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Abstract

L multiple descriptions of a vector Gaussian source for individual and central re-
ceivers are investigated. The sum rate of the descriptions with covariance distortion
measure constraints, in a positive semidefinite ordering, is exactly characterized.
For two descriptions, the entire rate region is characterized. The key component
of the solution is a novel information-theoretic inequality that is used to lower
bound the achievable multiple description rates. Jointly Gaussian descriptions are
optimal in achieving the limiting rates. We also show the robustness of this de-
scription scheme: the distortions achieved are no larger when used to describe any
non-Gaussian source with the same covariance matrix.

1 Introduction

In the multiple description problem, an information source is encoded into L packets
and these packets are sent through parallel communication channels. There are several
receivers, each of which can receive a subset of the packets and needs to reconstruct
the information source from this subset. In the most general case, there are 2L − 1 re-
ceivers and the packets received at each receiver correspond to one of 2L − 1 subsets of
{1, . . . , L}. A long standing open problem in the literature [1–10] is to characterize the
information-theoretic region of packet encoding rates subject to the specified distortion
constraints on the reconstructions. Practical multiple description codes have been dis-
cussed in [11–18] and recent work [19,20] has considered the multiple description problem
in the context of the distributed source coding scenario. From a fundamental view point,
however, optimal descriptions of even the Gaussian source with quadratic distortion mea-
sures have not been fully characterized. Only in the special case of two descriptions of
a scalar Gaussian source with quadratic distortion measures, the entire rate region has
been characterized in [1].

We view the information source as a stationary and ergodic process. To simplify the
study, we consider block memoryless information sources in this paper, i.e., we model
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2The authors are with the Department of Electrical and Computer Engineering and the Coor-
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Figure 1: MD problem with only individual reconstructions and central reconstruction

the memory in information source by dividing the source sequence into blocks, and while
the different source samples inside the same block are jointly distributed, the blocks
themselves are independent and identically distributed. We can think of each block as a
random vector, and the whole source sequence as a memoryless vector stochastic process.
Specifically, our focus in this paper is on L descriptions of a memoryless vector Gaussian
source.

In this paper, we consider only L + 1 receivers – L individual and a single common
receiver (cf. Figure 1). Each receiver needs to reconstruct the original source such that
the empirical covariance matrix of the difference is less than, in the sense of a positive
semidefinite ordering, a “distortion” matrix. This form of distortion constraint is quite
general; all quadratic distortion constraints can be handled via the covariance matrix
distortion constraint. In this setting, the symmetric rate multiple description problem
of a scalar Gaussian source with symmetric distortion constraints has been characterized
in [7, 8, 10], but a complete understanding of all other rate-distortion settings is open.

Our main result is an exact characterization of the sum rate for any specified L + 1
distortion matrix constraints. With L = 2, we characterize the entire rate region. A
natural Gaussian multiple description scheme is shown to be optimal in these scenarios.
Our contribution is two fold:

• First, we derive a novel information-theoretic inequality that provides a lower bound
to the sum of the description rates. The key step is to avoid using the entropy
power inequality, which was a central part of the proof of two descriptions of the
scalar Gaussian source in [1]: the vector entropy power inequality is tight only
with a certain covariance alignment condition, which arbitrary distortion matrix
requirements do not necessarily allow.

• Second, we show that jointly Gaussian descriptions actually achieve the lower bound
not by resorting to a direct calculation and comparison, which appears to be difficult
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Figure 2: Multiple Descriptions with separate distortion constraints.

for L > 2, but instead by arguing the equivalence of certain optimization problems.

The upshot is that Gaussian multiple descriptions are optimal in terms of the sum rate
of descriptions of a vector Gaussian source. It turns out that this description scheme
is robust: for any other memoryless vector source with a fixed covariance matrix, the
distortion achieved for the Gaussian source is the largest (in a strong positive semidefinite
ordering sense).

Consider another problem of two descriptions of a pair of jointly Gaussian memoryless
sources as depicted in Figure 2. There are two encoders that describe this source to three
receivers: receiver i gets the description of encoder i, with i = 1, 2 and the third receiver
receives both the descriptions. Suppose receiver i is interested in reconstructing the ith
marginal of the jointly Gaussian source, with i = 1, 2. The third receiver is interested in
reconstructing the entire vector source. This description problem is closely related to the
vector Gaussian description problem that is the main focus of this paper. We exploit this
connection and characterize the rate region where the reconstructions have a constraint
on the covariance of error at each of the receivers (in the sense of a positive semidefinite
order).

We have organized the results in this paper as follows. In Section 2 we give a for-
mal description of the problem and summarize our main result. The derivation of an
achievable sum rate is in Section 3. In Section 4 we derive a lower bound to the sum
rate. We show that the achievable sum rate is equal to the lower bound in Section 5,
thus completing the characterization of the sum rate. For certain special cases, we can
derive more structure to the optimal Gaussian multiple description scheme: in Section 6
we focus on the scalar Gaussian source and in Section 7 we focus on two descriptions of
a vector Gaussian source. In both these cases, we provide detailed and explicit structure
to the optimal Gaussian multiple description scheme.

Moving to the description problem described in Figure 2, we use the previous results
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to resolve this problem: again, Gaussian multiple descriptions are optimal in achieving
the rate region; this is done in Section 8.1. Finally, while the characterization of the rate
region of general multiple descriptions of the Gaussian source (with each receiver having
access to some subset of the descriptions) is still open, we can use the insights derived
via our sum rate characterization to solve this problem for a nontrivial set of covariance
distortion constraints; this is done in Section 8.2. In Section 8.3 and Section 8.4 we study
the case where the source is not Gaussian. We provide upper and lower bound to sum
rate, and show that Gaussian source is the hardest to compress. The robustness of the
Gaussian distributed architecture is shown in Section 8.3.

A note about the notation in this paper: we use lower case letters for scalars, lower
case and bold face for vectors, upper case and bold face for matrices. The superscript t
denotes matrix transpose. We use IN and 0 to denote the identity matrix and the all zero
matrix respectively, and diag{p1, . . . , pn} to denote a diagonal matrix with the diagonal
entries equal to p1, . . . , pn. The partial orderÂ (<) denotes positive definite (semidefinite)
ordering: A Â B (A < B) means that A−B is a positive definite (semidefinite) matrix.
We write N (µ,Q) to denote a Gaussian random vector with mean µ and covariance Q.
All logarithms in this paper are to the natural base.

2 Problem Setting and Main Results

2.1 Problem Setting

The information source {x[m]} is an i.i.d. random process with the marginal distribution
N (0,Kx), i.e., a collection of i.i.d. Gaussian random vectors. Denoting the dimension
of {x[m]} by N , we suppose that Kx is an N × N positive definite matrix. There are
L encoding functions at the source, encoder l encodes a source sequence, of length n,
xn = (x[1], . . . , x[n])t to a source codeword f

(n)
l (xn), for l = 1 . . . L. This codeword

f
(n)
l (xn) is sent through lth communication channel at the rate Rl = 1

n
log |C(n)

l |, where

C
(n)
l is the code book of encoder l.

There are L individual receivers and one central receiver. For l = 1, . . . L, the lth
individual receiver uses its information (the output of the lth channel) to generate an

estimation x̂n
l = g

(n)
l

(
f

(n)
l (xn)

)
of the source sequence xn. The central receiver uses the

output of all the L channels to generate an estimate x̂n
0 of the source sequence xn. Since

we are interested in covariance constraints, the decoders’ maps can be restricted, without
loss of generality, to be the minimal mean square error (MMSE) estimation of the source
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sequence based on the received codewords. So,

x̂n
l = E

[
xn|f (n)

l (xn)
]
, l = 1, . . . , L

x̂n
0 = E

[
xn|f (n)

1 (xn), . . . , f
(n)
L (xn)

]
.

(1)

If the reconstructed sequences satisfy the covariance constraints

1

n

n∑
m=1

E
[
(x[m]− x̂l[m])t(x[m]− x̂l[m])

]
4 Dl, l = 1, . . . , L,

1

n

n∑
m=1

E
[
(x[m]− x̂0[m])t(x[m]− x̂0[m])

]
4 D0,

(2)

then we say that multiple descriptions with distortion constraints (D1, . . . , DL, D0) are
achievable at the rate tuple (R1, . . . , RL).

The closure of the convex hull of the set of all achievable rate tuples is called the rate-
distortion region and is denoted by R∗(Kx, D1, . . . , DL, D0). Throughout this paper,
we suppose that 0 ≺ D0 ≺ Dl ≺ Kx, ∀l = 1, . . . , L.3

2.2 A Natural Achievable Scheme

There is a natural Gaussian random multiple description scheme for the multiple de-
scription problem described in the previous section. Let w1, · · · , wL be N dimensional
zero mean jointly Gaussian random vectors independent of x, with the positive definite
covariance matrix (w1, · · · , wL) denoted by Kw. Defining

ul = x + wl, l = 1, . . . , L,

we consider Kw such that

Cov[x|ul]
def
=E

[
(x− E[x|ul])

t(x− E[x|ul])
]

4 Dl, l = 1, . . . , L,

Cov[x|u1, . . . , uL]
def
=E

[
(x− E[x|u1, . . . , uL])t(x− E[x|u1, . . . , uL])

]
4 D0.

(3)

To construct the code book for the lth description, draw enRl un
l vectors randomly ac-

cording to the marginal of ul. The encoders observe the source sequence xn, look for

3That D0 4 Dl, is without loss of generality is seen by applying the data processing inequality
for MMSE estimation errors; having more access to information can only reduce the covariance of the
error in a positive semidefinite sense. Similarly, Kx 4 D0 is also not interesting; here we simplify this
condition and take D0 ≺ Kx.
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codewords (un
1 , . . . , un

L) that are jointly typical with xn and send the index of the result-
ing un

l through the lth channel, respectively. The lth individual receiver uses this index
and generates a reproduction sequence E[xn|un

l ] for l = 1 . . . L, the central receiver uses
all the L indices to generate a reproduction sequence E[xn|un

1 , . . . , un
L]. The following

lemma gives the achievable rate region by using this scheme.

Lemma 1. For every Kw satisfying (3), the rate tuple (R1, . . . , RL) satisfying

∑

l∈S

Rl ≥
[∑

l∈S

h(ul)

]
− h(ul, l ∈ S|x) =

1

2
log

∏
l∈S

|Kx + Kwl
|

|KwS
| , ∀S ⊆ {1, . . . , L} (4)

is achievable, where KwS
is the covariance matrix for all wl, l ∈ S, and Kwl

= E[wt
lwl].

In particular, the achievable sum rate is

min
Kw

1

2
log

L∏
l=1

|Kx + Kwl
|

|Kw| . (5)

Proof. This follows from [7, Theorem 1]. For completeness, we provide a sketch of the
proof in Section 3.

We denote this ensemble of descriptions, throughout this paper, as the Gaussian de-
scription scheme and when embellished with time sharing, as the Gaussian description
strategy. Later we will show that Gaussian description schemes can achieve the optimal
sum rate.

2.3 Lower Bound to Sum Rate

We have the following lower bound on the sum rate for multiple description with indi-
vidual and central receivers for an i.i.d N (0,Kx) Gaussian source.

Theorem 1. Given distortion constraints (D1, . . . , DL, D0), the sum rate satisfies

L∑

l=1

Rl ≥ sup
KzÂ0

1

2
log



|Kx||Kx + Kz|(L−1)|D0 + Kz|

|D0|
L∏

l=1

|Dl + Kz|


 . (6)

Proof. See Section 4.
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2.4 Optimal Sum Rate

We show that the achievable sum rate (127) matches the lower bound (6), thus charac-
terizing the optimal sum rate.

Theorem 2. The achievable sum rate (127) is equal to the lower bound (6). Thus the
natural Gaussian achievable scheme is optimal in achieving the sum rate.

Proof. See Section 5.

2.5 Rate Region for Two Description Problem

Rate Region

R1

R2

0 1
2 log |Kx|

|D1|

1
2 log |Kx|

|D2|

B1

B2

Rsum

Figure 3: Rate region for two description problem

For two descriptions, we can characterize the entire rate region.

Theorem 3. Given distortion constraints (D1, D2, D0), the rate region for the two
description problem for an i.i.d. N (0,Kx) vector Gaussian source is

R∗(Kx, D1, D2, D0) =





(R1, R2) :

Rl ≥ 1

2
log

|Kx|
|Dl| , l = 1, 2

R1 + R2 ≥ sup
KzÂ0

1

2
log

|Kx||Kx + Kz||D0 + Kz|
|D0||D1 + Kz||D2 + Kz|





. (7)

Further, this region is achieved by the Gaussian description strategy.
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Proof. This is a generalization of the classical result [1] on the problem of two descriptions
of a scalar Gaussian source. The achievability follows from Lemma 1. The proof of the
optimality of the Gaussian description strategy is in Section 7.2.

In some situations, we can explicitly solve for the optimizing Kz in Equation (7).

Proposition 1. Let Kwl
= [D−1

l −K−1
x ]−1 for l = 0, 1, 2. If the distortion constraints

(D1, D2, D0) satisfy D0 + Kx −D1 −D2 Â 0 and D−1
0 + K−1

x −D−1
1 −D−1

2 Â 0, then
the optimizing Kz in the sum rate of equation (7) is

Kz = Kx(Kx −A∗)−1Kx −Kx, (8)

where A∗ is given by the solution of the matrix Riccati equation

(Kw1 + A∗)(Kw1 −Kw0)
−1(Kw1 + A∗) = 2A∗ + Kw1 + Kw2 (9)

for A∗ whose solution is

A∗ = (Kw1−Kw0)
1
2

[
(Kw1 −Kw0)

− 1
2 (Kw2 −Kw0)(Kw1 −Kw0)

− 1
2

] 1
2
(Kw1−Kw0)

1
2−Kw0 ,

(10)

Proof. The proof is in Section 7.1.

An illustration of the rate region is shown in Figure 3. Letting Rsum denote the optimal
sum rate, the two corner points in Figure 3 are

B1 =

(
1

2
log

|Kx|
|D1| , Rsum − 1

2
log

|Kx|
|D1|

)
, and

B2 =

(
Rsum − 1

2
log

|Kx|
|D2| ,

1

2
log

|Kx|
|D2|

)
.

(11)

3 Proof of Achievable Sum Rate

In this section we first give a sketch of the achievable sum rate (127). A rigorous proof can
be found in [7]. We then discuss an important combinatorial property of the achievable
region.
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3.1 Achievable Rate Region

By using the Gaussian description scheme described in Section 2.2, we can see that given
the source sequence xn, as long as we can find a combination of codewords (un

1 , . . . , un
L)

that is jointly typical with xn, all the receivers can generate reproduction sequences
that satisfy their given distortion constraints. An intuitive way to understand (4) is the
following: since (un

1 , . . . , un
L) is jointly typical with xn, then for any S ⊆ {1, . . . , L},

we have that un
l , l ∈ S is jointly typical with xn. Now the probability that a randomly

generated combination of codewords un
l , l ∈ S are jointly typical with xn is roughly

enh(ul,l∈S|x)

∏
l∈S

enh(ul)
, (12)

and the number of possible combination of codewords un
l , l ∈ S are

∏
l∈S

enRl . Thus, as

long as
∑

l∈S

Rl ≥
[∑

l∈S

h(ul)

]
− h(ul, l ∈ S|x), (13)

we can find a combination of codewords un
l , l ∈ S that are jointly typical with xn.

Rigorously speaking, we need to show that as long as (13) is satisfied for all S, then for
any given source sequence xn we can find a combination of codewords (un

1 , . . . , un
L) such

that un
l , l ∈ S are jointly typical with xn for all S ⊆ {1, . . . , L}. The second moment

method [21] is commonly used to address this aspect, and a proof of (13) can be found
in [7].

Evaluating (13) based on the Gaussian distribution of x and u1, . . . , uL, we get that
all the rate tuples (R1, . . . , RL) satisfying

∑

l∈S

Rl ≥
[∑

l∈S

h(ul)

]
− h(ul, l ∈ S|x) =

1

2
log

∏
l∈S

|Kx + Kwl
|

|KwS
| , ∀S ⊆ {1, . . . , L} (14)

are achievable by the Gaussian description scheme. In particular, we have that the
achievable sum rate is

[
L∑

l=1

h(ul)

]
− h(u1, . . . , uL|x) =

1

2
log

L∏
l=1

|Kx + Kwl
|

|Kw| . (15)

We can get the optimal sum rate achieved by Gaussian description schemes through
minimizing (15) over all covariance matrix Kw satisfying the distortion constraint and
get (127).
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The resulting distortions (D∗
1, . . . , D∗

L, D∗
0) by using the Gaussian description scheme

can be calculated as

D∗
l =Cov[x|ul] = [K−1

x + K−1
wl

]−1, l = 1, . . . , L,

D∗
0 =Cov[x|u1, . . . , uL] = [K−1

x + (IN , . . . , IN)K−1
w (IN , . . . , IN)t]−1.

(16)

3.2 Combinatorial Property of the Achievable Region

The achievable region given in (13) has useful combinatorial properties; in particular it
belongs to the class of contra-polymatroids [22, 23]. Certain rate regions of the multiple
access channel [24] and distributed source coding problems [25] are also known to have
this specific combinatorial property.

To see this, let

φ(S)
def
=

[∑

l∈S

h(ul)

]
− h(ul, l ∈ S|x), S ⊆ {1, . . . , L}. (17)

We can readily verify that

φ(S ∪ {t}) ≥ φ(S), ∀t ∈ {1, . . . , L},
φ(S ∪ T ) + φ(S ∩ T ) ≥ φ(S) + φ(T ).

(18)

By definition of contra-polymatroids [22,23], we conclude that the achievable rate region
of a Gaussian multiple description scheme is a contra-polymatroid. The key advantage
of this combinatorial property is that we can exactly characterize the vertices of the
achievable rate region (13). Letting π to be a permutation on {1, . . . , L}, define

b
(π)
1

def
= φ({π(1)}),

b
(π)
i

def
= φ({π(1), π(2), . . . , π(i)})− φ({π(1), π(2), . . . , π(i− 1)}), i = 2, . . . , L

(19)

and b(π) =
(
b
(π)
1 , . . . , b

(π)
L

)
, then the L! points {b(π), π a permutation} are the vertices of

the contra-polymatroid (13).
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4 Lower Bound to the Sum Rate

By fairly procedural steps, we have the following lower bound to the sum rate of the
multiple descriptions:

n

L∑

l=1

Rl ≥
L∑

l=1

H(Cl) =

[
L∑

l=1

H(Cl)

]
−H(C1, . . . , CL|xn)

=

[
L∑

l=1

H(Cl)

]
−H(C1, · · · , CL) + H(C1, . . . , CL)−H(C1, . . . , CL|xn)

=I(C1; C2; . . . ; CL) + I(C1, . . . , CL;xn),

(20)

where we have defined

I(C1; C2; . . . ; CL)
def
=

[
L∑

l=1

H(Cl)

]
−H(C1, . . . , CL) =

L∑

l=2

I(Cl; C1 . . . Cl−1), (21)

and called it the symmetric mutual information between C1, . . . , CL. Note that
I(C1; C2; . . . ; CL) ≥ 0 and is also well defined even when C1, . . . , CL are continuous
random variables. We have the following information theoretic inequality which gives a
lower bound to the sum of symmetric mutual information between (C1, C2, . . . , CL) and
mutual information between C1, C2, . . . , CL and xn for given covariance constraints.

Lemma 2. Let xn = (x[1], . . . , x[n]), where x[m]’s are i.i.d. N (0,Kx) Gaussian ran-
dom vectors for m = 1, . . . , n. Let C1, . . . , CL be random variables jointly distributed
with xn. Let x̂n

0 = E[xn|C1, . . . , CL] and x̂n
l = E[xn|Cl] for l = 1, . . . , L. Given positive

definite matrices D1, . . . , DL, D0, if

1

n

n∑
m=1

E[(x[m]− x̂l[m])t(x[m]− x̂l[m])] 4 Dl, l = 1, . . . , L,

1

n

n∑
m=1

E[(x[m]− x̂0[m])t(x[m]− x̂0[m])] 4 D0,

(22)

then

I(C1; C2; . . . ; CL)+I(C1, . . . , CL;xn) ≥ sup
KzÂ0

n

2
log

|Kx||Kx + Kz|(L−1)|D0 + Kz|
|D0|

L∏
l=1

|Dl + Kz|
. (23)

Furthermore, there exists a Gaussian distribution of (C1, . . . , CL,xn) such that the in-
equality in (23) is tight.
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Proof. See Appendix B.

This is a fundamental information-theoretic inequality which involves only the joint
distribution4 between C1, C2, . . . , CL and xn and bounds on mean square error estimation
of xn from C1, C2, . . . , CL. We can now use Lemma 2 to derive a lower bound to the sum
rate

L∑

l=1

Rl ≥ sup
KzÂ0

1

2
log

|Kx||Kx + Kz|(L−1)|D0 + Kz|
|D0|

L∏
l=1

|Dl + Kz|
. (24)

By letting L = 1 in the lemma above, we can derive a simple lower bound to the rate
of the individual descriptions as well:

Rl ≥ 1

n
H(Cl) =

1

n

(
H(Cl)−H(Cl|xn)

)

=
1

n
I(xn; Cl)

≥ 1

2
log

|Kx|
|Dl| , l = 1, . . . , L.

(25)

This bound is actually the point-to-point rate-distortion function for individual receivers,
since each individual receiver only faces a point-to-point compression problem.

From the proof in Appendix B we can see that for any positive definite Kz,

1

2
log

|Kx||Kx + Kz|(L−1)|D0 + Kz|
|D0|

L∏
l=1

|Dl + Kz|

is a lower bound to the sum rate of the multiple descriptions. Two special choices of Kz

are of particular interest:

• Letting Kz = εIN and ε → 0+, we have the following lower bound:

L∑

l=1

Rl ≥ 1

2
log

|Kx|L
|D1| . . . |DL| . (26)

This bound is actually the summation of the bounds on the individual rates.

4This inequality holds even when C1, C2, . . . , CL are not simply functions of xn and can also be
continuous random variables.
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• Letting some eigenvalues of Kz to go to infinity, we have the following lower bound:

L∑

l=1

Rl ≥ 1

2
log

|Kx|
|D0| . (27)

This bound is the point-to-point rate-distortion function when we only have the
central distortion constraint.

We will see later that for some distortion constraints (D1, . . . , DL, D0), (26) and (27)
can be tight.

5 Comparison of Upper Bound and the Lower Bound

Our goal is to show that the Gaussian description scheme achieves the lower bound to
the sum rate, i.e., we need to show that two optimization problems (127) and (6) have
the same optimal value. In general it does not seem facile to do a direct calculation and
comparison. We forgo this strategy and, instead, provide an alternative characterization
of the achievable sum rate using which a comparison with the lower bound is much easier.

Similar to the derivation of the lower bound (in Appendix B), we consider an N (0,Kz)
Gaussian random vector z, independent of x and all wl’s. Defining y = x + z, we have
the following achievable sum rate:

L∑

l=1

Rl =

[
L∑

l=1

h(ul)

]
− h(u1, . . . , uL|x)

=

[
L∑

l=1

h(ul)

]
− h(u1, . . . , uL) + h(u1, . . . , uL)− h(u1, . . . , uL|x)

=

[
L∑

l=1

h(ul)

]
− h(u1, · · · ,uL) + I(u1, . . . , uL;x)

(a)

≥
[

L∑

l=1

h(ul)

]
− h(u1, · · · ,uL) + I(u1, . . . , uL;x)

−
([

L∑

l=1

h(ul|y)

]
− h(u1, . . . , uL|y)

)

=

[
L∑

l=1

(
h(y)− h(y|ul)

)
]
− h(y) + h(y|u1, . . . , uL) + h(x)− h(x|u1, . . . , uL)
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= h(x) + (L− 1)h(y)−
[

L∑

l=1

h(y|ul)

]
+ h(y|u1, . . . , uL)− h(x|u1, . . . , uL)

=
1

2
log

∣∣∣Kx

∣∣∣
∣∣∣Kx + Kz

∣∣∣
(L−1)∣∣∣Cov[x|u1, . . . , uL] + Kz

∣∣∣
∣∣∣Cov[x|u1, . . . , uL]

∣∣∣
L∏

l=1

∣∣∣Cov[x|ul] + Kz

∣∣∣
, (28)

where the last step is from a procedural Gaussian MMSE calculation.

Note that if we have
[

L∑

l=1

h(ul|y)

]
− h(u1, . . . , uL|y) = 0, (29)

then (a) in (28) is actually an equality. Thus, if our choice of Kw and Kz satisfy the
following two conditions:

• (29) is true.

• distortion constraints are met with equality, i.e.,

Cov[x|ul] = Dl, l = 1, . . . , L,

Cov[x|u1, . . . , uL] = D0,
(30)

then the upper bound matches the lower bound and we have characterized the sum rate.

In the following we examine under what circumstances the above two conditions are
true. First, we give a necessary and sufficient condition for (29) to be true.

Proposition 2. There exists a positive definite Kz such that (29) is true if and only if
Kw, the covariance matrix of (w1, · · · , wL), takes the following form

Kw =




Kw1 −A −A . . . −A
−A Kw2 −A . . . −A
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−A . . . −A KwL−1

−A
−A . . . −A −A KwL




, (31)

where
A = Kx −Kx(Kx + Kz)

−1Kx (32)

for this covariance matrix Kz.

Proof. See Appendix C.
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Next, we look at the conditions for (30) to be true. From (16), we have

D−1
l = Cov[x|ul]

−1 = K−1
x + K−1

wl
, l = 1, . . . , L

D−1
0 = Cov[x|u1, . . . , uL]−1 = K−1

x + (IN , . . . , IN)K−1
w (IN , . . . , IN)t.

(33)

(IN , IN , . . . , IN)K−1
w (IN , IN , . . . , IN)t is calculated in the following lemma.

Lemma 3. Let Kw be given by (31) but with an arbitrary A º 0. If Kw Â 0, then

(IN , IN , . . . , IN)K−1
w (IN , IN , . . . , IN)t =




(
L∑

l=1

(Kwl
+ A)−1

)−1

−A



−1

. (34)

Proof. See Appendix D.

Using this lemma, from (33) we arrive at

[
(D−1

0 −K−1
x )−1 + A

]−1
=

L∑

l=1

[
(D−1

l −K−1
x )−1 + A

]−1
. (35)

Defining
Kw0 = (D−1

0 −K−1
x )−1, (36)

(33) is equivalent to

[Kw0 + A]−1 =
L∑

l=1

[Kwl
+ A]−1 . (37)

Thus, if there exists a positive definite solution A to (37), and the corresponding Kw is
positive definite, then the distortion constraints are met with equality, i.e., (30) holds.
It turns out that as long as A is a solution to (37), the resulting Kw is always positive
definite; we state this formally below.

Lemma 4. If for some Kw0 Â 0 and A Â 0 (37) is true, then the covariance matrix Kw

defined in (31) is positive definite.

Proof. See Appendix E.

We summarize the state of affairs in the following theorem.

Theorem 4. Given distortion constraints (D1, . . . , DL,D0), let

Kwl
= (D−1

l −K−1
x )−1, l = 0, 1, . . . , L. (38)

If there exists a solution A∗ to (37) and 0 ≺ A∗ ≺ Kx, then the Gaussian description
scheme with Kw defined in (31) with A = A∗ achieves the optimal sum rate, and the
optimal Kz for lower bound (6) is Kz = Kx(Kx −A∗)−1Kx −Kx.
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Now we proceed to the proof of Theorem 2. From Theorem 4 we know that the Gaus-
sian description scheme achieves the optimal sum rate if the given distortion constraints
(D1, . . . , DL,D0) satisfy the condition for Theorem 4, and we can calculate the optimal
Kw by solving a matrix equation. To complete the proof of Theorem 2, we need also
consider the case that for arbitrarily given distortion constraints, (37) may not have a
solution A∗ such that 0 ≺ A∗ ≺ Kx. In the following, we show that in this case there
exists a Gaussian description scheme that achieves the sum rate lower bound, and results
in distortions (D∗

1, . . . , D∗
L,D∗

0) such that D∗
l 4 Dl for l = 0, 1, . . . , L.

Proof of Theorem 2. We draw the connection between solution to (37) and the solution
to an optimization problem. First, note that by a linear transformation at the encoders
and the decoders, we have the following result on rate region for multiple description
with individual and central receivers.

Proposition 3.

R∗(Kx, D1, . . . , ,DL, D0) = R∗(IN , K
− 1

2
x D1K

− 1
2

x , . . . , ,K
− 1

2
x DLK

− 1
2

x , K
− 1

2
x D0K

− 1
2

x ).
(39)

Thus, throughout this proof we will suppose, for notation simplicity, that Kx = IN .

Given distortion constraints (D1, . . . DL, D0), let

Kwl
= (D−1

l − IN)−1, l = 0, 1, . . . , L, (40)

and define

f(A)
def
= [Kw0 + A]−1 −

L∑
l=1

[Kwl
+ A]−1 , (41)

F (A)
def
= log |Kw0 + A| −

L∑
l=1

log |Kwl
+ A|. (42)

Note that
dF (A)

dA
= f(A). (43)

Consider the following optimization problem:

max
04A4IN

F (A). (44)

Now, since F (A) is a continuous map and 0 4 A 4 IN is a compact set, there ex-
ists an optimal solution A∗ to (44) where A∗ satisfies the Karush-Kuhn-Tucker (KKT)
conditions [28, Section 5.5.3]: there exist Λ1 < 0 and Λ2 < 0 such that

f(A∗) + Λ1 −Λ2 = 0 (45)

Λ1A
∗ = 0 (46)

Λ2(A
∗ − IN) = 0. (47)
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Now A∗ falls into the following four cases.

Case 1: 0 ≺ A∗ ≺ I. Alternatively, 0 and 1 are not eigenvalues of A∗. In this case,
Λ1 = 0 and Λ2 = 0; thus the KKT conditions in (45) reduce to

f(A∗) = 0.

Equivalently,

[Kw0 + A∗]−1 =
L∑

l=1

[Kwl
+ A∗]−1 . (48)

From Theorem 4, the Gaussian description scheme with covariance matrix for w1, . . . , wL

being

Kw =




Kw1 −A∗ −A∗ . . . −A∗

−A∗ Kw2 −A∗ . . . −A∗

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−A∗ . . . −A∗ KwL−1

−A∗

−A∗ . . . −A∗ −A∗ KwL




(49)

achieves the lower bound to the sum rate. Thus in this case, we have characterized
the optimality of the Gaussian description scheme parameterized by (49) in terms of
achieving the sum rate.

Case 2: 0 4 A∗ ≺ IN . Alternatively, some eigenvalues of A∗ are 0, but no eigenvalues
of A∗ are 1. Thus Λ2 = 0 and the KKT conditions in (45) reduce to

(Kw0 + A∗)−1 −
L∑

l=1

(Kwl
+ A∗)−1 + Λ1 = 0, (50)

for some Λ1 < 0 satisfying Λ1A
∗ = 0. The key idea now is to see that the distortion

constraint on the central receiver is too loose and we can in fact achieve a lower distortion
(in the sense of positive semidefinite ordering) for the same sum rate. We first identify
this lower distortion: defining

K∗
w0

=
(
K−1

w0
+ Λ1

)−1
, (51)

consider the smaller distortion matrix on the central receiver

D∗
0 =

(
K∗

w0

−1 + IN

)−1
=

(
IN + K−1

w0
+ Λ1

)−1
= (D−1

0 + Λ1)
−1 ≺ D0. (52)

This new distortion matrix on the central receiver satisfies two key properties, that we
state as a lemma.

Lemma 5.

(Kw0 + A∗)−1 + Λ1 = (K∗
w0

+ A∗)−1, (53)

|D0 + Kz|
|D0| =

|D∗
0 + Kz|
|D∗

0|
. (54)
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Proof. See Appendix F.

Comparing (50) with (53), we have

[
K∗

w0
+ A∗]−1

=
L∑

l=1

[Kwl
+ A∗]−1 . (55)

Now, the corresponding Kz = (IN −A∗)−1 − IN is singular. If it had not been, then by
Theorem 4 we could have concluded that the Gaussian description scheme achieves the
lower bound to the sum rate. We now address this technical difficulty.

Our first observation is that there exists δ > 0 such that for all ε ∈ (0, δ) we have
0 ≺ A + εIN ≺ IN , and 0 ≺ K∗

w0
− εIN , 0 ≺ Kwl

− εIN , and we can rewrite (55) as

[
(K∗

w0
− εIN) + (A∗ + εIN)

]−1
=

L∑

l=1

[
(Kwl

− εIN) + (A∗ + εIN)
]−1

. (56)

Thus if the distortion constraints were (D1(ε), . . . , DL(ε), D0(ε)) with

Dl(ε) =
[
(Kwl

− εIN)−1 + IN

]−1
, l = 1, . . . , L,

D0(ε) =
[
(K∗

w0
− εIN)−1 + IN

]−1
,

then A∗ + εIN is a solution to (56). This situation corresponds to that discussed in Case
I; we can conclude that sum rate for this modified distortion multiple description problem
is

1

2
log

|IN + Kz(ε)|(L−1)|D0(ε) + Kz(ε)|
|D0(ε)|

L∏
l=1

|Dl(ε) + Kz(ε)|
, (57)

where Kz(ε) = [IN − (A∗ + εIN)]−1 − IN . We would like to let ε approach zero and
consider the limiting multiple description problem. In particular, we show that

Dl(ε) → Dl, l = 1, . . . , L, (58)

D0(ε) → D∗
0, (59)

as ε → 0 in Appendix G. Further, we show that

Kz(ε) → (IN −A∗)−1 − IN , (60)

as ε → 0 in Appendix H. Thus we can conclude that the sum rate approaches, using
(54),

1

2
log

|IN + Kz|(L−1)|D0 + Kz|
|D0|

L∏
l=1

|Dl + Kz|
, (61)
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as ε → 0; here Kz = (IN − A∗)−1 − IN . We observe that this sum rate is achievable
using the Gaussian multiple description scheme. Further, this sum rate is identical to
the lower bound to sum rate for the original distortions (D1, . . . , DL, D0). Thus we
conclude the optimality of the Gaussian description scheme in this case as well.

Case 3: 0 ≺ A∗ 4 IN . Alternatively, some eigenvalues of A∗ are 1, but no eigenvalues
of A∗ are 0. In this case, the Λ1 = 0 and the KKT conditions in (45) reduce to

(Kw0 + A∗)−1 −
L∑

l=1

(Kwl
+ A∗)−1 −Λ2 = 0, (62)

for some Λ2 < 0 satisfying Λ2(A
∗ − IN) = 0. Defining

K∗
wl

=
[
(Kwl

+ IN)−1 + Λ2

]−1 − IN , (63)

we have, as in (53), that

(Kwl
+ A∗)−1 + Λ2 = (K∗

wl
+ A∗)−1. (64)

The observation

(Kwl
+ A∗)−1 + Λ2 = [(Kwl

+ IN) + (A∗ − IN)]−1 + Λ2, (65)

combined with the proof of (53) suffices to justify (64). Now, from (64),

(Kw0 + A∗)−1 −
L−1∑

l=1

(Kwl
+ A∗)−1 − (K∗

wL
+ A∗)−1 = 0. (66)

As in the previous case, the key step is to identify smaller distortion matrices at each of
the individual receivers (ordered in the positive semidefinite sense) that are achievable
at the same sum rate:

D∗
l =

[
K∗

wl

−1 + IN

]−1
, l = 1, . . . , L. (67)

To see that this is indeed a smaller distortion matrix, observe that since Kw is positive
definite, it follows that K∗

wl
Â 0 and

D∗
l =

[
K∗

wl

−1 + IN

]−1

=

[((
(Kwl

+ IN)−1 + Λ2

)−1 − IN

)−1

+ IN

]−1

=
[
IN − (Kwl

+ IN)−1 −Λ2

]

= [IN + Kwl
]−1 −Λ2

= Dl −Λ2, l = 1, . . . , L.

(68)
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Since Λ2 < 0, it follows that 0 ≺ D∗
l 4 Dl, l = 1, . . . , L. Define

Dl(ε) =
[
(Kwl

+ εIN)−1 + IN

]−1
, l = 0, 1, . . . , L− 1,

DL(ε) =
[
(K∗

wL
+ εIN)−1 + IN

]−1
,

(69)

then there exists δ > 0 such that for all ε ∈ (0, δ) we have 0 ≺ A∗ − εIN ≺ IN , and
0 ≺ Dl(ε) ≺ IN . We can rewrite (66) as

[(Kw0 + εIN) + (A∗ − εIN)]−1 =
L−1∑

l=1

[(Kwl
+ εIN) + (A∗ − εIN)]−1+

[
(K∗

wL
+ εIN) + (A∗ − εIN)

]−1
.

(70)
Thus if the distortion constraints were (D1(ε), . . . , DL(ε), D0(ε)), then A∗ − εIN is a
solution to (70). This situation corresponds to that discussed in Case I; we conclude that
the sum rate for this modified distortion multiple description problem is

1

2
log

|IN + Kz(ε)|(L−1)|D0(ε) + Kz(ε)|
|D0(ε)|

L∏
l=1

|Dl(ε) + Kz(ε)|
, (71)

where Kz(ε) = [IN − (A∗ − εIN)]−1 − IN . We would like to let ε approach zero and
consider the limiting multiple description problem. Similar to equations (58) and (59),
we have

Dl(ε) → Dl, l = 1, . . . L,

D0(ε) → D∗
0.

(72)

Further, we show that

lim
ε→0

|IN + Kz(ε)|(L−1)|D0(ε) + Kz(ε)|
|

L∏
l=1

|Dl(ε) + Kz(ε)|
= 1 (73)

in Appendix I. We can now conclude that the sum rate approaches

1

2
log

1

|D0| (74)

as ε approaches 0. In other words, the point-to-point rate-distortion function for central
receiver with distortion D0 can be achieved by using the Gaussian description scheme,
and the resulting distortion is (D1, . . . , D∗

L, D0) where 0 ≺ D∗
L 4 DL. In conclusion,

the Gaussian description scheme is also optimal in this case.
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Case 4: 0 4 A∗ 4 IN . i.e., both 0 and 1 are eigenvalues of A∗. In this case, the KKT
conditions are: there exist Λ1 < 0 and Λ2 < 0 such that equations (45), (46) and (47)
hold. We can combine equations (53) and (64) to get

(K∗
w0

+ A∗)−1 =
L−1∑

l=1

(Kwl
+ A∗)−1 + (K∗

wL
+ A∗)−1, (75)

where

K∗
w0

=
(
K−1

w0
+ Λ1

)−1
,

K∗
wL

=
[
(KwL

+ IN)−1 + Λ2

]−1 − IN .
(76)

As in cases 2 and 3, we want to show the optimality of the Gaussian multiple description
scheme through a limiting procedure. We do this by first perturbing A∗ so that it has
no eigenvalue equal to 0 or 1 as follows.

Without loss of generality, suppose that A∗ has p eigenvalues equal to 0 and q eigen-
values equal 1, where p > 0 and q > 0, and there exists N ×N orthogonal matrix Q such
that

QA∗Qt = diag{0, . . . , 0︸ ︷︷ ︸
p

, 1, . . . , 1︸ ︷︷ ︸
q

, ap+q+1, . . . , aN}, (77)

with 0 < ap+q+1 < 1, . . . , 0 < aN < 1. We need to perturb the eigenvalues of A∗ away
from both 0 and 1. Towards this, we define two N ×N diagonal matrices:

E1 = diag(1, . . . , 1︸ ︷︷ ︸
p

, 0, . . . , 0, 0, . . . , 0︸ ︷︷ ︸
N−p

),

E2 = diag(0, . . . , 0︸ ︷︷ ︸
p

, 1, . . . , 1︸ ︷︷ ︸
q

, 0, . . . , 0),
(78)

Also define

A∗(ε1, ε2) = A∗ + Qt(ε1E1 − ε2E2)Q,

Kz(ε1, ε2) = (IN −A∗(ε1, ε2))
−1 − IN ,

Kwl
(ε1, ε2) = Kwl

−Qt(ε1E1 − ε2E2)Q, l = 1, . . . , L− 1,

KwL
(ε1, ε2) = K∗

wL
−Qt(ε1E1 − ε2E2)Q,

Kw0(ε1, ε2) = K∗
w0
−Qt(ε1E1 − ε2E2)Q.

(79)

Further, defining

Dl(ε1, ε2) = (IN + Kwl
(ε1, ε2))

−1, l = 1, . . . , L, (80)
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there exists δ > 0 such that for all ε1 ∈ (0, δ) and ε2 ∈ (0, δ) we have 0 ≺ A∗(ε1, ε2) ≺ IN ,
and 0 ≺ Dl(ε1, ε2) ≺ IN . Now, we can rewrite (75) as

[
Kw0(ε1, ε2) + A∗(ε1, ε2)

]−1

=
L∑

l=1

[
Kwl

(ε1, ε2) + A∗(ε1, ε2)
]−1

. (81)

Thus if the distortion constraints were (D1(ε1, ε2), . . . , DL(ε1, ε2), D0(ε1, ε2)), then
A∗(ε1, ε2) is a solution to (81). This situation corresponds to that discussed in Case I;
we conclude that the sum rate for this modified distortion multiple description problem
is

1

2
log

|IN + Kz(ε1, ε2)|(L−1)|D0(ε1, ε2) + Kz(ε1, ε2)|
|D0(ε1, ε2)|

L∏
l=1

|Dl(ε1, ε2) + Kz(ε1, ε2)|
, (82)

where Kz(ε1, ε2) = [IN −A∗(ε1, ε2)]
−1 − IN . We would like to let ε1 and ε2 approach

zero and consider the limiting multiple description problem. Similar to equations (58)
and (59), when ε1 and ε2 approach 0, we get

Dl(ε1, ε2) → Dl, l = 1, . . . , L− 1,

DL(ε1, ε2) → D∗
L,

D0(ε1, ε2) → D∗
0,

(83)

where D∗
L = DL − Λ2 as in case 3 and D∗

0 = [D−1
0 + Λ−1

1 ]−1 as in case 2. Further, we
show that

lim
ε2→0

lim
ε1→0

1

2
log

|IN + Kz(ε1, ε2)|(L−1)|D0(ε1, ε2) + Kz(ε1, ε2)|
|D0(ε1, ε2)|

L∏
l=1

|Dl(ε1, ε2) + Kz(ε1, ε2)|
=

1

2
log

1

|D0| (84)

in Appendix J. We conclude that the sum rate approaches

1

2
log

1

|D0| (85)

as ε1 and ε2 approach 0. Thus the point-to-point rate-distortion function for central
receiver with distortion D0 can be achieved by using the Gaussian description scheme, and
the resulting distortions are (D1, . . . , D∗

L, D∗
0) where 0 ≺ D∗

L 4 DL and 0 ≺ D∗
0 4 D0.

In other words, the Gaussian multiple description scheme is also optimal in this case.

To summarize, we see that the Gaussian description scheme achieves the limiting sum
rate. The limiting sum rate is the solution to an optimization problem. For some specific
distortion constraints, the sum rate can be characterized as the solution to a matrix poly-
nomial equation (Case 1). In the following we study two examples: the scalar Gaussian
source and two descriptions of the vector Gaussian source.

22



6 Scalar Gaussian Source

Here we suppose that the information source is an i.i.d. sequence of N (0, σ2
x) scalar

Gaussian random variables. Let individual distortion constraints be (d1, . . . , dL) and the
central distortion constraints be d0, where 0 < d0 < dl < σ2

x for l = 1, . . . , L. Consider
the Gaussian description scheme with the following covariance matrix for w1, . . . , wl:

Kw =




σ2
1 −a −a . . . −a

−a σ2
2 −a . . . −a

. . . . . . . . . . . . . . . . . . . . . . . .
−a . . . −a σ2

L−1 −a
−a . . . −a −a σ2

L




. (86)

Consider the condition for Theorem 4 to hold: to meet the individual distortion con-
straint with equality, we need

σ2
l = (d−1

l − σ−2
x )−1 =

dlσ
2
x

σ2
x − dl

, l = 1, . . . , L. (87)

Letting

σ2
0

def
= (d−1

0 − σ−2
x )−1 =

d0σ
2
x

σ2
x − d0

, (88)

we need
[
σ2

0 + a
]−1

=
L∑

l=1

[
σ2

l + a
]−1

(89)

to have a solution a∗ ∈ (0, σ2
x), to meet the central distortion constraint with equality.

Towards this, define

f(a)
def
=

1

σ2
0 + a

−
L∑

l=1

1

σ2
l + a

, (90)

and we have

f(0) =
1

σ2
0

−
L∑

l=1

1

σ2
l

=
1

d0

+
L− 1

σ2
x

−
L∑

l=1

1

dl

,

f(σ2
x) =

1

σ2
0 + σ2

x

−
L∑

l=1

1

σ2
l + σ2

x

=
1

σ4
x

(
L∑

l=1

dl − d0 − (L− 1)σ2
x

)
.

(91)

Using induction, we can show that

(
L∑

l=1

1

dl

− L− 1

σ2
x

)−1

≥
L∑

l=1

dl − (L− 1)σ2
x. (92)
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Thus we have

f(0) ≤ 0 ⇒ f(σ2
x) ≤ 0,

f(σ2
x) ≥ 0 ⇒ f(0) ≥ 0.

Then given distortions (d1, . . . , dL, d0), f(0) and f(σ2
x) falls into the following three

cases.

Case 1: f(0) > 0 and f(σ2
x) < 0.

In this case, since f(a) is a continuous function, from intermediate value theorem [29,
Page 48] we know that there exists an a∗ ∈ (0, σ2

x) such that f(a∗) = 0. In this case the
condition for Theorem 4 holds and from Theorem 4 we know that Gaussian description
scheme with covariance matrix for w1, . . . , wl being (86) with a = a∗ achieves the
optimal sum rate.

Case 2: f(0) ≤ 0. Alternatively, 1
d0

+ L−1
σ2

x
−

L∑
l=1

1
dl
≤ 0.

In this case, the condition for Theorem 4 does not hold. But the Gaussian description
scheme can still achieve the sum rate. To see this, choosing a = 0 in Kw we can meet
individual distortions with equality and get a central distortion d′0. From (33) we have

1

d′0
=

1

σ2
x

+ (1 1 . . . 1)K−1
w (1 1 . . . 1)t

=
1

σ2
x

+
L∑

l=1

1

σ2
l

=
L∑

l=1

1

dl

− L− 1

σ2
x

≥ 1

d0

.

(93)

Hence we have achieved distortion (d1, . . . , dL, d′0) where d′0 ≤ d0, and from (15) the
achievable sum rate is

L∑

l=1

Rl ≥ 1

2
log

σ2L
x

d1d2 · · · dL

, (94)

which equals the sum of our bounds on individual rates.

Case 3: f(σ2
x) ≥ 0, Alternatively,

L∑
l=1

dl − d0 − (L− 1)σ2
x ≥ 0.

In this case, the conditions for Theorem 4 do not hold as well. But the Gaussian
description strategy still achieves the sum rate. To see this, note that we can find a d′L
such that 0 < d′L ≤ dL and

L−1∑

l=1

dl + d′L − d0 − (L− 1)σ2
x = 0, (95)
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and we choose a = σ2
x, σ2

l = (d−1
l − σ−2

x )−1 for l = 1, · · · , L− 1, and σ2
L = (d′−1

L − σ−2
x )−1

in Kw. Defining σ2
0 = (d−1

0 − σ−2
x )−1, (95) is equivalent to the following equation:

[
σ2

0 + σ2
x

]−1
=

L∑

l=1

[
σ2

l + σ2
x

]−1
. (96)

From Lemma 4, our choice of Kw is positive definite. Thus the resulting distortions are
(d1, . . . , dL−1, d′L, d0), where 0 < d′L ≤ dL.

Using the determinant equation

∣∣∣∣∣∣∣∣∣∣∣∣

σ2
1 −σ2

x −σ2
x −σ2

x . . . −σ2
x

−σ2
x σ2

2 −σ2
x −σ2

x . . . −σ2
x

−σ2
x −σ2

x σ2
3 −σ2

x . . . −σ2
x

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−σ2

x . . . −σ2
x −σ2

x σ2
L−1 −σ2

x

−σ2
x . . . −σ2

x −σ2
x −σ2

x σ2
L

∣∣∣∣∣∣∣∣∣∣∣∣

=
(
1−

L∑

l=1

σ2
x

σ2
l + σ2

x

) L∏

l=1

(σ2
l + σ2

x) (97)

and (96), we have an achievable sum rate

L∑

l=1

Rl =
1

2
log

σ2
x

d0

. (98)

We conclude that in this case the point-to-point rate-distortion bound for the central
receiver is achievable.

In summary, we have shown that the Gaussian description scheme achieves the lower
bound on the sum rate5. Further, the sum rate can be calculated either trivially (by
choosing a∗ = 0 in case 2 or a∗ = 1 in case 3) or by solving a polynomial equation in a
single variable (case 1).

7 Two-Description Problem

In this section, we first show that when there are only two descriptions, we can explicitly
solve (37) for some cases of distortion constraints. Then we show that we can characterize
the entire optimal rate region for two description problem.

5If all the individual distortion constraints are equal and all descriptions have the same rate, our
result reduce to the the symmetrical rate point result given in [7, Section V].
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7.1 Explicit Solutions for Sum Rate

With only two descriptions, we can explicitly solve (37), thus generalizing the corre-
sponding solution for the scalar Gaussian source, derived in [1].

Suppose the distortion constraints are denoted by (D1, D2, D0) and let

Kw =

(
Kw1 −A∗

−A∗ Kw2

)
.

We now solve (33), which is equivalent to (37), for Kw1 , Kw2 and A∗. From (33) we get

Kwl
= (D−1

l −K−1
x )−1, l = 1, 2, (99)

and
D−1

0 = K−1
x + (IN IN)K−1

w (IN IN)t. (100)

Expanding out K−1
w using Lemma 7 in Appendix A, we get

D−1
0 −K−1

x = K−1
w1

+ (IN + K−1
w1

A∗)(Kw2 −A∗K−1
w1

A∗)−1(IN + A∗K−1
w1

). (101)

Taking inverse on both sides, we have

(D−1
0 −K−1

x )−1 = Kw1 − (Kw1 + A∗)(Kw1 + Kw2 + 2A∗)−1(Kw1 + A∗). (102)

Defining Kw0 as

Kw0

def
= [D−1

0 −K−1
x ]−1, (103)

we find (102) is equivalent to

Kw1 −Kw0 = (Kw1 + A∗)(Kw1 + Kw2 + 2A∗)−1(Kw1 + A∗). (104)

Defining

X
def
= Kw1 + A∗,

we have that (104) is equivalent to

Kw1 −Kw0 = X(2X + Kw2 −Kw1)
−1X, (105)

which is further equivalent to

X(Kw1 −Kw0)
−1X = 2X + Kw2 −Kw1 . (106)

This is a version of the so-called algebraic Riccati equation; the corresponding Hamiltonian
is readily seen to be positive semidefinite and we can even write down the following
explicit solution:

X =Kw1 −Kw0

+ (Kw1 −Kw0)
1
2

[
(Kw1 −Kw0)

− 1
2 (Kw2 −Kw0)(Kw1 −Kw0)

− 1
2

] 1
2
(Kw1 −Kw0)

1
2 .

(107)
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Thus

A∗ = (Kw1−Kw0)
1
2

[
(Kw1 −Kw0)

− 1
2 (Kw2 −Kw0)(Kw1 −Kw0)

− 1
2

] 1
2
(Kw1−Kw0)

1
2−Kw0 .

(108)
Now, if 0 ≺ A∗ ≺ Kx then we can appeal to Theorem 4 and arrive at the explicit Gaussian
description scheme parameterized by Kw that achieves the sum rate. Analogous to the
scalar case (cf. [1]), we have the following sufficient condition for when this is true.

Proposition 4. If the distortion constraints (D1, D2, D0) satisfy

D0 + Kx −D1 −D2 Â 0

and D−1
0 + K−1

x −D−1
1 −D−1

2 Â 0,
(109)

then 0 ≺ A∗ ≺ Kx.

Proof. See Appendix K.

We now consider the cases that are not covered by the conditions in Proposition 4.

• When
D−1

0 + K−1
x −D−1

1 −D−1
2 4 0, (110)

we can choose A∗ = 0 to achieve the sum of point-to-point individual rate-distortion
functions. Thus in this case, the sum rate is equal to this natural lower bound.

• When
D0 + Kx −D1 −D2 4 0, (111)

we can choose A∗ = Kx to achieve the point-to-point rate distortion-function for
central receiver, also a natural lower bound.

• When neither D0 + Kx − D1 − D2 nor D−1
0 + K−1

x − D−1
1 − D−1

2 is positive or
negative semidefinite (this case cannot happen in the scalar case), we cannot use
Theorem 4, and the trivial choice of A∗ = 0 or A∗ = Kx does not meet the lower
bound. By Theorem 2, the Gaussian description scheme also achieves the lower
bound on the sum rate.

If we let the source to be scalar Gaussian, our result reduces to Ozarow’s solution to
sum rate of the two-description problem for a scalar Gaussian source [1]: this is because
the last case described above does not happen in the scalar case.
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7.2 Rate Region for Two Descriptions

Applying Theorem 2 to the case of L = 2, i.e., the two description problem, we can
see that Gaussian description scheme achieves the optimal sum rate. It also turns out
that in the two-description problem, we can show that the Gaussian description strategy
achieves the entire rate region.

Proof of Theorem 3. From Section 4 we have a outer bound to the rate region for the
two description problem

Rout(Kx, D1, D2, D0) =





(R1, R2) :

Rl ≥ 1

2
log

|Kx|
|Dl| , l = 1, 2

R1 + R2 ≥ sup
KzÂ0

1

2
log

|Kx||Kx + Kz||D0 + Kz|
|D0||D1 + Kz||D2 + Kz|





. (112)

Following the discussion in Section 5, we show in the following that the Gaussian
description strategy (Gaussian multiple description schemes and the time sharing between
them) achieves the outer bound to the rate region.

Let
Kwl

= (D−1
l −K−1

x )−1, l = 0, 1, 2 (113)

and
F (A) = log |Kw0 + A| − log |Kw1 + A| − log |Kw2 + A|. (114)

Now consider the optimization problem:

max
04A4Kx

F (A). (115)

As in Section 5, the optimal solution A∗ falls into four cases.

Case 1: 0 ≺ A∗ ≺ Kx. In this case, we know from Section 3 that the rate pair
(R1, R2) in the following set





(R1, R2) :

Rl ≥ 1

2
log

|Kx + Kwl
|

|Kwl
| , l = 1, 2

R1 + R2 ≥ 1

2
log

|Kx + Kw1||Kx + Kw2|
|Kw|





(116)

is achievable using the Gaussian multiple description scheme with the covariance matrix
of w1, w2 being

Kw =

(
Kw1 −A∗

−A∗ Kw2

)
.
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Denoting the resulting distortions as (D1, D2, D0), we readily calculate

1

2
log

|Kx + Kwl
|

|Kwl
| =

1

2
log |Kx||K−1

wl
+ K−1

x | = 1

2
log

|Kx|
|Dl|

for l = 1, 2. From Theorem 4 we know that the lower bound to sum rate is achieved
using this Gaussian description scheme. Thus, in this case, the Gaussian description
scheme achieves the rate region. As an aside, we note in this case that, A∗ satisfies

[
K∗

w0
+ A∗]−1

= [Kw1 + A∗]−1 + [Kw2 + A∗] ,

and, from the discussion in Section 7.1, that a sufficient condition for this case to happen
is (109).

Case 2: 0 4 A∗ ≺ Kx. This case is similar to case 1: the Gaussian description scheme
with covariance matrix for w1, w2 being

Kw =

(
Kw1 −A∗

−A∗ Kw2

)
.

achieves the lower bound on the rate region. We note that in this case the resulting
distortions are (D1, D2, D∗

0), with D∗
0 4 D0. Further, we know from the discussion in

7.1, that a sufficient condition for this case to happen is

D−1
0 + K−1

x −D−1
1 −D−1

2 4 0.

Case 3: 0 ≺ A∗ 4 Kx. In this case, we know from the discussion of the corre-
sponding case 3 in Section 5 that for another two-description problem with distortions
(D1, D∗

2, D0) such that D∗
2 4 D2, the Gaussian description scheme with covariance

matrix for w1, w2 being

Kw =

(
Kw1 −A∗

−A∗ K∗
w2

)

achieves the lower bound to sum rate
(

1
2
log |Kx|

|D0|

)
to the original distortions (D1, D2, D0).

We can see, from the contra-polymatroid structure of the achievable region of the Gaus-
sian description scheme, that the corner point

B1 =

(
1

2
log

|Kx|
|D1| ,

1

2
log

|Kx|
|D0| −

1

2
log

|Kx|
|D1|

)

in Figure 3 is achievable by this Gaussian description scheme.

Now observe that the discussion in case 3 of Section 5 is symmetric with respect to the
individual receivers. Thus, by exchanging the role of receiver 1 and receiver 2, we can
achieve the other corner point

B2 =

(
1

2
log

|Kx|
|D0| −

1

2
log

|Kx|
|D2| ,

1

2
log

|Kx|
|D2|

)
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in Figure 3 by another appropriate Gaussian description scheme. Finally, time sharing
between these two Gaussian multiple description schemes allows us to achieve the lower
bound on the rate region. As an aside, we note, as a consequence of the discussion in
Section 7.1, that a sufficient condition for this case to happen is

D0 + Kx −D1 −D2 4 0.

Case 4: 0 4 A∗ 4 Kx. In this case, we know, from the discussion of the corre-
sponding case 4 in Section 5, that for another two description problem with distortions
(D1, D∗

2, D∗
0) such that D∗

2 4 D2 and D∗
0 4 D0, the Gaussian description scheme with

covariance matrix for w1, w2 being

Kw =

(
Kw1 −A∗

−A∗ K∗
w2

)

achieves the lower bound to sum rate
(

1
2
log |Kx|

|D0|

)
to the original distortions (D1, D2, D0).

Using an argument entirely analogous to that applied that the Gaussian description strat-
egy achieves the rate region.

To summarize: the Gaussian description strategy achieves the rate region for the two
description problem. For a class of distortion constraints, the corner points of the rate
region can be characterized by solving a matrix polynomial equation, as already seen in
Section 7.1.

8 Discussions

Although multiple description for individual and central receivers is a special case of the
most general multiple description problem, the solution to this problem sheds substantial
insight to the issue-at-large. In this section, we discuss two instances of other multiple
description problems that can be resolved using the insights developed so far. In partic-
ular, we discuss the problem of two descriptions with separate distortion constraints and
the general multiple description problem for some special sets of distortion constraints.

8.1 Two Description with Separate Distortion Constraints

The problem of two descriptions with separate distortion constraints is illustrated in
Figure 2. Suppose the vector Gaussian source x[m] = (x1[m],x2[m]), the dimension of
x1[m] is N1 and the dimension of x2[m] is N2. This implies that the dimension of x[m] is
N = N1+N2. Let Kx = E[x[m]tx[m]], Kx1 = E[x1[m]tx1[m]], and Kx2 = E[x2[m]tx2[m]].
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There are two encoders at the source providing two descriptions of x[m]. There are three
receivers: the individual receivers 1 and 2 are only interested in generating reproduction
of x1[m] with mean square distortion constraint D1 (an N1×N1 positive definite matrix)
from description 1 and x2[m] with mean square distortion constraint D2 (an N2 × N2

positive definite matrix) from description 2, respectively. The central receiver uses both
descriptions to generate a reproduction of x[m] with the error covariance meeting a
distortion constraint D0 (an N ×N positive definite matrix) from both descriptions.

This situation is closely related to the two description problem and we can harness our
results thus far to completely characterize the rate region of the problem at hand.

Theorem 5. The rate region of two description with separate distortion constraints is

R(D1, D2, D0) =
⋃

Υ(D′
1, D′

2)

R∗(D′
1, D′

2, D0), (117)

where Υ(D′
1, D′

2) is defined as

Υ(D′
1, D′

2)
def
=

{
(D′

1, D′
2) : (D′

1){1,...,N1} 4 D1, (D′
2){N1+1,...,N} 4 D2

}
. (118)

Proof. It is clear that any rate pair (R1, R2) ∈ R∗(D′
1, D′

2, D0) for some (D′
1, D′

2) ∈
Υ(D′

1, D′
2) is in the rate region for the two description with separate distortion con-

straints, and so
R∗(D′

1, D′
2, D0) ⊆ R(D1, D2, D0).

On the other hand, although receiver 1 (2) is only interested in reconstructing x1 (x2),
they can actually reconstruct the entire source x based on their received descriptions.
Hence, any coding scheme for the two description with separate distortion constraints
will result in some achievable distortions (D′

1, D′
2, D′

0) with (D′
1, D′

2) ∈ Υ(D′
1, D′

2)
and D′

0 4 D0. Thus any rate pair (R1, R2) ∈ R(D1, D2, D0) achieved by this coding
scheme is in the rate region R∗(D′

1, D′
2, D0) for the two description problem. Thus

R(D1, D2, D0) ⊆
⋃

Υ(D′
1, D′

2)

R∗(D′
1, D′

2, D0).

From equivalence of the two regions in (117), the proof is now complete.

8.2 General Gaussian Multiple Description Problem for Special
Choices of Distortion Constraints

Consider the general Gaussian multiple description problem with source covariance Kx

and 2L − 1 distortion constraints DS for each S ⊆ {1, . . . , L}.
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Following arguments similar to that used in arriving at the lower bound (24) for sum
rate, we have an outer bound on the rate region:

Rout(Kx, D1, . . . , DL, D0) =





(R1, . . . , RL) :∑
l∈S

Rl ≥ 1
2
log |Kx||Kx+Kz |(|S|−1)|DS+Kz |

|DS |
Q

l∈S
|Dl+Kz | , ∀S ⊆ {1, . . . , L}



 .

(119)
Following arguments similar to those used in arriving at the upper bound (28) for the
sum rate, we can use a Gaussian description scheme with covariance matrix of wl’s (Kw)
taking the form (31), any tuple (R1, . . . , RL) satisfying





(R1, . . . , RL) :

∑
l∈S

Rl ≥ 1
2
log

∣∣∣Kx

∣∣∣
∣∣∣Kx+Kz

∣∣∣
(|S|−1)∣∣∣Cov[x|ul, l∈S]+Kz

∣∣∣∣∣∣Cov[x|ul, l∈S]

∣∣∣ Q
l∈S

∣∣∣Cov[x|ul]+Kz

∣∣∣
, ∀S ⊆ {1, . . . , L}





(120)

is achievable. Thus if we can find a Kw of the form in (31) such that all of the 2L − 1
distortion constraints are met with equality, i.e.,

DS = Cov[x|ul, l ∈ S] = [K−1
x +(IN , . . . , IN)K−1

wS
(IN , . . . , IN)t]−1, ∀S ⊆ {1, . . . , L},

(121)
where KwS

is the covariance matrix for all Kwl
, l ∈ S, then the achievable region matches

the outer bound and we would have characterized the rate region of the multiple descrip-
tion problem.

From the above discussion, we see that for some choice of distortion constraints of
the multiple description problem, we can indeed do this: First choose L + 1 distortions
(D1, D2, . . . , DL, D0) such that they satisfy the condition for Theorem 4 for the
multiple description problem with individual and central receivers. Next we can solve
for the Kw which is the covariance matrix of (w1, . . . , wL) for the sum-rate-achieving
Gaussian description scheme. For any other S ⊆ {1, . . . , L}, this scheme results in
distortion DS = [K−1

x + (IN , . . . , IN)K−1
wS

(IN , . . . , IN)t]−1. Finally we choose these
DS’s as the other distortion constraints. Now we have a general multiple description
problem with 2L − 1 distortion constraints DS for each S ⊆ {1, . . . , L}, and hence we
can find a Kw of form (31) such that all of the 2L− 1 distortion constraints are met with
equality. Thus (119) is actually the rate region and it can be achieved by a Gaussian
description scheme.
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8.3 Robustness of Gaussian Multiple Descriptions

In this section, we demonstrate the robustness of the ensemble of the Gaussian multi-
ple description schemes by showing that the distortion achieved through describing any
memoryless vector source using this scheme is no worse (in the sense of positive semidef-
inite ordering) than when the source itself were Gaussian. In particular, this implies
that the Gaussian memoryless vector source is the hardest to multiply describe among
all memoryless vector sources with the same covariance matrix. This latter result could
be viewed as a generalization of the result in [5] which focused on two descriptions of a
memoryless scalar source.

Proposition 5. Consider a memoryless vector source xn with marginal covariance ma-
trix Kx. Let w1, · · · , wL be N dimensional zero mean jointly Gaussian random vectors
independent of x, with the positive definite covariance matrix of (w1, · · · , wL) denoted
by Kw. Then, treating the source statistics as Gaussian and using the Gaussian multiple
description encoder described in Section 2.2 parameterized by Kw, and reconstructing the
sources at the decoders via MMSE estimation the achieved distortion (D1, · · · ,DL,D0)
satisfies

Dl ¹ DG
l , l = 0, 1, · · · , L (122)

where (DG
1 , · · · ,DG

L ,DG
0 ) is the distortion achieved by the same architecture when xn is

a memoryless vector Gaussian source.

Proof. Using the natural achievable scheme described in Section 2.2, let

ul = x + wl, l = 1, . . . , L.

For the description rate tuple (R1, . . . , RL) to be sufficient to convey ul to each receiver
l, we need satisfying

∑

l∈S

Rl ≥
[∑

l∈S

h(ul)

]
− h(ul, l ∈ S|x). (123)

Now, since h(ul) is maximized when x is Gaussian simultaneously for each l, we have

[∑

l∈S

h(ul)

]
− h(ul, l ∈ S|x) ≤ 1

2
log

∏
l∈S

|Kx + Kwl
|

|KwS
| , ∀S ⊆ {1, . . . , L}. (124)

Thus the description rates for a non-Gaussian source are only smaller in general than for
a Gaussian source.

Now we turn to the reconstructions:

x̂l = αlul, l = 1, . . . , L,

x̂0 =
L∑

i=1

βlul,
(125)
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where α1, · · · , αL and β1, · · · , βL are chosen so that αlul is the linear MMSE estimation

of x given ul for l = 1, . . . , L, and
L∑

i=1

βlul is the linear MMSE estimation of x given

u1, · · · ,uL. We can see that α1, · · · , αL and β1, · · · , βL do not change with the source
distribution for fixed Gaussian description scheme. The distortions achieved are

Dl =E
[
(x− x̂l)

t(x− x̂l])
]
, l = 1, . . . , L,

D0 =E
[
(x− x̂0)

t(x− x̂0)
]
.

(126)

Note that if xn is memoryless vector Gaussian, then linear MMSE is the MMSE estima-
tion. On the other hand, if xn is not Gaussian then doing an MMSE estimation (instead
of just linear MMSE) potentially leads to smaller distortions. We conclude the proof of
the claim in (122).

Now, using the optimality properties of the Gaussian multiple description scheme de-
rived earlier in this paper we can conclude the following worst-case property of multiply
describing Gaussian sources.

Corollary 1. Consider a memoryless vector source xn with marginal covariance matrix
Kx. The minimal sum rate in describing for individual and central receiver so as to
satisfy distortion constraint (D1, · · · ,DL,D0) is upper bounded by

min
Kw

1

2
log

L∏
l=1

|Kx + Kwl
|

|Kw| , (127)

where the minimization is over all Kw satisfying (126). In other words, the Gaussian
source is the hardest to multiply describe in this setting.

8.4 A Lower Bound on the Sum Rate

In this section, we point out that a lower bound on sum rate of multiply describing
a general memoryless vector source for individual and central receivers can be derived
readily by following the proof of Lemma 2. Towards this, we observe that every step in
Appendix B still holds for arbitrarily distributed memoryless vector source xn except for
equation (135), which becomes

h(xn) =
1

2
log(2πe)NnP n

x ,

h(yn) =
1

2
log(2πe)NnP n

y ≥
1

2
log(2πe)Nn

(
P 1/N

x + |Kz|1/N
)Nn

,
(128)
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where we have denoted the normalized entropy power of an N -dimensional random vector
x by

Px =
e2h(x)

(2πe)N
. (129)

Following the rest of the steps in Appendix B, we have the following lower bound on the
sum rate of multiply describing an arbitrarily distributed memoryless vector source.

Proposition 6. Consider a memoryless vector source xn with marginal covariance ma-
trix Kx. The minimal sum rate in multiply describing this source for individual and cen-
tral receiver, so as to satisfy a distortion constraint (D1, · · · ,DL,D0), is lower bounded
by

sup
Kzº0

1

2
log

Px

(
P

1/N
x + |Kz|1/N

)N(L−1)

|D0 + Kz|

|D0|
L∏

l=1

|Dl + Kz|
. (130)

Appendix

A Useful Matrix Lemmas

In this appendix we provide some useful results in matrix analysis that are extensively
used in this paper.

Lemma 6 (Matrix Inversion Lemma). [30, Theorem 2.5] Let A be an m × m
nonsingular matrix and B be an n × n nonsingular matrix and let C and D be m × n
and n×m matrices, respectively. If the matrix A + CBD is nonsingular, then

(A + CBD)−1 = A−1 −A−1C(B−1 + DA−1C)−1DA−1

Lemma 7. [30, Theorem 2.3] Suppose that the partitioned matrix

M =

(
A B
C D

)

is invertible and that the inverse is partitioned as

M−1 =

(
X Y
U V

)
.

If A is a nonsingular principal sub-matrix of M, then

X =A−1 + A−1B(D−CA−1B)−1CA−1,

Y =−A−1B(D−CA−1B)−1,

U =− (D−CA−1B)−1CA−1,

V =(D−CA−1B)−1.

(131)
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Lemma 8. [30, Theorem 6.13] Let E ∈ Mn be a positive definite matrix and let F be
an n×m matrix. Then for any m×m positive definite matrix G,

(
E F
Ft G

)
Â 0 ⇐⇒ G Â FtE−1F. (132)

Lemma 9. [30, Theorem 6.8 and 6.9] Let A and B be positive definite matrices such
that A Â B (A < B). Then,

|A| Â |B| (|A| < |B|),
A−1 ≺ B−1 (A−1 4 B−1),

A1/2 Â B1/2 (A1/2 < B1/2).

(133)

B Proof of Lemma 2

We start the proof by first closely following the steps of [1,7]. However, the key difference
between our approach and that in [1,7] is that at certain point (equation (137)), instead
of using entropy power inequality as in [1, 7], we use worst case noise result [31, Lemma
II.2]. It is well known that the vector entropy power inequality is tight only when a
certain covariance alignment condition is satisfied. Our approach avoids this route thus
enabling a tighter lower bound.

We first define an i.i.d. random process {z[m]}, m = 1, . . . , n of N (0,Kz) Gaussian
random vectors, where z[m], m = 1, . . . , n are independent of xn and Cl, l = 1, . . . , L.
Form a random process yn = (y[1], . . . , y[n])t by

y[m] = x[m] + z[m], m = 1, . . . , n.

It follows that {y[m]} is an i.i.d. random process of N (0,Ky) Gaussian random vectors,
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where Ky = Kx + Kz. Then

I(C1; C2; . . . ; CL) + I(C1, . . . , CL;xn)

=
L∑

l=1

H(Cl)−H(C1, · · · , CL) + I(C1, . . . , CL;xn)

≥
L∑

l=1

H(Cl)−H(C1, · · · , CL) + I(C1, . . . , CL;xn)

−
( L∑

l=1

H(Cl|yn)−H(C1, . . . , CL|yn)
)

=
L∑

l=1

(h(yn)− h(yn|Cl))− h(yn) + h(yn|C1, . . . , CL) + h(xn)− h(xn|C1, . . . , CL)

=h(xn) + (L− 1)h(yn)−
L∑

l=1

h(yn|Cl) + h(yn|C1, . . . , CL)− h(xn|C1, . . . , CL).

(134)

Since xn and yn are Gaussian vectors, for the first two terms in (134), we have

h(xn) =
1

2
log(2πe)Nn|Kx|n,

h(yn) =
1

2
log(2πe)Nn|Ky|n =

1

2
log(2πe)Nn|Kx + Kz|n.

(135)
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We also have the following bound on h(yn|Cl) for l = 1, . . . , L:

h(yn|Cl) ≤
n∑

m=1

h(y[m]|Cl)

≤
n∑

m=1

1

2
log(2πe)N

∣∣Cov[y[m]|Cl]
∣∣

≤ 1

2
log(2πe)Nn +

n

2
log

∣∣∣∣∣
1

n

n∑
m=1

Cov[y[m]|Cl]

∣∣∣∣∣

=
1

2
log(2πe)Nn +

n

2
log

∣∣∣∣∣
1

n

n∑
m=1

Cov[(x[m] + z[m])|Cl]

∣∣∣∣∣

=
1

2
log(2πe)Nn +

n

2
log

∣∣∣∣∣
1

n

n∑
m=1

Cov[x[m]|Cl] + Kz

∣∣∣∣∣

≤ 1

2
log(2πe)Nn +

n

2
log |Dl + Kz|

=
1

2
log(2πe)Nn |Dl + Kz|n .

(136)

Next we bound the difference of the last two terms of (134). Different from [1,7], we do
not use entropy power inequality to bound the difference.

h(yn|C1, . . . , CL)− h(xn|C1, . . . , CL)

= h(yn|C1, . . . , CL)− h(xn|zn, C1, . . . , CL)

= h(yn|C1, . . . , CL)− h(yn|zn, C1, . . . , CL)

= I(yn; zn|C1, . . . , CL).

(137)

Letting

Kc[m]
def
= Cov[x[m]− x̂0[m]], (138)
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we have

I(yn; zn|C1, . . . , CL) = h(zn|C1, . . . , CL)− h(zn|yn, C1, . . . , CL)

= h(zn)− h(zn|yn − x̂n
0 , C1, . . . , CL)

≥ h(zn)− h(zn|yn − x̂n
0 )

=
n∑

m=1

(
h(z[m])− h(z[m]|z[1], . . . , z[m− 1],yn − x̂n

0 )
)

≥
n∑

m=1

(
h(z[m])− h(z[m]|y[m]− x̂0[m])

)

=
n∑

m=1

I(z[m];x[m]− x̂0[m] + z[m])

(a)

≥
n∑

m=1

1

2
log

|Kc[m] + Kz[m]|
|Kc[m]|

(b)

≥ n

2
log

|D0 + Kz|
|D0| ,

(139)

where (a) is from (138) and [31, Lemma II.2]. The justification for (b) is from the

convexity of log |A+B|
|A| in A and (22). From (137) and (139) we have

h(yn|C1, . . . , CL)− h(xn|C1, . . . , CL) ≥ n

2
log

|D0 + Kz|
|D0| . (140)

Combining (134), (135) and (140), we have

I(C1; C2; . . . ; CL) + I(C1, . . . , CL;xn) ≥ n

2
log

|Kx||Kx + Kz|(L−1)|D0 + Kz|
|D0|

L∏
l=1

|Dl + Kz|
. (141)

By taking the supremum over all positive definite Kz, we can sharpen the lower bound
in (141) and get (23).

The introduction of zn and yn is due to Ozarow [1]. Note that the only step with
inequality in equation (134) is actually equality if we can find a yn such that conditioned
on yn, the codewords for different descriptions corresponding to the same source sequence
xx are independent. Existence of such a yn is the key observation in comparing lower
bound and achievable sum rate. There are different ways to introduce this conditional
independence and which may lead to different lower bounds (one example is the ”boot-
strapping” technique in [7]). However, in our situation the lower bound derived here is
tightest possible. Thus the specific way in which we have induced conditional indepen-
dence is optimal for the sum rate of our problem. Conditional independence seems to be
the crucial property in the solution to some other multiterminal source coding problems,
such as the distributed source coding problem [26,27].
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C Proof of Proposition 2

Conditioned on y, the collection of random variables (u1, . . . , uL) are Gaussian and
thus we have

L∑

l=1

h(ul|y)− h(u1, . . . , uL|y) =
1

2
log

L∏
l=1

|Cov[ul|y]|
∣∣Cov[u1, . . . , uL|y]

∣∣ . (142)

From MMSE of ul from y we have

Cov[ul|y] = Kx + Kwl
−Kx(Kx + Kz)

−1Kx, l = 1, . . . , L (143)

and
Cov(u1, . . . , uL|y) = J⊗Kx + Kw − J⊗ (

Kx(Kx + Kz)
−1Kx

)
, (144)

where J is an L×L matrix of all ones and ⊗ is the Kronecker Product [30, Section 6.5].

By Fischer inequality (the block matrix version of Hadamard inequality, see [30, The-

orem 6.10]) we know that
L∏

l=1

|Cov[ul|y]| =
∣∣Cov[u1, . . . , uL|y]

∣∣ if and only if the off-

diagonal block matrices of Cov[u1, . . . , uL|y] are all zero matrices. Thus we have

L∑

l=1

h(ul|y)− h(u1, . . . , uL|y) = 0

if and only if
Kx −A = Kx(Kx + Kz)

−1Kx, (145)

or equivalently, if and only if

Kz = Kx(Kx −A)−1Kx −Kx. (146)

To get a valid Kz Â 0, we need the additional condition 0 ≺ A ≺ Kx.
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D Proof of Lemma 3

First we assume A Â 0, and hence by Lemma 6 in Appendix A we have

[
A−1 + (IN IN . . . IN)K−1

w (IN IN . . . IN)t]−1

=A−A (IN IN . . . IN)
[
Kw + (IN IN . . . IN)t A (IN IN . . . IN)

]−1
(IN IN . . . IN)t A

=A−A (IN IN . . . IN)
[
diag{Kw1 + A, Kw2 + A, . . . KwL

+ A}
]−1

(IN IN . . . IN)t A

=A−A
L∑

l=1

[Kwl
+ A]−1A.

(147)

Thus,

(IN IN . . . IN)K−1
w (IN IN . . . IN)t

=

[
A−A

L∑

l=1

(Kwl
+ A)−1A

]−1

−A−1

=A−1 −A−1A


−

(
L∑

l=1

(Kwl
+ A)−1

)−1

+ AA−1A



−1

AA−1 −A−1

=




(
L∑

l=1

(Kwl
+ A)−1

)−1

−A



−1

.

(148)

When A is singular, we can choose δ > 0 such that A + εIN Â 0 for ε ∈ (0, δ), and thus
we have the previous argument. By letting ε → 0+, we have the result.

E Proof of Lemma 4

We use induction. First consider the matrix

∆2 =

(
Kw1 −A
−A Kw2

)
. (149)
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We have

∆2 Â 0 ⇐⇒ Kw2 Â AK−1
w1

A

⇐⇒ Kw2 + A Â AK−1
w1

A + A

⇐⇒ (Kw2 + A)−1 ≺ (AK−1
w1

A + A)−1

⇐⇒ (Kw2 + A)−1 ≺ A−1 − (Kw1 + A)−1

⇐⇒ (Kw1 + A)−1 + (Kw2 + A)−1 ≺ A−1

(a)⇐=
L∑

l=1

(Kwl
+ A)−1 ≺ A−1

(b)⇐⇒ (Kw0 + A)−1 ≺ A−1

⇐⇒ Kw0 + A Â A

⇐⇒ Kw0 Â 0,

(150)

where (a) is only one direction because

(Kw1 + A)−1 + (Kw2 + A)−1 ≺
L∑

l=1

(Kwl
+ A)−1 (151)

and (b) is from (37).

Next we define

∆k =




Kw1 −A −A . . . −A
−A Kw2 −A . . . −A
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−A . . . −A Kwk−1

−A
−A . . . −A −A Kwk




(152)
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and suppose ∆k Â 0 for k = 3, . . . , l − 1. Then

∆l Â 0 ⇐⇒ Kwl
Â A(IN , IN , . . . , IN)∆−1

l−1(IN , IN , . . . , IN)tA

⇐⇒ Kwl
Â A




(
l−1∑

k=1

(KWk
+ A)−1

)−1

−A



−1

A

⇐⇒ Kwl
+ A Â A




(
l−1∑

k=1

(Kwk
+ A)−1

)−1

−A



−1

A + A

⇐⇒ (Kwl
+ A)−1 ≺


A




(
l−1∑

k=1

(Kwk
+ A)−1

)−1

−A



−1

A + A



−1

⇐⇒ (Kwl
+ A)−1 ≺ A−1 −




(
l−1∑

k=1

(Kwk
+ A)−1

)−1

−A + A



−1

⇐⇒ (Kwl
+ A)−1 ≺ A−1 −

l−1∑

k=1

(Kwk
+ A)−1

(c)⇐=
L∑

k=1

(Kwk
+ A)−1 ≺ A−1

(d)⇐⇒ (Kw0 + A)−1 ≺ A−1

⇐⇒ Kw0 + A Â A

⇐⇒ Kw0 Â 0,

(153)

where (c) is only one direction because

l∑

k=1

(Kwk
+ A)−1 ≺

L∑

k=1

(Kwk
+ A)−1, for l < L, (154)

and (d) is from (37).
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F Proof of Lemma 5

[
(Kw0 + A∗)−1 + Λ1

]−1
=

[
(Kw0 + A∗)−1(IN + (Kw0 + A∗)Λ1)

]−1

(a)
= (IN + Kw0Λ1)

−1(Kw0 + A∗)

= (IN + Kw0Λ1)
−1(Kw0 + A∗ − (IN + Kw0Λ1)A

∗) + A∗

(b)
= (IN + Kw0Λ1)

−1Kw0 + A∗

=
(
K−1

w0
(IN + Kw0Λ1)

)−1
+ A∗

=
(
K−1

w0
+ Λ1

)−1
+ A∗,

(155)

where (a) and (b) are from Λ1A
∗ = 0.

|D∗
0 + Kz|
|D∗

0|
= |IN + D∗

0
−1Kz|

= |IN + (D−1
0 + Λ1)Kz|

= |IN + D−1
0 Kz + Λ1Kz|

= |IN + D−1
0 Kz + Λ1

(
(IN −A∗)−1 − IN

) |
(c)
= |IN + D−1

0 Kz + Λ1(IN −A∗)
(
(IN −A∗)−1 − IN

) |
= |IN + D−1

0 Kz|
=
|D0 + Kz|
|D0| ,

(156)

where (c) is from Λ1A
∗ = 0.

G Proof of Equations (58) and (59)

We first prove the following lemma.

Lemma 10. Let D be an N ×N matrix such that 0 ≺ D ≺ IN . Let K = (D−1− IN)−1.
Choose ε > 0 such that K− εIN Â 0. Define

D(ε)
def
=

[
(K− εIN)−1 + IN

]−1
.

Then, there exist constants b1 ≥ b2 > 0, such that

D− b1εIN + o(ε) ≺ D(ε) ≺ D− b2εIN + o(ε)
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Proof. There exists an N ×N orthogonal matrix Q such that

QKQt = diag{k1, . . . , kN},
where ki > 0 are eigenvalues of K. We have

QDQt = Q(K−1 + IN)−1Qt

= diag

{
k1

1 + k1

, . . . ,
kN

1 + kN

}
,

and

QD(ε)Qt = Q
[
(K− εIN)−1 + IN

]−1

Qt

=
[
(diag{k1, . . . , kN} − εIN)−1 + IN

]−1

= diag

{
k1 − ε

1 + k1 − ε
, . . . ,

kN − ε

1 + kN − ε

}

= diag

{
k1

1 + k1

− ε

(1 + k1)2
+ o(ε), . . . ,

kN

1 + kN

− ε

(1 + kN)2
+ o(ε)

}
.

We now have

QDQt − b1εIN + o(ε) ≺ QD(ε)Qt ≺ QDQt − b2εIN + o(ε),

where b1 ≥ b2 > 0 are some constants. Hence

D− b1εIN + o(ε) ≺ D(ε) ≺ D− b2εIN + o(ε).

Equations (58) and (59) are a direct consequence of this lemma.

H Proof of Equation (60)

We first prove the following lemma.

Lemma 11. Let A be an N×N matrix such that 0 4 A ≺ IN . Let Kz = (IN−A)−1−IN .
Choose ε > 0 such that A + εIN ≺ IN . Define

Kz(ε)
def
= [IN − (A + εIN)]−1 − IN .

Then, there exist constants c1 ≥ c2 > 0 such that

Kz − c1εIN + o(ε) ≺ Kz(ε) ≺ Kz − c2εIN + o(ε).
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Proof. There exists an N ×N orthogonal matrix Q such that

QAQt = diag{a1, . . . , aN}

where ai > 0 are the eigenvalues of A. We have

QKzQ
t = Q((IN −A)−1 − IN)Qt

= diag

{
a1

1− a1

, . . . ,
aN

1− aN

}
,

and

QKz(ε)Q
t = Q((IN − (A + εIN))−1 − IN)Qt

= diag

{
a1 + ε

1− a1 − ε
, . . . ,

aN + ε

1− aN − ε

}

= diag

{
a1

1− a1

− (2a1 − 1)ε

(1− a1)2
+ o(ε), . . . ,

aN

1− aN

− (2aN − 1)ε

(1− aN)2
+ o(ε)

}
.

We now have

QKzQ
t − c1εIN + o(ε) ≺ QKz(ε)Q

t ≺ QKzQ
t − c2εIN + o(ε),

where c1 ≥ c2 > 0 are some constants. Hence

Kz − c1εIN + o(ε) ≺ Kz(ε) ≺ Kz − c2εIN + o(ε).

Equation (60) is a direct result of this lemma.

I Proof of equation (73)

We first prove the following lemma.

Lemma 12. Let A be an N ×N matrix such that 0 ≺ A 4 IN . Choose ε > 0 such that
A− εIN Â 0. Define

Kz(ε)
def
= [IN − (A− εIN)]−1 − IN .

Then, for any E and F such that 0 ≺ E 4 IN and 0 ≺ F 4 IN , we have

lim
ε→0

|E + Kz(ε)|
|F + Kz(ε)| = 1.
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Proof. There exists an N ×N orthogonal matrix Q such that

QAQt = diag{a1, . . . , aN},

where 0 < ai ≤ 1 are eigenvalues of A. Without loss of generality, we suppose a1 =
1, . . . , ap = 1, ap+1 < 1, . . . , aN < 1.

We have

QKz(ε)Q
t = Q((IN − (A− εIN))−1 − IN)Qt

= diag

{
1− ε

ε
, . . . ,

1− ε

ε
,

ap+1 − ε

1− ap+1 + ε
,

aN − ε

1− aN + ε

}
,

and since |I + Kz(ε)|
|Kz(ε)| ≥ |E + Kz(ε)|

|F + Kz(ε)| ≥
|Kz(ε)|

|I + Kz(ε)| ,

we have

lim
ε→0

|E + Kz(ε)|
|F + Kz(ε)| = 1.

Equation (73) is a direct consequence of this lemma.

J Proof of Equation (84)

We would like to have a property similar to (54), as ε1 approaches zero, and a property
similar to (73), as ε2 approaches zero. To see this is the case, we need the following
lemma.

Lemma 13.
Λ1Kz(ε1 = 0, ε2) = 0

Proof. Since
QΛ1Q

tQA∗Qt = 0

and

QA∗Qt = diag(0, . . . , 0︸ ︷︷ ︸
p

, 1, . . . , 1︸ ︷︷ ︸
q

, ap+q+1, . . . , as)

QA∗Qt − ε2E2 = diag(0, . . . , 0︸ ︷︷ ︸
p

, 1− ε2, . . . , 1− ε2︸ ︷︷ ︸
q

, ap+q+1, . . . , as),
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we have that
QA∗Qt(QA∗Qt − ε2E2) = 0.

Thus

QΛ1Kz(ε1 = 0, ε2)Q
t = QΛ1Q

tQ
(
(IN −A∗ + Qtε2E2Q)−1 − IN

)
Qt

= QΛ1Q
t
(
(IN −QA∗Qt + ε2E2)

−1 − IN

)

= QΛ1Q
t(IN −QA∗Qt + ε2E2)

(
(IN −QA∗Qt + ε2E2)

−1 − IN

)

= 0.

Using this lemma, we can show a property similar to (54) as ε1 approaches zero. First
note that similar to case 2, we have

D−1
0 + Λ1 − e2ε2IN + o(ε2) ≺ D−1

0 (ε1, ε2) ≺ D−1
0 + Λ1 + e1ε1IN + o(ε1)

where e1 > 0 and e2 > 0 are constants. Hence we have

|D0(ε1 = 0, ε2) + Kz(ε1 = 0, ε2)|
|D0(ε1 = 0, ε2)| = |IN + D−1

0 (ε1 = 0, ε2)Kz(ε1 = 0, ε2)|
≥ |IN + (D−1

0 + Λ1 − e2ε2IN)Kz(ε1 = 0, ε2)|
= |IN + D−1

0 Kz(ε1 = 0, ε2)− e2ε2Kz(ε1 = 0, ε2)|
=
|D0 + Kz(ε1 = 0, ε2)− e2ε2D0Kz(ε1 = 0, ε2)|

|D0| .

Similarly, we have

|D0(ε1 = 0, ε2) + Kz(ε1 = 0, ε2)|
|D0(ε1 = 0, ε2)| ≤ |D0 + Kz(ε1 = 0, ε2)|

|D0| .

Thus

lim
ε2→0

lim
ε1→0

1

2
log

|IN + Kz(ε1, ε2)|(L−1)|D0(ε1, ε2) + Kz(ε1, ε2)|
|D0(ε1, ε2)|

L∏
l=1

|Dl(ε1, ε2) + Kz(ε1, ε2)|

= lim
ε2→0

1

2
log

|IN + Kz(ε1 = 0, ε2)|(L−1)|D0 + Kz(ε1 = 0, ε2)|
|D0|

L∏
l=1

|Dl(ε1 = 0, ε2) + Kz(ε1 = 0, ε2)|

=
1

2
log

1

|D0| ,

(157)

where the last step is similar to (73).

48



K Proof of Proposition 4

Consider equation (108), which is rewritten in the following

A∗ = (Kw1−Kw0)
1
2

[
(Kw1 −Kw0)

− 1
2 (Kw2 −Kw0)(Kw1 −Kw0)

− 1
2

] 1
2
(Kw1−Kw0)

1
2−Kw0 .

(158)
We find that

A∗ Â 0

⇐⇒ (Kw1 −Kw0)
1
2

[
(Kw1 −Kw0)

− 1
2 (Kw2 −Kw0)(Kw1 −Kw0)

− 1
2

] 1
2
(Kw1 −Kw0)

1
2 Â Kw0

⇐⇒
[
(Kw1 −Kw0)

− 1
2 (Kw2 −Kw0)(Kw1 −Kw0)

− 1
2

] 1
2 Â (Kw1 −Kw0)

− 1
2Kw0(Kw1 −Kw0)

− 1
2

⇐= (Kw1 −Kw0)
− 1

2 (Kw2 −Kw0)(Kw1 −Kw0)
− 1

2

Â (Kw1 −Kw0)
− 1

2Kw0(Kw1 −Kw0)
−1Kw0(Kw1 −Kw0)

− 1
2

⇐⇒ Kw2 −Kw0 Â Kw0 (Kw1 −Kw0)
−1 Kw0

⇐⇒ Kw2 −Kw0 Â Kw0

(−IN + (Kw1 −Kw0)
−1

)
Kw1

⇐⇒ Kw2 −Kw0 Â −Kw0 + Kw0(Kw1 −Kw0)
−1Kw1

⇐⇒ Kw2 Â Kw0(Kw1 −Kw0)
−1Kw1

⇐⇒ Kw2 Â Kw0K
−1
w0

(K−1
w0
−K−1

w1
)−1K−1

w1
Kw1

⇐⇒ Kw2 Â (K−1
w0
−K−1

w1
)−1

⇐⇒ K−1
w1

+ K−1
w2
≺ K−1

w0

⇐⇒ D−1
0 + K−1

x −D−1
1 −D−1

2 Â 0.

(159)

We thus have
D−1

0 + K−1
x −D−1

1 −D−1
2 Â 0 ⇒ A∗ Â 0. (160)

The proof of
D0 + Kx −D1 −D2 Â 0 ⇒ A∗ ≺ Kx (161)

is similar and hence is omitted.
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