|X̃n
i )− 2N(a|Zn)(N(a|Xn)−N(a|X̃n

i ))

= n−2
∑
a∈Ãn

(1{Xi = a} − 1{X̃i = a})(1 + 2N(a|Xn/i)− 2N(a|Zn))

where on the previous line we used Lemma 24.
Hence for i ∈ {1, . . . , n} we have

n2E[(T − T̃i)2] = n−2E
[( ∑

a∈Ãn

(1{Xi = a} − 1{X̃i = a})(1 + 2N(a|Xn/i)− 2N(a|Zn))
)2]

= n−2E
[ ∑
a∈Ãn

∑
b∈Ãn

(1{Xi = a} − 1{X̃i = a})(1{Xi = b} − 1{X̃i = b})

× (1 + 2N(a|Xn/i)− 2N(a|Zn))(1 + 2N(b|Xn/i)− 2N(b|Zn))
]

Let S(a, b) = (1 + 2N(a|Xn/i)− 2N(a|Zn))(1 + 2N(b|Xn/i)− 2N(b|Zn)), so that

n2E[(T − T̃i)2] = n−2
∑
a∈Ãn

∑
b∈Ãn

E[1{Xi = a}1{Xi = b}S(a, b)]− E[1{Xi = a}1{X̃i = b}S(a, b)]

− E[1{X̃i = a}1{Xi = b}S(a, b)] + E[1{X̃i = a}1{X̃i = b}S(a, b)].

Because the indicators act like selectors the above display may be written as

n2E[(T − T̃i)2] = n−2
∑
a∈Ãn

E[1{Xi = a}S(a, a)] + E[1{X̃i = a}S(a, a)]

−
∑
a∈Ãn

∑
b∈Ãn

E[1{X̃i = a}1{Xi = b}S(a, b)] + E[1{Xi = a}1{X̃i = b}S(a, b)].

Now because Xi =d X̃i, we may write

n2E[(T − T̃i)2] = n−2
[ ∑
a∈Ãn

2E[1{Xi = a}S(a, a)]− 2
∑
a∈Ãn

∑
b∈Ãn

E[1{X̃i = a}1{Xi = b}S(a, b)]
]

= n−2
[ ∑
a∈Ãn

2E[1{Xi = a}S(a, a)]− 2
∑
a∈Ãn

E[1{X̃i = a}1{Xi = a}S(a, a)]

− 2
∑

a6=b∈Ãn

E[1{X̃i = a}1{Xi = b}S(a, b)].
]
.
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Since S ⊥⊥ (Xi, X̃i) it remains to compute E[S(a, b)].
Expanding S gives

S(a, b) = 1 + 2N(b|Xn/i)− 2N(b|Zn) + 2N(a|Xn/i) + 4N(a|Xn/i)N(b|Xn/i)

− 4N(a|Xn/i)N(b|Zn)− 2N(a|Zn)− 4N(a|Zn)N(b|Xn/i) + 4N(a|Zn)N(b|Zn)

For a = b applying Lemma 25 gives

E[S(a, b)] = 1 + 2(n− 1)pn(a)− 2npn(a) + 2(n− 1)pn(a) + 4(n2 − 3n+ 2)p2
n(a)

+ 4(n− 1)pn(a)− 4(n− 1)pn(a)npn(a)− 2npn(a)

− 4npn(a)(n− 1)pn(a) + 4(n2 − n)p2
n(a) + 4npn(a)

= 1 + 8npn(a)− 8pn(a)− 8np2
n(a) + 8p2

n(a).

Similarly for a 6= b we get

E[S(a, b)] = 1 + 2(n− 1)pn(b)− 2npn(b) + 2(n− 1)pn(a) + 4(n2 − 3n+ 2)pn(a)pn(b)

− 4(n− 1)pn(a)npn(b)− 2npn(a)− 4npn(a)(n− 1)pn(b)

+ 4(n2 − n)pn(a)pn(b)

= 1− 2pn(b)− 2pn(a)− 8npn(a)pn(b) + 8pn(a)pn(b).

Putting things together we can now evaluate to give

n2E[(T − T̃i)2] = n−2
[ ∑
a∈Ãn

2pn(a)(1 + 8npn(a)− 8pn(a)− 8np2
n(a) + 8p2

n(a))

− 2
∑
a∈Ãn

pn(a)pn(a)(1 + 8npn(a)− 8pn(a)− 8np2
n(a) + 8p2

n(a))

− 2
∑

a6=b∈Ãn

pn(a)pn(b)(1− 2pn(b)− 2pn(a)− 8npn(a)pn(b) + 8pn(a)pn(b))
]
.

We can get a valid upper bound by keeping only those terms which are positive, i.e.

n2E[(T − T̃i)2] ≤ n−2
[ ∑
a∈Ãn

2pn(a)(1 + 8npn(a) + 8p2
n(a))

− 2
∑
a∈Ãn

pn(a)pn(a)(−8pn(a)− 8np2
n(a))

− 2
∑

a6=b∈Ãn

pn(a)pn(b)(−2pn(b)− 2pn(a)− 8npn(a)pn(b))
]
.

Now summing each factor in the squares braces, and just writing the order of the resulting sum we have

n2E[(T − T̃i)2] ≤ n−2[O(1) +O(1) +O(n−2) +O(n−2) +O(n−2) +O(n−1) +O(n−1) +O(n−1)]

= O(n−2)

and therefore
n∑
i=1

n2E[(T − T̃i)2] ≤ O(n−1).

When changing a Yi, proceeding as before we get
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T − T̃i+n = T (Xn, Y n, Zn)− T (Xn, Ỹ n
i , Z

n)

= n−2
∑
a∈Ãn

N2(a|Ỹ n
i )−N2(a|Y n) + 2N(a|Zn)[N(a|Y n)−N(a|Ỹ n

i )]

= n−2
∑
a∈Ãn

[1{Yi = a} − 1{Ỹi = a}](2N(a|Zn)− 1− 2N(a|Y n/i)).

Now define U(a, b) = (2N(a|Zn)− 1− 2N(a|Y n/i))(2N(b|Zn)− 1− 2N(b|Y n/i)), then

n2E[(T − T̃i)2] = n−2
∑
a∈Ãn

∑
b∈Ãn

E
[
(1{Yi = a} − 1{Ỹi = a})(1{Yi = b} − 1{Ỹi = b})U(a, b)

]
= n−2

∑
a∈Ãn

∑
b∈Ãn

E[1{Yi = a}1{Yi = b}U(a, b)]− E[1{Yi = a}1{Ỹi = b}U(a, b)]

− E[1{Ỹi = a}1{Yi = b}U(a, b)] + E[1{Ỹi = a}1{Ỹi = b}U(a, b)]

= n−2

[ ∑
a∈Ãn

2E[1{Yi = a}U(a, a)]−
∑
a∈Ãn

∑
b∈Ãn

2E[1{Ỹi = a}1{Yi = b}U(a, b)]

]

= n−2

[ ∑
a∈Ãn

2E[1{Yi = a}U(a, a)]−
∑
a∈Ãn

2E[1{Ỹi = a}1{Yi = a}U(a, a)]

−
∑

a6=b∈Ãn

2E[1{Ỹi = a}1{Yi = b}U(a, b)]

]
.

Computing E[U(a, b)] yields

E[U(a, a)] = 4npn(a) + 4(n2 − n)p2
n(a)− 2npn(a)− 4npn(a)(n− 1)qn(a)

− 2npn(a) + 1 + 2(n− 1)qn(a)− 4(n− 1)qn(a)npn(a)

+ 2(n− 1)qn(a) + 4(n− 1)qn(a) + 4(n− 1)(n− 2)q2
n(a)

and

E[U(a, b)] = 4(n2 − n)pn(a)pn(b)− 2npn(a)− 4npn(a)(n− 1)qn(b)

− 2npn(b) + 1 + 2(n− 1)qn(b)− 4(n− 1)qn(a)npn(b)

+ 2(n− 1)qn(a) + 4(n− 1)(n− 2)qn(a)qn(b).

For any a, b ∈ Ãn the absolute value of every term appearing in U(·, ·) is O(1), and since U(a, b) ⊥⊥
(Yi, Ỹi) it follows that

n∑
i=1

n2E[(T − T̃i+n)2] = O(n−1).

When replacing a Zi, we have

T − T̃i+2n = n−22
∑
a∈Ãn

(1{Z̃i = a} − 1{Zi = a})(N(a|Xn)−N(a|Y n))
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Thus for i ∈ {1, . . . , n} we have

n2E[(T − T̃i+2n)2] = n−2E
[( ∑

a∈Ãn

(1{Z̃i = a} − 1{Zi = a})(N(a|Xn)−N(a|Y n))
)2]

= n−2
∑
a∈Ãn

∑
b∈Ãn

E
[
(1{Zi = a} − 1{Z̃i = a})(1{Zi = b} − 1{Z̃i = b})V (a, b)

]
where we defined

V (a, b) = (N(a|Xn)−N(a|Y n))(N(b|Xn)−N(b|Y n))

= N(a|Xn)N(b|Xn)−N(a|Xn)N(b|Y n)−N(a|Y n)N(b|Xn) +N(a|Y n)N(b|Y n).

Expanding the terms and using the selection property we get

n2E[(T − T̃i)2] = n−2

[ ∑
a,b∈Ãn

E[1{Zi = a}1{Zi = b}V (a, b)]− E[1{Zi = a}1{Z̃i = b}V (a, b)]

− E[1{Z̃i = a}1{Zi = b}V (a, b)] + E[1{Z̃i = a}1{Z̃i = b}V (a, b)]

]

= n−2

[
2
∑
a∈Ãn

E[1{Zi = a}V (a, a)]− 2
∑
a,b∈Ãn

E[1{Zi = a}1{Z̃i = b}V (a, b)]

]

On account of the independence of (Zi, Z̃i) and V (·, ·) it remains to compute E[V (a, b)], yielding

E[V (a, a)] = npn(a) + (n2 − n)p2
n(a)− n2pn(a)qn(a)− n2pn(a)qn(a) + nqn(a) + (n2 − n)q2

n(a)

and for a 6= b

E[V (a, b)] = (n2 − n)pn(a)pn(b)− n2pn(a)qn(b)− n2pn(b)qn(a) + (n2 − n)qn(a)qn(b).

Each term appearing in V (·, ·) has absolute value O(1) and so it follows that

n∑
i=1

n2E[(T − T̃i+2n)2] = O(n−1).

Therefore we have shown
Var(nT ) ≤ O(n−1)→ 0.

Proof of Lemma 15: Suppose hypothesis H0 is in effect. Chebyshev’s inequality combined with
Lemma 26 imply that

n
[ ∑
a∈Ãn

(ΛXn(a)− ΛZn(a))2 − (ΛY n(a)− ΛZn(a))2
]

is close to its mean with high probability. Thus, using →Pn to denote convergence in probability, we have

n
∑
a∈Ãn

(ΛXn(a)− ΛZn(a))2 − (ΛY n(a)− ΛZn(a))2 →Pn −ε/4.

Next we note that by the Central Limit Theorem,

2
√
n
(

ΛXn(ω)− 1

2

)
= 2
√
n
( n∑
i=1

1(Xi = ω)

n
− 1

2

)
⇒ N (0, 1),
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where N (0, 1) denotes a standard Normal random variable. Similarly 2
√
n(ΛY n(ω)−1/2)⇒ N (0, 1) and

2
√
n(ΛZn(ω)− 1/2)⇒ N (0, 1). Furthermore the independence of the Xn, Y n, Zn sequences implies the

independence of the limiting distributions. Let X̃, Ỹ , Z̃ be independent N (0, 1). Now by the continuous
mapping theorem [35, Ch.1 §7] it follows that

4n
[
(ΛXn(ω)− ΛZn(ω))2 − (ΛY n(ω)− ΛZn(ω))2

]
⇒ X̃2 + Z̃2 − 2X̃Z̃ − Ỹ 2 − Z̃2 + 2Ỹ Z̃

= X̃2 − Ỹ 2 − 2Z̃(X̃ − Ỹ ).

Finally, Slutsky’s theorem [35, Ch.1 §5.4] tells us that if Xn ⇒ X and Yn →P c then Xn + Yn ⇒ X + c,
therefore

4n
[
‖ΛXn − ΛZn‖2

2 − ‖ΛY n − ΛZn‖2
2

]
⇒ X̃2 − Ỹ 2 − 2Z̃(X̃ − Ỹ )− ε.

This random variable has positive probability of being positive, and thus the test is inconsistent.
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