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Abstract—A simple scheme that achieves the capacity and the re-
liability function of the wideband Costa dirty-paper channel is pro-
posed. The scheme can be interpreted as an opportunistic version
of pulse position modulation (PPM). This interpretation suggests a
natural generalization of the scheme which we show to achieve the
capacity per unit cost of Gel’fand–Pinsker channels with a zero-
cost input letter.

Index Terms—Capacity per unit cost, dirty-paper channel,
Gel’fand–Pinsker channel, opportunistic communication, or-
thogonal signaling, pulse position modulation, pulse position
quantization, Wyner–Ziv source coding.

I. INTRODUCTION

THE Shannon capacity of state-dependent discrete memo-
ryless channels where the channel states are noncausally

known to the transmitter as side information was characterized
by Gel’fand and Pinsker [1].1 The result was popularized by
Costa through his whimsically titled “Writing on Dirty Paper”
[3]. Central to this line of research is a powerful technique
called binning, which promises considerable gain in rate of
reliable communication at the expense of increased complexity
in the design of encoding algorithm. Several recent works
[4]–[7] study the algebraic and coding structure of the random
binning scheme used in [1] and [3].

In this paper, we consider the problem of coding for the wide-
band Costa’s dirty-paper channel. Whereas the coding problem
for the additive white Gaussian noise (AWGN) channel is in-
volved, there is an explicit scheme in the wideband regime: A
simple orthogonal signaling scheme achieves the channel ca-
pacity. We ask for the natural extension of this result to the wide-
band Costa’s dirty-paper channel. Our main result is the demon-
stration of such a scheme which we refer to as opportunistic or-
thogonal signaling.

We start with an orthogonal set of codewords representing
messages. Each of the codewords is replicated times so

that the overall constellation with vectors forms an orthog-
onal set. Each of the messages corresponds to a set of
orthogonal signals. To convey a specific message, the encoder
transmits the signal (among the set of orthogonal signals cor-
responding to the selected message) that has the largest corre-
lation with the interference. An equivalent way of seeing this
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scheme is as opportunistic pulse position modulation (PPM).
Standard PPM involves a single pulse that conveys information
based on the position where it is nonzero. Here, every of the
pulse positions corresponds to one message, and the encoder
opportunistically chooses the position of the pulse (among
possibilities once the desired message to be conveyed is picked)
where the interference is the largest. The decoder first picks the
most likely position of the transmit pulse (among possible
choices) using the standard largest amplitude detector. Next, it
picks the message corresponding to the set in which the most
likely pulse occurred. Choosing large allows the encoder to
harness the opportunistic gain afforded by the knowledge of the
additive interference. On the other hand, decoding gets harder
as increases since the number of possible pulse positions,

, also grows with . We elaborate on this tradeoff in Sec-
tions II and III and show that the correct choice of allows
opportunistic orthogonal signaling to achieve both the capacity
and the reliability function of the wideband Costa’s dirty-paper
channel.

Each bin in the binning scheme can be thought of as a
quantizer for the interference, while the codewords in each
of the bins put together form a good channel code; this is the
nested coding interpretation [4] of the abstract binning scheme.
In Section IV we show that opportunistic PPM fits this inter-
pretation. We first point out a simple vector quantizer for the
wideband Gaussian source which we refer to as pulse position
quantization (PPQ). Next, we observe that opportunistic PPM
is a combination of PPQ (a good low-rate vector quantizer for
the wideband Gaussian source) and PPM (a good channel code
for the wideband AWGN channel). This interpretation suggests
a natural generalization of the opportunistic PPM scheme to
Gel’fand–Pinsker channels with an input cost constraint: Use
a cost-efficient vector quantizer to form the codewords within
a bin such that all the codewords put together form a cost-effi-
cient channel code. Cost-efficient vector quantizers and channel
codes studied by Verdú [13] form the basic constituents of this
generalized opportunistic PPM scheme which we show to
achieve the capacity per unit cost of Gel’fand–Pinsker channels
with a zero-cost input letter; this is done in Section V. The
natural source-coding analog of opportunistic PPM is in the
study of low-rate quantization of the wideband Gaussian source
with the decoder having noncausal access to a noisy version of
the source; this is the topic of Section VI.

II. WRITING ON WIDEBAND DIRTY PAPER

Consider the continuous-time Costa’s dirty-paper channel

(1)

where , and are the transmit signal, the interfer-
ence and the background noise. and are independent
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white Gaussian processes with two-sided power spectral den-
sity and , respectively. In this channel, is non-
causally known at the input side, and this knowledge can be used
to encode the message over the entire block. On the other hand,

is only known statistically to the receiver at the output side
of the channel. We consider communication in the wideband
regime: is power limited but not bandwidth limited. We use
the standard , the minimum energy per bit normalized by

for reliable communication, as our primary performance cri-
terion. Since the maximum information rate that can be reliably
transmitted at is monotonically increasing with the bandwidth,
determining of one channel is equivalent to seeking the
wideband limit of its capacity. As shown in [3], the capacity of
Costa’s dirty-paper channel is the same as that of the zero-in-
terference AWGN channel. Therefore, the minimum energy per
bit for reliable communication over Costa’s dirty-paper channel
is the same as that of the zero-interference AWGN channel:

1.59 dB. Below, we formally state the
opportunistic PPM scheme and show that it achieves this value
of minimum energy per bit for reliable communication over the
wideband Costa’s dirty-paper channel.

Standard PPM involves a single pulse (of total energy ) that
conveys information based on the position when it is nonzero.
Here, each message is associated
with multiple (say ) subpulse positions. The transmitter op-
portunistically chooses the subpulse position (among possi-
bilities) where the interference is the largest. The receiver first
picks the most likely position of the transmit subpulse (among

possibilities) using the standard largest amplitude detector.
It then claims the message to be the one that corresponds to
the pulse position within which the most likely subpulse oc-
curred. A depiction of this encoding/decoding process is shown
in Fig. 1.

This scheme can be equivalently described with the following
discrete-time representation.

A. Transmitter

Associate each message with orthogonal vectors

(2)

where the only nonzero entry is in the th
position. Given a message and an interference vector

, choose the position that corresponds to the
largest among to transmit. That is, the
actual transmit vector is where

(3)

B. Channel

The channel corrupts the transmit vector by su-
perimposing two independent random vectors and . The
entries of and are independent and identically distributed
(i.i.d.) Gaussian variables with zero mean and variance
and , respectively.

C. Receiver

The correlation demodulator has a bank of outputs
. For the branch where the transmit subpulse is

nonzero, the output is

(4)

where

(5)

Otherwise, the output is

(6)

The estimated message is given by

(7)

An error occurs if and only if is not unique or it is unique but
.

D. Error Analysis

Choosing large allows the transmitter to harness the op-
portunistic gain afforded by the knowledge of the additive inter-
ference. On the other hand, decoding gets harder as increases
because the number of rival codewords, , also grows
with . The following lemma [8, pp. 264–265] taken from the
theory of order statistics allows for a precise characterization of
the opportunistic gain.

Lemma 1: Suppose are i.i.d. Gaussian variables
with zero mean and variance ( ) and

. Then

(8)

converges in distribution to a limiting random variable with cu-
mulative distribution function

(9)

in the limit as . Furthermore, the moments of (8) con-
verge to the corresponding moments of the limiting distribution
(9).

Since tends to infinity in the limit as ,
by Lemma 1, tends to zero in distribution
(and, equivalently, in probability) in the limit as .

The error probability is clearly independent of the message
being transmitted. Assume , and all the probabilities
below will be tacitly understood to be conditioned on that event.
The error probability

(10)

(11)

(12)
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Fig. 1. Opportunistic PPM: (a) M pulses correspond to M messages. (b) Each pulse splits into K subpulses. (c) The transmitter chooses the subpulse position
(within the pulse position corresponding to the selected message m) where the interference s(t) is the largest. (d) The receiver picks the subpulse position where
the received signal y(t) is the largest and claims the message to be the one corresponding to the pulse containing the subpulse being picked out.

for any real number . The right-hand side of (12) has an oper-
ational meaning: It is the error probability of decoding by per-
forming independent binary hypothesis tests on the out-
puts , , with being the threshold
of the tests. Decoding via binary hypothesis testing is generally
suboptimal. However, as we shall see shortly, if the threshold

of the tests is appropriately chosen, it suffices for the desired
result.

Fix and let the threshold

(13)

Define the energy per bit as . Choose the
number of subpulses associated with each message as

(14)

We now show that, for any , the error
probability can be made as small as possible if we allow the
number of messages to be arbitrarily large. By (4), the first
term on the right-hand side of (12) can be written as

(15)
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(16)

By Lemma 1, converges to 0 in probability.
So we have

(17)

in the limit as . is distributed as , which
gives

(18)

in the limit as . By (14), implies .
We conclude from (16)–(18) that

(19)

in the limit as .
The second term on the right-hand side of (12) can be

bounded from above as follows. Let . Since
, , are i.i.d. as ,

we have

(20)

It follows that

(21)

Substituting (13) and (14) into (21), we arrive at (22) shown at
the bottom of the page. This exponential upper bound tends to
zero in the limit as so long as

(23)

Combining (22) with (19), we conclude that the error probability
can be made arbitrarily small for sufficiently large as long

as (23) stands. Note that can be made arbitrarily close to zero.
Thus, reliable communication is achieved by the opportunistic
PPM scheme with arbitrarily close to . The following
theorem summarizes this result.

Theorem 2: Opportunistic orthogonal signaling achieves
1.59 dB for reliable communication over

the wideband Costa’s dirty-paper channel.

III. RAMIFICATIONS OF OPPORTUNISTIC PPM

A. Comments on “Zero Rate Loss” of Opportunistic PPM

We give some insights into why opportunistic PPM achieves
the same for the wideband Costa’s dirty-paper channel
as that of standard PPM for the wideband zero-interference
AWGN channel. These insights provide the intuition on how
to extend opportunistic PPM to wideband dirty-paper chan-
nels with i.i.d. non-Gaussian “dirt” and, more generally, to
Gel’fand–Pinsker channels with an input cost constraint. A
byproduct is a natural view of (14) being the correct choice of

as the number of subpulses associated with each message.
To simplify the notation, we use symbol “ ” to represent

equality in the exponential scale of . To be specific, we
use if and only if

In light of the error analysis in Section II, the effective signaling
amplitude in opportunistic PPM is

(24)

where is the opportunistic gain afforded by the
Gaussian tail of the interference distribution. The error prob-
ability of opportunistic PPM can be written as

(25)

(26)

Here, we drop all the subscripts and use generic and to
represent the interference and the noise. The order equality
(26) follows from the fact that both and are Gaussian, and
Gaussian distribution is a stable law under convolution. The
error probability of standard PPM in the wideband zero-inter-
ference AWGN channel [11, pp. 379–383] is

(27)

Now, if there exists a choice of such that

and (28)

can be simultaneously satisfied, then opportunistic PPM and
standard PPM would achieve the same . Note that (28) is
equivalent to requiring that the boost of signaling strength by
the opportunistic gain completely cancel the detrimental effect
of having more competing codewords. It is a matter of simple al-
gebra to verify that (14) indeed gives the uniquely correct choice

(22)
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of , so that both requirements in (28) are satisfied at the same
time.

B. Extension to i.i.d. Non-Gaussian “Dirt”

The above analysis suggests that the success of the oppor-
tunistic PPM scheme hinges on the Gaussian tail of both the in-
terference and the noise distribution. However, a surprising re-
sult, shown by Cohen and Lapidoth [9, Sec. II-D], is that the ca-
pacity of any dirty-paper channel with i.i.d. non-Gaussian “dirt”
(which needs to have a finite second moment) is also the same as
that of the zero-interference AWGN channel. Carrying this argu-
ment to the wideband regime, we immediately come to the con-
clusion that the minimum energy per bit normalized by for
reliable communication over any wideband dirty-paper channel
with i.i.d. non-Gaussian “dirt” is also 1.59 dB. In light of the
discussion in Section III.A, applying opportunistic PPM directly
to such channels cannot achieve this value of due to the
non-Gaussian tail of the interference distribution. However, it
turns out that there is a simple remedy to the basic opportunistic
PPM scheme so that 1.59 dB can still be achieved.

Consider the continuous-time wideband dirty-paper channel

(29)

where the channel input is power limited but not band-
width limited; the interference is an independent but non-
Gaussian process with two-sided power spectral density ;
and is the usual white Gaussian noise with two-sided power
spectral density and is assumed to be independent of .
In the basic form of the opportunistic PPM scheme, the length of
the pulse is irrelevant: The only aspect of the pulse that affects
the calculation is its energy. This is because both the interference
and noise are Gaussian, and their statistics remain unchanged
under an averaging operation. With non-Gaussian interference,
however, the length of the pulse also has a role to play. In par-
ticular, we can use the central limit theorem (CLT) to make the
effective interference look like Gaussian. This scheme can be
equivalently described with the following two-dimensional dis-
crete-time representation, see Fig. 2.

The transmit signals associated with the message are
matrices

(30)

where the th column is the only nonzero one.
A total energy of has been evenly split within the subpulse
of length , so each entry in the th column is
equal to .

Based on its noncausal knowledge on the interference ,
the transmitter chooses the actual transmit signal (among
possibilities) according to some opportunistic rule (which will
become clear shortly). Upon the reception of ,

Fig. 2. Generalized opportunistic PPM: M pulses correspond M messages.
Each pulse splits into K subpulses of length N . The block length of this
transmission scheme isMKN .

, , the decoder performs the following CLT
type averaging on each of the columns:

(31)

(32)

For the branch where the subpulse is nonzero, the averaging
output is

(33)

Otherwise, the averaging output is

(34)

Now it should be clear what the opportunistic rule should be.
The transmitter should choose the transmit subpulse position
(among possibilities) where the averaging interference is the
largest

(35)

Note that the averaging preserves the signaling strength and the
Gaussianity of the noise distribution. Moreover, by the CLT,
the averaging interference can be made arbitrarily
close to a Gaussian distribution if is positive, finite and

, the length of the subpulse, is sufficiently large. Since both
the encoding and the decoding are based on the averages for
which the effective interference and noise are Gaussian, the pro-
posed scheme achieves the same as that by the basic
opportunistic PPM scheme in the wideband Costa’s dirty-paper
channel.

We note that this extension of the basic opportunistic PPM
scheme is a substantial abuse of the degrees of freedom: The
block length for transmitting messages is which
tends to infinity in the limit as the length of averaging .
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Therefore, this scheme should be mostly thought of as an
achievability proof of 1.59 dB for the wideband
dirty-paper channel with i.i.d. non-Gaussian “dirt”. In Sec-
tion V, we shall give an alternative scheme which achieves
the same but with a much more efficient use of the
available bandwidth. The final remark here is that the above
extension works for arbitrary independent “dirt” as long as
the CLT stands. A general sufficient condition for the CLT to
stand is the Feller–Lindeberg condition [10, Theorem 3.18].
Our extension achieves the minimum energy per bit for reliable
communication over any dirty-paper channel in which the law
of the “dirt” satisfies the Feller–Lindeberg condition.

C. The Error Exponents

We have shown that the capacity of the wideband Costa’s
dirty-paper channel is the same as that of the wideband zero-in-
terference AWGN channel and is achieved by opportunistic
PPM. A natural question to ask next is how opportunistic PPM
performs in terms of the channel reliability. The upper and lower
bounds on the error probability of orthogonal signaling for
the infinite-bandwidth AWGN channel have been derived and
shown to coincide in the exponential scale [11, pp. 378–383].
So the wideband AWGN channel is one of very few channels
whose reliability function has been completely characterized.
In the following theorem, we derive an exponential upper bound
on the error probability of opportunistic PPM for the wideband
Costa’s dirty-paper channel. The derived exponents (asymptot-
ically) coincide with the reliability function of the wideband
AWGN channel for all rates up to channel capacity. Since the
error exponents of the wideband Costa’s dirty-paper channel
cannot exceed that of the wideband zero-interference AWGN
channel, the exponents we derived completely characterize
the reliability function of the wideband Costa’s dirty-paper
channel.

Theorem 3: The error probability of opportunistic PPM in
the wideband Costa’s dirty-paper channel can be bounded from
above as

(36)

where tends to zero in the limit as , and is the
reliability function of the wideband zero-interference AWGN
channel:

.
(37)

In light of the (coarse) error analysis in Section II, there are
two typical ways for opportunistic PPM to make an error.

• Encoding error: the opportunistic gain is not
large enough.

• Decoding error: either is too small,
or is too large for some

with .
It turns out that whereas the decoding error probability decays
exponentially with , the encoding error probability de-
cays superexponentially with . Therefore, for sufficiently
large , the dominating error event is the decoding error which

we show to possess the same decay rate as that of standard PPM
for the AWGN channel if the number of subpulse positions asso-
ciated with each message is correctly chosen. The formal proof
amounts to making this argument mathematically precise; the
details are deferred to Appendix A.

IV. INSIGHTS FROM OPPORTUNISTIC PPM

A. Connections to the Binning Scheme

As we have seen, both random binning and opportunistic
PPM achieve the capacity of wideband dirty-paper channels.
Common to both schemes is to associate multiple codewords to
each message, and the encoder picks one of them based on the
knowledge of the additive interference. This statement is further
strengthened by the following observation.

Observation: To achieve the capacity of the wideband
dirty-paper channel with i.i.d. Gaussian/non-Gaussian “dirt,”
the number of codewords in each bin in the random binning
scheme is the same as the number of subpulse positions associ-
ated with each message in opportunistic PPM.

Denote by the number of codewords in each bin in the
random binning scheme. Recall from [3, Sec. II] and [9, Sec.
II-D] that

(38)

Here, is the real bandwidth of communication, and is the
interference (possibly non-Gaussian) with zero mean and vari-
ance . The auxiliary variable is where is
distributed as

(39)

in the limit as , and is the two-sided power spec-
tral density of the additive white Gaussian noise. We have

(40)

(41)

(42)

irrespective of the distribution of the interference [12, Lem-
ma 5.2.1]. Here, , so it has a unit variance, and

. Let be the maximum number of messages that
can be reliably transmitted. By definition, is the capacity
of the wideband dirty-paper channel, i.e.,

(43)

Substituting (43) into (42), we have

(44)

Comparing (44) with (14), our observation is confirmed.
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In light of the above observation, one may wonder if oppor-
tunistic PPM can be thought of as a structured binning scheme.
In particular, structured binning such as algebraic binning [4]
can be interpreted as a nested coding scheme: Each bin is a good
quantizer and all bins put together form a good channel code.
It is natural to ask if opportunistic PPM fits this interpretation.
It is well known that orthogonal codes are capacity-achieving
channel codes for the wideband AWGN channel. Next, we show
that orthogonal codes are also good quantizers for the wideband
Gaussian source.

B. Pulse Position Quantization (PPQ)

Suppose is an ideal bandlimited Gaussian process
with real bandwidth and two-sided power spectral density

. The degrees of freedom per unit time for this source are
asymptotically for large [11, p. 373]. Suppose we have
a total rate budget of bits per unit time. Classical rate-distor-
tion theory states that the minimum total mean-squared error
distortion for reproducing this source is

(45)

where

(46)

is the quadratic Gaussian distortion-rate function. We are inter-
ested in the case where the bandwidth of the source .
Then, the total mean-squared error distortion

(47)

no matter how large the rate budget is as long as it is finite. This
suggests that the classical distortion measure is no longer useful
in the wideband regime. However, if we consider the reward
function

(48)

the distortion reduction per degree of freedom by describing it
using bits, then the maximum mean-squared error distortion
reduction per unit time that can be obtained from a rate budget
of bits per unit time is

(49)
This is one most efficient way of using the bit budget for the
wideband Gaussian source; the corresponding bit efficiency is

. As we shall see shortly, orthogonal codes
can achieve this value of bit efficiency as well. Therefore, they
are also good quantizers for the wideband Gaussian source.

Let be the time sample of where
. Then , , are i.i.d. as . To encode the

source, the encoder simply looks at the entries of and transmit
the index for which is the largest. By symmetry, is
uniformly distributed over . So we need a total of

Fig. 3. PPQ: The encoder informs the decoder the position where the source is
the largest. The decoder reconstructs the source by N log K at the informed
position and 0 otherwise.

bits to describe it. The reconstruction uses an orthogonal code.
Given , the decoder produces a reconstruction

(50)

with the only nonzero entry in the th position. If
the encoder does not provide any description about the source,
the best reconstruction letter is . So the total distortion reduc-
tion of the above quantization scheme is

(51)

(52)

(53)

in the limit as . Here, (53) follows from that
converges to a lim-

iting random variable in the mean according to Lemma 1.
Thus, the bit efficiency of the above quantization scheme is

, which is the highest efficiency
possible for the wideband Gaussian source. A depiction of the
above encoding/decoding procedure is shown in Fig. 3.

Note that the nature of the above quantization scheme is not to
quantize the amplitude of each degree of freedom (as suggested
by the classical rate-distortion theory), but rather to inform the
decoder the position of the degree of freedom which would
cause the largest distortion. We call this scheme pulse position
quantization (PPQ), as a counterpart of PPM in channel coding.
PPQ is one best quantization scheme for the wideband Gaussian
source under the measure of total mean-squared error distortion
reduction per information bit. Therefore, opportunistic PPM can
be thought of as an explicit binning scheme, with orthogonal
codes serving as both channel code and quantizers.

C. Cost-Efficient Coding and Low-Rate Quantization

Verdú’s capacity per unit cost framework [13] is the natural
generalization of the wideband AWGN channel to general dis-
crete memoryless channels with an input cost constraint. The
key feature of this abstraction is that the limitation is put on the
input cost rather than on the number of degrees of freedom. It is
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shown in [13] that the capacity per unit cost (the precise defini-
tion of which is in the next section) can be computed as

(54)

where and are the channel input and output, and is a
function that assigns a cost to each letter in the input alphabet.
For the most important case where the input alphabet contains a
zero-cost letter labeled as “ ,” the capacity per unit cost is given
by

(55)

Note that, in (55), the optimization is over the input alphabet
as opposed to (54) where it is over the input distribution. This
greatly simplifies the calculation of the capacity per unit cost
for general discrete memoryless channels. Moreover, (55) can
be achieved by the following generalized PPM scheme: mes-
sages correspond to pulse positions. The length of each pulse
is . When a specific message is chosen, the transmitter sends a
pulse with each letter identically equal to in the corresponding
position and “ ,” otherwise. Instead of using the maximum-like-
lihood decoding, the decoder performs independent binary
hypothesis tests on the transmit position. Using Stein’s lemma,
Verdú [13] showed that (55) is indeed achievable if we choose

(56)

Here (and from now on), we use symbol “ ” to represent
equality in the exponential scale of .

In [13], Verdú also considered the problem of low-rate
quantization as a counterpart of cost-efficient channel coding in
the rate-distortion theory. This can be seen as a generalization
of PPQ to arbitrary wideband sources. Classical rate-distortion
theory states that the minimum number of bits that needs to be
transmitted per source letter so as to reproduce the source
with average distortion not exceeding is

(57)

where the infimum is over all conditional probabilities
such that . Here, the nonnegative function

assigns a penalty to each input-output pair. Let be
the minimum distortion that can be achieved by representing the
source with a single letter:

(58)

with

(59)

In the low-rate regime, we are interested in finding the level
of distortion reduction from that can be achieved by
any clever coding scheme. If we consider the reward function

, then the minimum number of bits necessary

Fig. 4. Gel’fand–Pinsker channel.

to get one reward unit is the slope of the rate-distortion function
(57) at

(60)

(61)

where by , we mean is absolutely continuous
over . Furthermore, (61) can be achieved by the following
generalized PPQ scheme. Fix an arbitrary source distribution

. Given length- source vectors, the encoder looks for
one that is -typical and informs the decoder its position. If
we choose

(62)

with high probability, the encoder is able to find such a source
vector. The decoder decides each letter should be represented by

if belongs to the -typical source vector or by , other-
wise. In this way, we are able to use nats to get a reward
of . The quantization efficiency (61)
is thus achieved.

V. CAPACITY PER UNIT COST FOR GEL’FAND–PINSKER

CHANNELS

A. Preliminaries

We have shown that opportunistic PPM achieves the min-
imum energy per bit for reliable communication over the
wideband Costa’s dirty-paper channel and that opportunistic
PPM can be thought of as a nested combination of PPM and
PPQ. In this section, we generalize this result to abstract
Gel’fand–Pinsker channels with an input cost constraint.
Speaking of generalization, Verdú’s cost-efficient coding and
low-rate quantization schemes are natural extensions of the
basic PPM and PPQ schemes. Along this line of thinking, one
is tempted to think that the nested combination of Verdú’s
cost-efficient coding and low-rate quantization may achieve the
capacity per unit cost for general Gel’fand–Pinsker channels.
The main result of this section is to show that this is indeed the
case. We start with some preliminaries on Gel’fand–Pinsker
channels and the capacity per unit cost.

Referring to Fig. 4, a Gel’fand–Pinsker channel is a discrete
channel with input alphabet , output alphabet , the set of
states , and is determined by the set of conditional probabili-
ties , , , and the probability
distribution over . The channel is memoryless and sta-
tionary. That is, and are given by

(63)
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The states are noncausally known to the encoder. The decoder,
on the other hand, only knows the statistics of .

An code is one in which the block length is equal
to ; the number of messages is equal to ; each codeword

, , , satisfies the constraint

(64)

where : is a function that assigns a cost
to each input letter; and the average (over equiprobable mes-
sages) probability of correctly decoding the message is better
than . The following definition of capacity per unit cost is
equivalent to [13, Definition 2].

Definition 4: Given , a nonnegative number
is an -achievable rate per unit cost if for every , there
exists a positive integer and such that if , then
an code can be found with and

. is achievable per unit cost if it is -achievable per
unit cost for all , and the capacity per unit cost is the
maximum achievable rate per unit cost.

B. Main Results

Consider a Gel’fand–Pinsker channel with finite input, output
and state alphabets. Suppose there is a free input letter “ ,” i.e.,

, in . Denote by the set of all pairs of
random variables taking values from and such that

. For any , let

(65)

where

(66)

The following theorem is our main result on the capacity per
unit cost for Gel’fand–Pinsker channels with a zero-cost input
letter.

Theorem 5: Suppose there is a free letter “ ” in the input
alphabet . The capacity per unit cost of a Gel’fand–Pinker
channel with finite input, output and state alphabets is

(67)

The proof of the achievability is constructive: A generaliza-
tion of the basic opportunistic PPM achieves (67). This gener-
alization can be thought of as a nested combination of Verdú’s
cost-efficient coding and low-rate quantization schemes and is
outlined as follows. pulses correspond to messages. Each
pulse splits into length- subpulses. (This is akin to the
generalized opportunistic PPM scheme for the wideband dirty-
paper channel with i.i.d. non-Gaussian “dirt,” see Fig. 2. How-
ever, this is also where the similarity ends.) Given a message ,
the encoder looks at the channel state vectors in the subpulse

positions associated with and choose one that is -typical
(Verdú’s low-rate quantization). If we choose

(68)

with high probability, the encoder is able to find such a state
vector. For the subpulse position where the state vector is

-typical, the encoder sends a length- codeword indepen-
dently and identically chosen according to where is
the state realization in the corresponding position. Otherwise,
it sends the free letter “ ” (Verdú’s cost-efficient coding).
The cost of the transmission is thus . The decoder
performs independent binary hypothesis tests on each
received subpulse. Note that, by (66), the received subpulse is
i.i.d. as if the transmitted subpulse is nonzero and is i.i.d.
as , otherwise. If we choose

(69)

with high probability, the decoder can correctly figure out the
position of the nonzero transmit subpulse. It then decides the
message to be the one that corresponds to the pulse containing
the nonzero subpulse. Using the above encoding/decoding pro-
cedure, the capacity per unit (67) is achieved.

The proof of the converse is based on calculus of mutual in-
formation; the details of the proof are deferred to Appendix B.

This theorem has the following simple addenda, which may
be useful for calculating the capacity per unit cost for some spe-
cific Gel’fand–Pinsker channels. The proof follows from prop-
erties of divergence and is included in Appendix C for complete-
ness.

Corollary 6: To evaluate , one may take in (67) the max-
imum for pairs with deterministic for a given
probability distribution .

Note that, even with the help of Corollary 6, the computa-
tional advantage of computing the capacity per unit cost (55) of
a point-to-point discrete memoryless channel no longer exists.
One still has to optimize over a certain distribution, e.g., , to
obtain the capacity per unit cost of a Gel’fand–Pinsker channel
with a zero-cost input letter.

To prove the converse part of Theorem 5, we need the fol-
lowing result as the starting point. This result is slightly more
general than Theorem 5, in that it does not require the existence
of a zero-cost input letter. Denote by the set of all triples

of random variables ( is an auxiliary variable with
values in an arbitrary finite set ) with the joint distribution

such that the marginal distribution of is equal
to the state distribution . To any triple

, we assign the quadruple of random variables
by

(70)

for instance, forms a Markov chain. Here,
is transition probability of the Gel’fand–Pinker

channel. For any , let

(71)
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Theorem 7: The capacity per unit cost of a Gel’fand–Pinsker
channel with finite input, output, and state alphabets is

(72)

The achievable part of the above theorem is barely new.
It essentially says that the capacity per unit cost of a
Gel’fand–Pinsker channel can be achieved by the binning
scheme [1]. The converse is a bit more involved than that
in [1] because the cost constraint on the codeword must be
taken into account. This issue can be resolved by introducing a
time-sharing random variable. The idea of using time-sharing
random variable to incorporate an input constraint into the
side-information problem was due to Willems [14]. The proof
of this theorem is in Appendix D. For completeness, we also
have the following corollary; the proof is a simple consequence
of [1, Proposition 1].

Corollary 8: To evaluate , one may take in (72) the max-
imum for triples with deterministic for a given

and .

C. Continuous Alphabets

Theorem 5 can be extended to the case of continuous alpha-
bets using traditional arguments. Given probability measures

, , and , divergences are defined as [16,
Ch. 2.3]

(73)

where the supremos are over all finite partitions of infinite al-
phabets , and , yielding probability distributions

, , and over finite alphabets.
Assume that are finite-dimension Euclidean

spaces or compact subsets thereof and that the density functions
and satisfy certain regularity conditions including

being bounded and continuous over their domain. The cost func-
tion is assumed to be continuous. Under these assumptions, the
divergences on the left-hand sides of (73) can be rewritten as

(74)

(75)

where

(76)

For any , select a finite partition of alphabets such that

(77)

(78)

and

(79)

The existence of such a partition is guaranteed by our regularity
assumptions. Let

(80)

By (77)–(79), the capacity per unit cost of a continuous
Gel’fand–Pinsker channel with a zero-cost input letter is

(81)

For compact , “ ” can be replaced by “ ,” and The-
orem 5 applies for continuous alphabets as well.

A few examples are now in order.

Example 1 (Costa’s Dirty-Paper Channel): Consider the dis-
crete-time Costa’s dirty-paper channel

(82)

where the channel input can be an arbitrary real number,
and , are independent i.i.d. Gaussian processes with
zero mean and variance and , respectively. ,

, are assumed to be known noncausally to the input side
of the channel. The cost is on the power of the input letter, i.e.,

. Let almost surely for some and
be distributed as . The divergence between
two Gaussian distributions is given by

(83)

By Theorem 5, we have (84) shown at the bottom of the
page, which is an achievable capacity per unit cost for
Costa’s dirty-paper channel. This result is equivalent to the

1.59 dB result for the wideband Costa’s
dirty-paper channel. We thus conclude that the above choice of

is an optimal one.

Example 2 (Estimation-Theoretic Lower Bound): Consider
Gel’fand–Pinsker channels with being the whole
real line and the cost function . Let the family of
random variables be such that almost
surely and converges to in distribution in the limit as

(84)
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. The capacity per unit cost of such channels can be
bounded from below as

(85)

where

(86)

Under our regularity assumptions, the following asymptotic re-
sult on divergence is known [16, Ch. 2.6]:

(87)

where is the Fisher information for estimating from

, i.e.

(88)

evaluated at , and is the density function of .
Similarly, converges in distribution to conditioned on

. So we have

(89)

Substituting (87) and (89) into (85), we obtain the following
estimation-theoretic lower bound for the capacity per unit cost
of Gel’fand–Pinsker channels with real alphabets and quadratic
cost function:

(90)

Example 3 (Dirty-Paper Channels With i.i.d. Non-Gaussian
“Dirt”): We now apply the estimation-theoretic lower bound
(90) to dirty-paper channels with i.i.d. non-Gaussian “dirt.” The
channel model is the same as (82), except that the “dirt” ,

, are i.i.d. but non-Gaussian. Consider the choice
where is an optimization parameter. We obtain

from (90) that the capacity per unit cost

(91)

where is the Fisher information of random variable
with respect to a translation parameter, i.e.,

(92)

Here, we have dropped the subscripts and used generic and
to represent the interference and noise, respectively. Choosing

to maximize the right-hand side of (92), we obtain

(93)

where the optimal choice of is . It is well known
that

(94)

where denotes the variance of , and the equality holds
if and only is Gaussian. In light of Cohen and Lapidoth’s
result [9] (and our discussion in Section III-B), the capacity per
unit cost of dirty-paper channels with i.i.d. non-Gaussian “dirt”
is

(95)

where the last equality follows from the Gaussianity of . Sub-
stituting (95) into (93), we obtain

(96)

which is the special case of the celebrated Fisher information
inequality (FII) [17] with one of the participating random
variables fixed to be Gaussian. It is known that FII holds with
equality if and only if both participating random variables
are Gaussian. Therefore, the estimation-theoretic lower bound
with the proposed is generally not tight for
dirty-paper channels with i.i.d. non-Gaussian “dirt”. Note that
this does not exclude the existence of other choices of
such that the estimation-theoretic lower bound (90) is tight
for this problem. Unfortunately, we have not been able to find
an explicit which is optimal for dirty-paper channels
with i.i.d. non-Gaussian “dirt.” We put this implication into the
following lemma.

Lemma 9: Suppose is Gaussian with zero mean, has
zero mean and finite second moment, and and are statisti-
cally independent. Then we have

(97)

where the supreme is over all pairs of random variables
such that is independent of and the marginal distri-
butions satisfy .

VI. LOW-RATE QUANTIZATION FOR THE

WYNER–ZIV PROBLEM

In this section, we extend PPQ to low-rate source coding with
side information. Referring to Fig. 5, the traditional rate-distor-
tion problem with side information at the decoder was consid-
ered by Wyner and Ziv [18]. The main objective of this section is
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Fig. 5. Wyner–Ziv source coding.

to show that opportunistic version of PPQ achieves the low-rate
slope of the Wyner–Ziv rate-distortion function.

A. The Gaussian Case

We first treat the special case where the source and side-infor-
mation letters , , are i.i.d. as where

(98)

Wyner [19] showed that if the distortion measure is a squared
one, i.e., , the rate-distortion function with
side information , , available only at the decoder
is

(99)

Thus, the low-rate slope is equal to

(100)

We note that both (99) and (100) are the same as those obtained
as if the side information is also available at the encoder.

Opportunistic PPQ: Without loss of generality, assume
and are positively correlated, i.e., . Consider the fol-
lowing low-rate quantization scheme: Given a string of
source letters , randomly partition them into
bins. The encoder picks the one (among all source let-
ters) that is the largest and informs the decoder the bin number
it belongs to; this needs a total of nats for descrip-
tion. The decoder looks at the side-information letters ,

, in that bin and picks (within that bin) one that is
the largest (which we shall denote by ). The reconstruction
uses the following rule:

otherwise.
(101)

Performance Analysis: By symmetry, we may assume that
is the largest among all , , and that it

belongs to the first bin. We first show that, with high probability,
is the largest among all ’s in the first bin (so the decoder

can correctly pick out using the informed bin number and
the side information). By our assumption, is the largest
among independent random variables identically dis-
tributed as . By Lemma 1,
converges to 0 in probability in the limit as .
Since and are jointly distributed as , we may
write where is distributed as

and is independent of . It follows that,
with high probability, will be close to
for large . If we choose

(102)

we will have , which is
the opportunistic gain by choosing the largest among random
variables i.i.d. as . Therefore, with high probability,
is the largest among all in the first bin. Now that the decoder
has successfully figured out the largest one among all ’s, by
Lemma 1, the total distortion reduction (relative to no message
being sent to the decoder) is

(103)

in the limit as . Thus, the bit efficiency

(104)

is achieved. This is the highest efficiency possible that can be
achieved by any low-rate quantizer. Similar to opportunistic
PPM, the success of the above quantization scheme critically
hinges on the fact that the source and the side information are
jointly Gaussian. We call this scheme opportunistic PPQ, as a
counterpart of opportunistic PPM in the rate-distortion theory.

Theorem 10: Opportunistic PPQ achieves the low-rate slope
of the Gaussian Wyner–Ziv rate-distortion function.

B. The General Case

In this section, we extend the basic opportunistic PPQ scheme
to the general case where the source and the side-information
letters , , are i.i.d. as and the distor-
tion measure is an abstract one. (In case of continuous
alphabets, and need to satisfy certain regularity
conditions.) It is shown in [18] that the traditional rate-distor-
tion function with decoder side information only is

(105)

where the minimizations are over all conditional distributions
such that forms a Markov chain and all

functions such that

(106)
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and the outer infimum is over all functions .
The main result of this section is the following theorem.

Theorem 11: The low-rate slope of the general Wyner–Ziv
rate-distortion function is

(107)

where

(108)

and

(109)

The low-rate slope (107) can be achieved by the following
generalized opportunistic PPQ scheme: Given a string of

source letters, the encoder randomly partitions them
into bins with each bin containing length- source
vectors. The encoder looks (among all source vectors) for
one that is -typical. If we choose

(110)

with high probability, the encoder is able to find such a source
vector. It then informs the decoder the bin number to which the

-typical source vector belongs; this needs a total of
nats for description. Given the informed bin number, the decoder
chooses (among all length- side-information vectors in that
bin) one that is -typical. It then claims that the source vector
in the corresponding position is the one that is -typical. By
(108), if the source vector is -typical, with high probability,
the corresponding side-information vector will be -typical.
So if we choose

(111)

with high probability, the decoder can correctly figure out the
position of the -typical source vector. Finally, the decoder
reconstructs letters in the -typical source vector by
and by , otherwise. The total distortion reduction (relative
to no message being sent to the decoder) of this scheme is

(112)

By (110)–(112), we conclude that the bit efficiency (107) is
achieved by the above generalized opportunistic PPQ scheme.

To establish the converse part, we first expand the mutual in-
formation terms on the right-hand side of (105) as

(113)

(114)

It follows by (115)–(118) as shown at the bottom of the page,
where is defined in (109). Let be a new pair of
random variables such that .
The marginal distributions satisfy

(119)

(120)

In (120), the first equality follows from (108), the second
equality follows from (119), and the last equality follows from
the Markov chain . Furthermore

(121)

Given an arbitrary , to minimize

(122)

it is necessary for to minimize

for all . In particular, needs to minimize

(123)

(115)

(116)

(117)

(118)
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Substituting (119)–(121) and (123) into (118), we obtain the
desired reverse inequality

(124)

VII. CONCLUDING REMARKS

We propose a simple orthogonal signaling scheme that
achieves the capacity per unit cost of Gel’fand–Pinsker chan-
nels with a zero cost input letter. The scheme is by nature
opportunistic and can be interpreted as structured binning in
the wideband regime. As a special case, we explicitly construct
an opportunistic PPM scheme which we show to achieve both
the capacity and the reliability function of the wideband Costa’s
dirty-paper channel. The source-coding counterparts (except
for the source-coding exponents) of the above results have
also been found. These new results exhibit some interesting
connections to estimation theory.

What has been exclusively considered in this paper is a hy-
pothetical communication scenario where bandwidth is not a
commodity (and hence can be abused without incurring any
penalty). As a future direction, it would be interesting to explore
simple signaling schemes which are not only capacity achieving
but also spectrally efficient (in the sense of [20]). Such schemes
will be useful for the design of precoding algorithms in practical
wideband communication systems. It would also be interesting
to evaluate the performance of the proposed scheme in the wide-
band wireless downlink where the base station has no access to
fading realizations.

APPENDIX A
PROOF OF THEOREM 3

We now derive an exponential upper bound on the error prob-
ability of opportunistic PPM for the wideband Costa’s dirty-
paper channel. The derivation is quite long so we divide it into
several steps.

Step 1. Assume , and all the probabilities below will
be tacitly understood to be conditioned on that event. The error
probability of opportunistic PPM can be bounded from above as

(125)

(126)

(127)

where the threshold of the opportunistic gain

(128)

The two probability terms on the right-hand side of (127) rep-
resent the probability of encoding and decoding error, respec-
tively.

Step 2. The probability of encoding error can be written as

(129)

The exponential decay rate with respect to can be esti-
mated as follows:

(130)

(131)

(132)

(133)

in the limit as . Here, (131) follows from the fact that
in the limit as , and (132) follows from

the fact that in the limit as . Note that the
right-hand side of (133) tends to infinity in the limit as .
We conclude that the probability of encoding error
decays superexponentially with .

Step 3. The conditional probability of decoding error can be
bounded from above as

(134)

(135)

(136)

(137)

where the threshold of decoding

(138)

Here, (136) follows from the well-known inequality
for and positive integer . Con-

ditioned on , is distributed as
. So the two integrals on the right-hand side

of (137) can be bounded from above as shown in (139)–(142) at
the bottom of the following page. Substituting (139) and (142)
into (137), we obtain (143) shown at the bottom of the following
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page. Next we get (144)–(145) shown at the bottom of the fol-
lowing page, where (144) is due to the fact that larger oppor-
tunistic gain adds to the signaling strength and hence can
only help decoding. Note from (128) that

in the limit as . Choosing to minimize the right-hand
side of (145) (ignoring the terms), we obtain

(146)
in the limit as . Here, is the reliability function of
the wideband AWGN channel

.
(147)

The optimum choice of is given by

.
(148)

Step 4. By (148), implies . Combining
Steps 1)–3), we obtain

(149)
in the limit as . This completes the proof of Theorem 3.

APPENDIX B
PROOF OF THEOREM 5

A. The Achievability

To prove the achievability, we will explicitly construct an
code such that

(150)

for any given , , and for some
positive integer . The proof is rather long so we divide it into
several steps.

Step 1. By Corollary 6, one may assume that is deter-
ministic. That is, takes value or . So we suppose that
there is a mapping such that if and
only if .

Step 2. In the sequel, we will need the notion of typical se-
quences. The following definition and results are gathered from
[15, Ch. 1.2].

Definition 12: Denote by the number of occurrences
of in . For any distribution on , a sequence

is called -typical with constant if

(151)

and, in addition, no with occurs in . The
set of such sequences will be denoted by .

Lemma 13: If and , then
. Consequently, for .

,
(139)

(140)

(141)

.
(142)

.
(143)

(144)

(145)
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Lemma 14: Suppose and are probability distribu-
tions on .

1) For any , as .
2) Fix . Then for sufficiently small and suffi-

ciently large , we have

(152)

Step 3. Given and , let

(153)

(154)

for some sufficiently large and

Associate the message with signal matrices of size
:

(155)

Here, each column of the matrix represents a subpulse,
and the only nonzero transmit subpulse in is the

th column. Organize the channel states ac-
cordingly as . The encoder observes the
columns of and chooses among them one that is -typical
with a sufficiently small constant . If such a vector does not
exist, the encoder claims an encoding failure and sends an
all-zero codeword. Otherwise, suppose is one that
is -typical. The encoder chooses in which the
nonzero column is

(156)
as the actual codeword and sends it through the channel. Note
that such a transmission scheme is by nature opportunistic: The
encoder only spends its cost when the instants become favorite
for transmission. By Lemma 13, is -typical
with constant . Therefore, the cost of the transmission sat-
isfies

(157)

where

(158)

and . Choosing , we
obtain from (153) and (158) that

(159)

Step 4. Given the channel output matrix
in which each column represents a receive subpulse, the de-
coder performs independent binary hypothesis tests on the
columns of . An is claimed whenever ,

, is -typical with constant ; other-
wise, an is claimed. If there is only one column for which

has been claimed, the message associated with the chosen
subpulse position gives an estimate of the message . An error
occurs if has been claimed more than once, or has been
claimed only once but .

Step 5. The error probability is clearly independent of the
message being transmitted. Assume , and all the proba-
bilities will be tacitly understood to be conditioned on that event.
The probability of decoding error can be bounded from above
as:

(160)

We next show that all three terms on the right-hand side of (160)
vanish for sufficiently small and sufficiently large . First, ,

, are i.i.d. as . By Part 2 of Lemma 14, we have

(161)
for sufficiently small and sufficiently large . It follows that

(162)

(163)

(164)

(165)

which tends to zero in the limit as . Here, (165) is due
to the well-known limit . Second, for
any , we have

(166)

(167)

(168)

where the last inequality follows from Lemma 13. By Part 1 of
Lemma 14

(169)

in the limit as . It thus follows from (168) that

(170)
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in the limit as . Finally, , ,
are i.i.d. as . By Part 2 of Lemma 14, we have

(171)

for sufficiently small (and hence sufficiently small ) and suf-
ficiently large . So we have

(172)

which tends to zero in the limit as . To summarize,
there exist and (depending on ) such that for
any and .

We now conclude from Steps 1) to 5) that is an achiev-
able capacity per unit cost for any .

B. The Converse

To prove the reverse inequality, we first bound the mutual
information from above as:

(173)

(174)

(175)

We also have

(176)

(177)

Substituting (175)–(177) into Theorem 7, we have

(178)

(179)

(180)

where, for a given , is defined as

(181)
Let be a new random variable such that

The marginal distributions satisfy

(182)

Furthermore, we have

(183)

(184)

(185)

(186)

where (184) follows from the Markov chain ,
and (186) follows from the definition of in Theorem 5.
Substituting (182) and (186) into (180), we have the desired
reverse inequality

(187)

APPENDIX C
PROOF OF COROLLARY 6

Let be an arbitrary letter in the state alphabet . Fix an
arbitrary and an arbitrary for ,
If we can show that is maximized by a deterministic

, Corollary 6 will follow.
By (66), we have

(188)

(189)

where

(190)

It follows that the divergence can be bounded
from above as shown in (191)–(193) at the top of the following
page, where (192) is due to the fact that ,
and (193) follows from the Log-Sum Inequality [15, Lemma
3.1]. The average cost can be written as

(194)

(195)

where

(196)
Substituting (191) and (195) into (65), we obtain (197)–(199)
also at the top of the following page. Note that both
and are independent of the choice of , so is
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(191)

(192)

(193)

(197)

(198)

(199)

the right-hand side of (199). Observe that both inequalities (193)
and (199) hold with equality if is a deterministic
one. This completes the proof of Cor. 6.

APPENDIX D
PROOF OF THEOREM 7

A. The Achievability

To prove the forward part of the theorem, we need to show
that is an -achievable rate per unit cost for any

and . Given , let

and

Following the random binning argument in [1, Proposition 2],
there exists a positive integer such that if , an

code can be found with

(200)

and

(201)

The same code satisfies

(202)

This holds for any . So is -achievable per unit cost
for every , and is an achievable
rate per unit cost.

B. The Converse

To prove the converse, we will show that, for small enough ,
any code must satisfy

(203)

for some . To achieve this goal, we relax the cost
constraint (64) on each codeword to the following average cost
constraint:

(204)

where the probability distribution of , , is induced by
that of the message and the states . Such a relaxation only
enlarges the class of admissible codes and hence strengthens our
converse.

We begin with Fano’s inequality which implies that every
code must satisfy

(205)

where and

(206)

is the binary entropy function of . The random variables and
are independent. So we have and

(207)

We need the following lemma which was proved in [1, Lem-
ma 4].

Lemma 15: There exist auxiliary random variables such
that forms a Markov chain for all
and

(208)

Now define a time-sharing random variable that is uni-
formly distributed over the set and is independent of all other
random variables. Let random variables , , and be

, , and , respectively when takes value . With this
definition, we have

(209)
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(210)

(211)

where (211) is due to since the distribution of
does not depend on . Similarly, we have and

because and are indepen-
dent of . Moreover, the Markov chain
holds because Markov chains hold for all

. Letting , , and
and gathering (207), (208) and (211), we have

(212)

On the other hand, by the average cost constraint (204) and the
definitions of , and , we have

(213)

Putting together (212) and (213) and letting , the desired
inequality (203) follows from the fact that tends to zero
in the limit as .
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