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The Two-User Compound Interference Channel
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Abstract—We introduce the two-user finite state compound
interference channel. The main contributions involve both novel
inner and outer bounds. For the Gaussian case, we characterize its
capacity region to within one bit. The inner bound is multilevel su-
perposition coding but the decoding of the levels is opportunistic,
depending on the channel state. The genie aided outer bound is
motivated by the typical error events of the achievable scheme.

Index Terms—Compound channel, interference channel, multi-
level superposition coding, slow fading channel, universal scheme.

I. INTRODUCTION

T HE focus of this paper is the communication scenario de-
picted in Fig. 1. Two transmitter-receiver pairs communi-

cate reliably in the face of interference. The discrete time com-
plex baseband model is:

(1)

(2)

Here is the time index, is the signal at receiver while
is the signal sent out by the transmitter (with ).

The noise sequences are memoryless complex
Gaussian with zero mean and unit variance. The transmitters are
subject to average power constraints:

(3)

The complex parameters model the
channel coefficients between the pairs of transmitters and re-
ceivers. They do not vary with time but the transmitters and re-
ceivers have different information about them.

• Receiver is exactly aware of the two channel coefficients
; this models coherent communication.

• Transmitters are only coarsely aware of the channel coef-
ficients: the transmitters know that the channel coefficients
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Fig. 1. The two-user Gaussian interference channel.

belong to a finite set. Specifically, both the transmitters
know that

(4)

This models potential partial feedback to the transmitters
regarding the channel coefficients.

A more general compound channel model allows for all four
channel parameters to jointly take on different choices:

(5)

However, since the receivers do not cooperate in the interference
channel, it turns out that the setting in (5) is no more general than
the one in (4). This is explored in Section VIII.

The key problem of interest is the characterization of the ca-
pacity region: the set of rate pairs at which arbitrarily reliable
communication between the two transmitter–receiver pairs. The
“compound” aspect of the channel is in insisting that the re-
ceivers be able to decode the messages of interest with arbi-
trarily high probability, no matter which of the finite states the
channel coefficients take on. Our main result is a characteriza-
tion of the capacity region up to one bit.

A special instance of the problem studied here is the classical
two user Gaussian interference channel: in a recent work, Etkin,
Tse, and Wang [4] showed that a single superposition coding
scheme (a specific choice among the broad class of schemes
first identified by Han and Kobayashi [1]) achieves performance
within one bit of the capacity region. The transmission involved
splitting the data into two parts—one public and the other pri-
vate—and linearly superposing them. The idea is that the public
data stream is decoded by both the receivers while the private
data stream only by the receiver of interest. The key identity of
the proposed superposition scheme is the following: the power
allocated to the private stream is such that it appears at exactly
the same level as the background noise at the unintended re-
ceiver (the idea is that since the private data stream is being
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treated as noise at the unintended receiver, there is no extra in-
centive to reduce its level even further than that of the additive
noise). A novel outer bound developed in [4] showed that this
simple superposition scheme is within one bit of the capacity
region.

Implementation of the specific superposition scheme pro-
posed above requires each transmitter to be aware of the
interference level it is causing to the unintended receiver. In
the context of the compound channel being studied here, the
transmitter is not aware of the interference level; this poses
an obstacle to adopting the idea of appropriately choosing the
power level of the private data stream. One possibility could
be to set the power level of the private data stream based on
the strongest interfering link level (among the set of possible
choices)—this would ensure that it is only received below noise
level when the interfering link level takes on the other possible
choices. However, this approach might be too pessimistic and
its closeness to optimality is unclear.

We circumvent this problem by proposing the following novel
twist to the general superposition coding scheme. Our main idea
is best described when the interference links ( and in
Fig. 1) take on only two possible values and the direct links
are fixed (i.e., the sets and have cardinality of two, cf.
(4)). We now superpose three data streams at each transmitter.
Two of them, public and private, are as earlier: all receivers in
all channel states decode the public message while only the re-
ceiver of interest decodes the private message (no matter the
channel state, again). The novelty is in the third data stream that
we will call semi-public: this data stream is decoded by the un-
intended receiver only when the interference link is the stronger
of the two choices (and treated as noise otherwise). As such, this
data stream is neither fully private nor public (the unintended re-
ceiver either treats it as noise or decodes it based on the channel
state) and the nomenclature is chosen to highlight this feature.

The power split rule is the following: the power of the pri-
vate stream is set such that at the higher of the interference link
levels, it is received at the unintended receiver at the same level
as the additive noise. The power of the semi-public data stream
is set such that it is received at the unintended receiver at the
same level as the additive noise only when the interference link
level is at the lower of the two possible choices. The rationale
is that the semi-public data stream is not decoded only when
the interference link level is at the lower of the two possible
choices, and thus it can transmit higher power than if its power
is restricted by the higher of the interference link levels. This
approach scales naturally when the interference link levels can
take on more than two possible choices (the number of splits
of the data stream is one more than the cardinality of the set of
possible choices).

We derive novel outer bounds to show that our simple achiev-
able scheme is within one bit of the capacity region. Our outer
bounds are genie aided and are based on the clues provided by
the typical error events in the achievable scheme. This approach
sheds operational insight into the nature of the outer bounds
even in the noncompound version (thus eliminating the “guess-
work” involved in the derivation, cf. Section IV of [5]).

The paper is organized as follows: we start with a simple
two-state compound interference channel. In this setting, both

the direct and interference link levels can take on only one of
two possible values (so the sets and have cardinality
two). Using a somewhat abstract setting (described in Section II)
that features the Gaussian problem of interest as a special case,
we present our main results (both inner and outer bounds) for
this two-state compound interference channel. Our definition
of the abstract setting is motivated by that chosen in [5] and
could be viewed as a natural compound version of the inter-
ference channel studied by Telatar and Tse [5]. This is done
in Section III. We discuss the insights garnered from these re-
sults in the context of the simpler noncompound interference
channel in Section VI. Next, we are ready to set up the model
and describe the solution the more general finite state interfer-
ence channel; we do this first in the abstract setting (Section VII)
followed by specializing to the Gaussian scenario of interest
(Section VIII).

II. MODEL

Consider a two-user, two-state compound memoryless inter-
ference channel depicted as shown in Fig. 2. There are two trans-
mitters which want to reliably communicate independent mes-
sages to two corresponding receivers. Each receiver can be, in-
dependently, in one of the two possible states denoted by and

, thereby leading to four possible channel realizations. We as-
sume for our model that the interfering link corresponding to
each state exhibits degradedness, i.e., the input to the channel
from the first transmitter at any discrete time passes
through a degraded discrete memoryless broadcast channel: the
two outputs of the degraded broadcast channel are
and (the degraded version) . Similarly, at any time,
the input to the channel from transmitter 2 produces

and a degraded version of it. The channel
to any one of the two receivers is decided by the state of that
receiver: here there are only two states and . Once the state
is decided, it is fixed for the entire duration of communication.
When the first receiver is in state , the output at any time is

(6)

Similarly, when the first receiver is in state , the output at any
time is

(7)

Here and are deterministic functions such that for every
, and , the following function is

invertible:

Likewise, the outputs of user-2 under the two possible states
the channel to it can take are defined using similar deterministic
functions and .

We allow each receiver to be in potentially different states,
and they are both aware of the state they are in. A pair of com-
munication rates is said to be achievable if for every

, there are block length encoders

(8)
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Fig. 2. A two-state compound channel model.

and decoders

(9)

such that

(10)

We are interested in the capacity region , which is the set of all
achievable pairs. We can make a few observations as
follows.

• The channel described here can be thought of as a natural
generalization of that studied in [5].

• An important special case occurs when the channels
and are deterministic for both .

This channel is a compound version of the deterministic
channel considered by El Gamal and Costa [2] with the
interference in state being a deterministic function of
the interference in state .

• The compound Gaussian interference channel, with the
cardinality of both the sets and restricted to 2 (in
the notation introduced in Section 1), is a special instance
of the model in Fig. 2. We start with a compound Gaussian
interference channel with

Further, without loss of generality, we can assume that

(11)

(12)

With the following assignment, we see that the model in
Fig. 2 can capture the Gaussian model in Fig. 1:

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

Here , and are independent complex
Gaussian random variables with unit variance.

III. MAIN RESULT

Our main results on the two-state compound interference
channel are the following:

• we first show the performance of an achievable scheme and
hence characterize an inner-bound;

• next, we give an outer-bound to the capacity region and
quantify the gap between the outer-bound and the achiev-
able scheme;

• specializing to the compound deterministic interference
channel, we completely characterize the capacity region;

• specializing to the compound Gaussian interference
channel, we characterize the capacity region up to a gap
of 1 bit (at all operating SNR values and all channel
parameter values).

A. Inner-Bound: Achievable Scheme

The achievable scheme is characterized by , the set of
random variables

(21)

such that the following Markov chain is satisfied:

Alternatively, the joint probability distribution function factors
as

(22)

Our achievable scheme is a multilevel superposition coding
one and can be viewed as a generalization of the two-level su-
perposition coding scheme of Chong et al. [3]. The random
coding method can be intuitively described as follows, using
the “cloud-center” analogy from Cover and Thomas (see [9,
Sec. 14.6.3]); a formal statement and its proof follow later. The
random variables and are used to generate the outer-
most code books (with rate and , respectively) for the
two users. These messages encoded via these code books are
decoded by both receivers and, as such, can be interpreted as
public information. Next, the random variables and
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are used to generate the next level of code books (with rate
and , respectively). The messages encoded via these code
books are decoded by the receiver with stronger interference
(i.e., ) but treated as noise by the receiver with weaker in-
terference (i.e., ); as such, these messages can be viewed
as semi-public information. Finally, the messages encoded via
the inner most code books (rates and ) are only decoded
by the receiver of interest; thus this constitutes private informa-
tion.

Given , we define the six-dimensional region as shown
in (23)–(55) at the bottom of the page. We define the two-dimen-
sional region

(56)

In other words is the projection of the six-dimen-
sional polytope . One approach to take the projection,
is to do the Fourier–Motzkin elimination, as done for the basic
superposition coding scheme in the context of the regular (non-
compound) interference channel [3]. Doing this explicitly is
rather cumbersome as the inequalities here are much more in
number than the inequalities that were handled by Chong et al.
in [3].

Theorem 1: The capacity region satisfies

(57)

Proof: A formal description of the achievable scheme and
the proof of this theorem are available in Section IV-A.

Particularizing, we restrict ourselves to a subset of defined
as follows. Given random variables such that
and are conditionally independent when conditioned on ,
we define random variables and which take values in

, and and which take values in . They are jointly

satisfying (24)–(55) (23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)
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Fig. 3. The Markov chain satisfied by the random variables involved.

distributed with according to the conditional dis-
tribution

(58)

The Markov chain property satisfied by the random variables
is pictorially depicted in Fig. 3. Further and have the
same marginal distribution and similarly and also have
the same marginal distribution. Our choice is motivated by the
choice in the paper by Telatar and Tse [5]. Every member of
this family is uniquely determined by joint random variables

such that is a Markov chain. We
will henceforth denote the corresponding regions by

and by . We now have
the natural result as follows.

Corollary 2:

(59)

where the union is over all such that
is a Markov chain.

Proof: Follows directly from Theorem 1.

Remark 1: We observe that the Fourier–Motzkin elimination
procedure to implement the projection operation in obtaining

would yield only a finite set of inequalities.
This procedure is explained in much detail in [6]. The proce-
dure eliminates one variable at each step, but in the process
giving rise to potentially a larger set of inequalities. If there are

inequalities to begin with, then after one elimination step the
number of inequalities can be upper bounded by . Since,
in our case we have to eliminate 4 variables and to begin
with, we can upper bound the number of inequalities remaining
by . Note that this upper bound can be very weak, as at
every stage a number of these inequalities are redundant and can
be discarded right away. Further, the right hand sides of these
remaining inequalities would be linear functions of and for
a fixed the right hand sides form a closed set of finite di-
mensions. Thus, by Carathèodory’s theorem, we can conclude
that the cardinality of can taken to be finite without loss of
generality in the union in (59) and can be upper bounded by

.

B. Outer-Bound

Theorem 3: For every such that is
a Markov chain, the region described
in Section 5.1 by (143) is such that:

(i)

(60)

where the union is over all such that
is a Markov chain.

(ii) If , then
, where

(61)

(62)

in which the random variables are jointly distributed ac-
cording to (58) and the channel conditional distributions.

Proof: The definition of in Section V-A
is motivated by the external representation of
that we obtain in Section IV-B. Part(i) is proved in Section V-A.
Part(ii) is proved in Section V-B.

C. Special Cases

Our model captures two important special cases:
• the compound deterministic interference channel;
• the compound Gaussian interference channel,

as discussed in Section II. Thus our results apply to these cases
(readily for the deterministic channel, and with an appropriate
approximation result to the continuous alphabet Gaussian
channel). Moreover, the structure afforded by these special
cases allows us to derive further insight into the nature of the
general results derived earlier.

1) Compound Deterministic Interference Channel: In this
instance, the capacity region is exactly described.

Corollary 4: For the deterministic compound interference
channel, the inner bound in Theorem 1 is the capacity region.

Proof: The proof is elementary. When the channel is de-
terministic, we see that the gap claimed by Theorem 3

(63)

This completes the proof.

2) Two-State Compound Gaussian Interference Channel:
For the Gaussian version, we can characterize the capacity to
within one-bit.

Corollary 5: For the two-state compound Gaussian interfer-
ence channel, the achievable region of Theorem 1 is within at
most one bit of the capacity region.

Proof: For the Gaussian channel, each of the mutual
information terms in the expressions for and

can be upper bounded by 1 bit. To see this,
note that by (13). by our choice has
the same marginal distribution as and further given is
independent of . Therefore , where
and are independent and identically distributed memoryless
complex Gaussian random variables. Hence
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Similarly

(64)

(65)

(66)

Additionally, we can use Gaussian code books to get to within
one bit of the capacity.

Corollary 6: For the two-state compound Gaussian interfer-
ence channel

(67)

where .
This implies that is within one-bit of the

capacity region of the two-state Gaussian compound interfer-
ence channel.

Proof: See Section V-C.

IV. AN ACHIEVABLE SCHEME

We will present a natural, and novel, achievable scheme first.
We will evaluate the set of reliable communication rates using
this strategy and hence characterize an inner bound to the ca-
pacity region; this will complete the proof of Theorem 1. Next,
we will see some important geometric properties of the achiev-
able rate region.

A. Proof Of Theorem 1

Our coding scheme is a natural generalization of the scheme
of Chong et al. [3]. Since there are two possible states for both
receivers, each encoder now sends two sets of common informa-
tion, with the receivers opportunistically decoding the common
information (depending on the state). we choose the random
variables corresponding to the two sets of common information
in a degraded manner, following the same ordering of degrad-
edness of the interferences under the two states (cf.

(68)

Fix a .
Codebook Generation.

Generate a codeword of length , generating each ele-
ment independent and identically distributed (i.i.d.) according
to . For the codeword , generate indepen-
dent codewords

(69)

generating each element i.i.d. according to . For
each of the codewords , generate independent
codewords

(70)

generating each element i.i.d. according to
. For each of the codewords

, generate independent codewords

(71)

generating each element i.i.d. according to
. Similarly generate code

books

(72)

(73)

(74)

The codebook generation is pictorially represented in Fig. 4.
Encoding.

Transmitter sends to communicate
the message indexed by . Transmitter sends

to communicate the message indexed by
.

Decoding.
The receivers do joint typical set decoding. Let de-

note the set of jointly typical sequences where is the proba-
bility space containing the entire collection of random variables.

Receiver determines a unique and any
such that

It declares an error if it fails to find such a choice.
Receiver determines a unique and any

such that

It declares an error if it fails to find such a choice.
Similar decoding is done by receivers and .
From the analysis of the probability of error, we show in

Appendix A that the rate vector

is achievable if it satisfies conditions (75)–(110) shown at the
top of the following page.
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if (75)
if (76)

if (77)
if (78)

if (79)
if (80)

if (81)
if (82)
if (83)

if (84)
if (85)
if (86)

if (87)
if (88)
if (89)

if (90)
if (91)

if (92)
if (93)

if (94)
if (95)

if (96)
if (97)
if (98)

if (99)
if (100)
if (101)

if (102)
if (103)
if (104)

(105)
(106)
(107)
(108)
(109)
(110)

Note that (75)–(80) are the decodability conditions at ;
(81)–(89) are the decodability conditions at ; (90)–(95) are
the decodability conditions at ; (96)–(104) are the decod-
ability conditions at and (105)–(110) are stating the fact
that the rates are nonnegative real numbers.

Define

satisfies (75)–(110) (111)

and its projection onto the two dimension space by
.

Lemma 7:

Proof: See Appendix B.

Thus, we have shown that the capacity region satisfies

(112)

In particular, restricting to a subfamily of , where given
random variables such that is a
Markov chain and are defined by (58),
we get

(113)

This completes the proof of Theorem 1.

B. Dual Representation Of

We have noted in Remark 1 that a finite set of inequalities
(half-planes) are sufficient to describe . It was
also pointed out that it is tedious to characterize
explicitly. Nevertheless, we would like to derive some useful
insights into their properties from the dual representation of
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Fig. 4. The multilevel superposition coding scheme.

. These will prove useful in deriving the outer
bound.

We begin by noting that is a closed and
bounded convex region. (In fact, we know that it is a polyhe-
dron.) The external representation theorem of classical Convex
set theory (see Theorem 18.8, [8]) states that “an -dimen-
sional closed convex set in is the intersection of the closed
half-spaces tangent to it”. Thus

(114)

Here, is the support function (Section 13,
[8]) of and is defined as the solution of the
following linear program:

Max (115)

Since is the projection of the six-dimensional
region , the linear program (115) is equivalent
to the linear program (116) shown at the bottom of the page.

The dual of the linear program in (116) sheds important geo-
metric information. Let us denote the dual-variables associated
with the inequalities (24)–(29) by , with (30)–(38)

by , with (39)–(44) by , with (45)–(53)
by and with (54)–(55) by and .

Define by (117)–(124) shown at the bottom of
the following page.

For any define

(125)

The dual linear program is then given by

The dual linear program
(126)

By the strong duality theorem

(127)

Therefore

(128)

The primal linear program:
Max (116)
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Using (114) and (128), can now be de-
scribed as

(129)

This dual representation is essentially characterizing
as an intersection of an infinite number

of hyper-planes. These hyper-planes are linear inequalities
which are linear combinations of (24)–(55). The dual variables
are characterizing the way in which the linear combination is
taken.

We make two additional important observations.
• The dual variables and correspond to the inequalities

(54) and (55), respectively. These inequalities correspond
to just the trivial hyper-planes, viz. and

, and does not contribute to any other hyper-planes of
.

• From Remark 1, we know that only a finite number of in-
equalities are sufficient to characterize .

These observations lead to the following Lemma.

Lemma 8:

(130)

where

(131)

and

(132)

Further has finite cardinality.

Proof: Every inequality used to define in
(129) is described by parameters and . Note that
this set of inequalities includes the following two inequalities:

(133)

(134)

Consider any inequality, other than the two special ones
above, described by and , such that :

(135)

Define

(136)

Consider , obtained by replacing and in by
0. Now we have

(137)

Therefore

(138)

The above inequality, along with and , implies
(135). Therefore we have that (135) is redundant.

Thus we have proved that inequalities that are characterized
by a are redundant and can be removed. It also fol-
lows from (118)–(124) that is an empty set if either or
is less than . Thus we only need to consider inequalities char-
acterized by , where and . The finiteness of
the cardinality of follows from Remark 1. This completes the
proof.

We end this section by stating the following proposition, that
will be used in proving the outer bound.

satisfying (118)–(124) (117)

(118)

(119)

(120)

(121)

(122)

(123)

(124)
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Proposition 1: For any

(139)

(140)

(141)

(142)

Proof: The result follows directly from (118)–(123) and
the definition of .

V. OUTER BOUND

Our goal in this section is to show that, if is achiev-
able then there exist random variables , where

is a Markov chain, and a region

(143)

such that

(144)

The term is defined in Section V-A. Note
that our definition of is inspired by the char-
acterization of that we have obtained through
Lemma 8.

Further, quantifying the difference between
and will give

us the gap between the inner and the outer bounds.

A. Proof of Theorem 3(i)

Suppose there is a sequence of encoders at rates , se-
quenced by the block length , and decoders with probability of
error going to 0 as . Fix the block length and consider
the corresponding code book. Let
be the random variables induced by the channel and encoders
for uniformly distributed messages, independent across the
two users. We define random variables which is obtained
by passing through an independent copy of the channel

, and by passing the so obtained through
an independent copy of rhe channel . Similarly, we
also define and from and independent copies of

and . Mathematically, we have the following
Markov chain:

(145)

And further the marginal distribution of ’s and ’s is
the same as the marginal distribution of ’s and ’s re-
spectively.

Since the probability of error goes to as , by Fano’s
inequality there exists a sequence such that, for every

(146)

Note that for , we have . Therefore

(147)

(148)

We use this in step (1) along with Fano’s inequality for decod-
ability under different states of the receiver. In step (2), we con-
sider genies which provide different side-information ’s to the
decoders. Consider, for instance, the term .
We will choose the side-information in such a way that we
can form a correspondence between this term and the term con-
tributed to the inner bound by the right hand side of the con-
straint (24). In particular, we choose the genie provided side-in-
formation to match the error-event corresponding to (24).
More specifically, we note that the corresponding error-event is
when receiver-1 in state correctly decodes the other user’s
common information , and its own common information

, but makes an error in decoding its private message.
Hence, the genie provides the side-information
which can be shrunk to because of the
Markov relationship between , and . Now, we ex-
pand the term to get (149). We can repeat
these two steps for every term in (146): the (expanded) upper
bounds on all the terms are given in (149)–(178) shown on the
next two pages.
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(149)

(150)

(151)

(152)

(153)

(154)

(155)

(156)

(157)

(158)

(159)

(160)

(161)

(162)

(163)

(164)

(165)

(166)

(167)

(168)

(169)

(170)

(171)

(172)

Authorized licensed use limited to: University of Illinois. Downloaded on March 12,2010 at 10:35:20 EST from IEEE Xplore.  Restrictions apply. 



RAJA et al.: THE TWO-USER COMPOUND INTERFERENCE CHANNEL 5111

(173)

(174)

(175)

(176)

(177)

(178)

Continuing with our outer bound derivation, from (146)

(179)

(180)

(181)
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(182)

Here, we have the following.
• To get inequality (a), we used (149)–(178) in (146) and

collected the terms together.
• For equality (b), we used Proposition 1 along with the fact

that and has the same marginal distribution as
and , respectively. Therefore

(183)

(184)

(185)

(186)

• Inequality (c) follows from the fact that conditioning re-
duces entropy. In particular,

(187)

(188)

• For equality (d), we used

Now, we “single-letterize” using the chain rule along with the
fact that the channel is memoryless and conditioning reduces
entropy

(189)

(190)

where we set

to be joint random variables such that is uniformly
distributed over and,

(191)

for . Since the messages are independent for the
two users, so are and . Therefore,
satisfies the Markov chain . Further because of
our choice of , the random
variables satisfy the condition (58). Hence the random variables

belong to the sub-family of
that we described earlier, whose elements are defined by

.
The above step is done for all . Since the cardi-

nality of is finite, we can use Carathèodory’s theorem along
the lines of Remark 1 to bound the cardinality of and make it
independent of . Taking , we get

(192)

where
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(193)

We are now ready to formally define

We have proved that if is achievable, then

(194)

This completes the proof.

B. Proof of Theorem 3 (ii)

For a given such that is a Markov
chain, we need to quantify the gap between
and , which are defined by (130) and (143),
respectively. In order to do this, we quantify the gap between

and .

(195)

Here and are defined as fol-
lows:

This completes the proof of Theorem 3.

C. Proof Of Corollary 6

Consider the two-state compound Gaussian interference
channel. For this special case, we have the following result that
identifies the Gaussian code books to be sufficient.

Lemma 9:

(196)

where .
We note for easy reference that is defined in
(143).

Proof: It suffices to show that

where is as defined in (193).
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The terms
and are the differential entropies of complex
Gaussian noise with known variance and are readily handled.
Let us now turn to the term :

(197)

(198)

(199)

(200)

(201)

(202)

(203)

Here,
• in step (a), we denoted

(204)

and used the fact that conditional differential entropy is
maximized with the Gaussian distribution under a co-
variance constraint (Lemma 1 [7]). The denotes jointly
Gaussian random variables with the same covariance
constraints;

• in step (b), we used Jensen’s inequality.
A similar argument follows for the other terms. To conclude, we
have shown that

(205)

This completes the proof.

Finally, we can readily see the proof of Corollary 6. This is
because

(206)

as a direct consequence of Lemma 9.

VI. DISCUSSION: INSIGHTS ON THE NONCOMPOUND

INTERFERENCE CHANNEL

In this section we consider the noncompound interference
channel model introduced in [5]; this is a specific instance of
our model and is obtained by setting . Our results, when
specialized to this instance provide an alternative derivation of
the results of Chong et al. [3] and Tse and Telatar [5]. Below we
briefly sketch our results with an aim to compare and contrast
the different proofs. The goal is not only to give better insight
into existing results, but also to give an idea on how our new
proof technique scales more naturally to the 2-state compound
interference channel (and in general to the -state compound
interference channel that we will describe in the next section).
We first describe the achievable scheme and the inner bound.
Following that, we will describe the outer-bound, focusing on
contrasts between the different approaches.

A. Achievable Scheme

The special case of the noncompound version is obtained by
setting

(207)

and, correspondingly,

(208)

for . We also set

(209)

We rename as and as to be consistent with the
notation of Chong et al. [3].

The superposition achievable scheme can now be described
by joint random variables

(210)

with the joint distribution factoring as

(211)

From Section IV-A, it follows that any rate vector
that satisfies

if (212)
if (213)

if (214)
if (215)
if (216)

if (217)
if (218)

if (219)
(220)
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is achievable. Define the four-dimensional region

satisfies (212)–(220)

(221)

and its projection on the two-dimensional space

(222)

On the other hand, define

satisfies (224)–(233) (223)
(224)
(225)
(226)
(227)
(228)
(229)
(230)
(231)
(232)
(233)

Let its projection on the two-dimensional space

(234)

In [3, Th. 2], the authors explicitly evaluated the constraints that
define this set and described it as the “compact version” of the
Han–Kobayashi region [1] (which results from a somewhat dif-
ferent coding strategy, as compared to the superposition coding
one). However, we know from Lemma 7 that

(235)

We thus conclude the alternate proof of [3](Theorem 2). Our
approach differs from the approach of Chong et al. [3] in two
ways.

• It is instructive to observe the similarities and differences
between the 4-dimensional achievable region to
the one in [3] (Lemma 3). First, the inequalities involved
are the same. Howevber, several of these constraints are
inactive when the boundary conditions on the data rates
bite. We can immediately conclude that our achievable re-
gion is in general a superset of the region in [3].
This is somewhat surprising since the encoding method in
both cases is superposition coding. The differences result
due to our careful consideration of the error events in the
decoding process.

• Chong et al. [3] described the two-dimensional region ex-
plicitly by carrying out the somewhat tedious algorithmic
procedure of Fourier–Motzkin elimination. Further, they
showed that a potentially bigger region (the compact
description region) is achievable by time-sharing between
two other schemes defined by and

. In our approach, we entirely avoid
describing the two-dimensional region explicitly. Further,
we showed that there is no need to time-share between any
other schemes, to achieve .

B. Outer Bound

For a given , the inner-bound re-
gion in Chong et al. [3] is described by seven linear inequalities
involving and . In [5], Telatar and Tse picked a specific
choice of given by

(236)

In deriving the outer bound, Telatar and Tse [5] gave extra infor-
mation to the receivers (the so-called “genie-aided” approach)
to handle the seven inequalities. The rationale to what side in-
formation the genie should provide to handle the different linear
inequalities was somewhat speculative (cf. Section IV [5]).

Our approach avoids an explicit representation of the
inner-bound. This higher level description allowed us (cf.
Section IV-B) to show that any inequality involved in the
projected region can be obtained by linear combination
of the inequalities (224)–(231). Further, each inequality in
(224)–(231) arises from a typical error event consideration. We
now have the operational insight into what side information
to give when. We demonstrate this process in the instance
of (224). This inequality must be satisfied to ensure that the
Receiver 1 decodes its own private message, on the condition
that it can decode both the public messages correctly. This
suggests that corresponding to this inequality, we may give the
side information . A similar argument handles each
of the other inequalities (224)–(231).

VII. -STATE COMPOUND INTERFERENCE CHANNEL

In this section we consider the natural extension of the two-
state compound interference channel to an -state compound
interference channel. Our earlier results (both inner and outer
bounds) also generalize naturally to the more general -state
model.

A. Model

The -state compound interference channel is depicted in
Fig. 5. Each receiver can be in one of the possible states
denoted by .

B. Results

We can characterize the inner bound and outer bounds to
the capacity region in a way similar to the two-state compound
channel.
Inner Bound.

Our coding scheme is -level superposition coding. This
is much along the lines of the three-level superposition coding
employed for the two-state compound interference channel. The
coding scheme is characterized by jointly distributed random
variables

(237)

which satisfy the Markov chain

(238)
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Fig. 5. The � -state compound interference channel model.

As earlier, we restrict ourselves to a subfamily of the jointly dis-
tributed random variables uniquely determined by
in the following way:

Given , we pick random variables

(239)

such that they have the same joint distribution as

(240)

but are independent of them.

Using these random variables, we generate the -level
superposition random code books for each user with rates

and respec-
tively.

The decoding at each receiver is jointly typical set decoding.
It is similar to the decoding described for the two-state. Each
receiver tries to decode fully all of its own messages, but only
partially decodes the other (interfering) user. This strategy can
be seen as an opportunistic strategy where the extent of the in-
terference that the receiver decodes depends upon the level of
interference it sees.

The remainder description of the achievable rate region fol-
lows the same development pattern as for the two-state com-
pound channel. It would be impractical (in terms of the length
of the descriptions) to explicitly detail this description. As such,
we briefly itemize the main points in the achievable region de-
scription below.

• We first have an achievable rate region
in dimensions

along the same lines as (111) (we have avoided the
explicit description of the linear inequalities describing
the region due to the tedium and length involved in doing
so). As earlier, let be the projection onto
the two-dimensional space where

(241)

We have that is achievable.
• We next define as a generalization

of (23) and define its projection onto the two dimensional
space . Lemma 7 can be appropriately
generalized to show that

(242)

thus proving that is also achievable.
• We next characterize an external representation of

, using an appropriate generalization
of (130) to the -state model). In other words, we rep-
resent it as an intersection of hyperplanes, where the
inequality used to define the hyperplane can be obtained
as a linear combination of the inequalities used to define

.
Outer Bound.

An outer-bound can be derived with an ex-
ternal representation that is similar to the corresponding one for
the inner bound (this step is a natural gener-
alization of (143)). In deriving the outer bound, we use appro-
priate genie-aided techniques (that involve providing suitable
side information to the receiver). Again, what side information
is shared is decided based on the typical error events which lead
to the corresponding inequality in the inner bound.
Gap.

Finally, we characterize the gap between the outer and inner
bounds to the capacity region for the -state compound channel,
in much the same way as we did for the two-state compound
channel. This is stated formally below.

Theorem 10: For the -state compound interference channel
of Fig. 5, if is in the outer bound to the capacity region,
then is achievable, where

(243)

(244)
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Specializing to the deterministic version, we can see that this
gap is zero and hence the capacity region is characterized ex-
actly. Specializing to the Gaussian version, we can see that this
gap is no more than one bit. This completes the extension to the

-state compound channel scenario.

C. Discussion

A few comments on the structure and properties of the achiev-
able scheme are in order here.

• Note that the structure of the achievable scheme (or the
power split in the Gaussian scheme), which is character-
ized by the joint random variables

(245)

depends only on the interference states and not on the de-
terministic functions . The functions however
may still help in determining the actual achievable rate re-
gion.
We highlight this point by considering the case when each
of the degraded interference channels in our model are
identity, i.e.

(246)

For this model the “compoundness” of the channel is only
due to the functions . Indeed, only two levels of su-
perposition coding suffice, much as in the noncompound
version of the problem.

• Let us assume

(247)

Then our achievable scheme sets

(248)

This implies that the level of the code book corresponding
to is “degenerate” and that we might as well set

(249)

Suppose, however that

(250)

and hence the two receiver states and are not the
same. While the receiver in either state adopts the same de-
coding technique (with respect to the level of interference
it decodes), the higher dimensional constraints on the rate
vector, as imposed by the decoding condition for each state,
are different. Nevertheless, we see that for the Gaussian
case one of these states is always worse than the other and
thus would be the critical bottleneck in determining the
achievable rates; this is done next.

VIII. THE COMPOUND GAUSSIAN INTERFERENCE CHANNEL

A. Model

The single-antenna Gaussian interference channel is parame-
trized by the complex channel parameters .
The compound Gaussian interference channel lets the channel
parameters take values from a set —finite or infinite

(251)

Without loss of generality, we can assume that the cross-link
gains take real values. To see this, consider the signal at receiver
1

(252)

Since our model assumes R-CSI, the receiver 1 can rotate the
received signal by .

Define

(253)

Observe that the channels from the two transmitters to the re-
ceiver are defined solely by the parameters . There-
fore, the set is the set of states that the receiver can take.
Now define as

(254)

In other words allows for all combinations of the possible
states for both the receivers. Let denote the capacity region
of the compound channel defined by the set . We have the
following proposition.

Proposition 2:

Proof: Note that . Thus it is clear that any scheme
that works for the compound channel also works for the com-
pound channel . However, since the two receivers do not coop-
erate, only the marginal channels to each receiver decide the de-
codability of any communication scheme. We now conclude that
a scheme that works for the compound channel also works for
the compound channel . This completes the proof.

In the light of this observation, without loss of generality, we
need only to consider compound channels whose state set
decomposes as .

B. Finite State Compound Channel

Let us first assume that the cardinality of (or equivalently
and ) is finite. In Section II we saw that the case where

the cardinality of and is restricted to two is captured by
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the two-state compound interference channel of Fig. 2. Simi-
larly, the general case where and are finite (with car-
dinality no more than ) is captured by the -state compound
interference channel of Fig. 5. We see this formally below. The
key point is the infinitely divisible nature of Gaussian statistics.
This aspect was used to show that the scalar Gaussian broadcast
channel is always stochastically degraded (see [9, Sec. 14.1.3]).
In a similar vein, the compound scalar Gaussian interference
channel can always be supposed to have degraded interference
states.

We begin by noting that if

(255)

then we can add redundant duplicate copies to one of the sets,
so that

(256)

Therefore, without of loss of generality, we suppose this is true

(257)

Then, order the finite sets and such that

Next, we do the following substitution to reduce the finite state
Gaussian interference channel to the model of Fig. 5.

(258)

(259)

(260)

(261)

(262)

(263)

Here ’s are independent complex Gaussian random
variables with unit variance. Note that the function
captures the direct-link gains and . The channels

capture the cross-link gains and as
well as the additive noise.

Theorem 11: For the finite state compound Gaussian inter-
ference channel, multilevel superposition coding with Gaussian
code books and opportunistic decoding depending on the inter-
ference state is within 1 bit of the capacity region.

Proof: We have shown earlier in this section that any finite
state Gaussian interference channel is captured as a special case
of the model in Fig. 5. Specializing the result of Theorem 10
to the Gaussian case, we have that the multilevel superposition
coding is within 1 bit of the capacity. Further, it suffices to only
consider Gaussian code books in the superposition code (along
the same lines as Corollary 6).

C. Infinite State Compound Channel

We, next, consider the case of the compound interference
channel with an infinite state set . The idea is to approximate
the set by a quantized finite state . The finer the quantization
is, the better the approximation will be. We first make a few key
observations.

1) The number of levels needed in the superposition coding
scheme only depends on the number of distinct values the
cross link takes, i.e., if takes distinct values and

takes distinct values then at receiver 1 we need a
superposition coding scheme with levels and at
receiver-2 we need a superposition coding scheme with

levels.
2) The capacity of the compound interference channel de-

pends only on the magnitude of the direct link gains and
not the phase and further for fixed values of the cross-link
gains, it is monotonically increasing with it. As a result,
suppose

(264)

These correspond to two states of the receiver 1, which
differ only in the direct link gain, but have the same cross
link gain. As observed in the previous section, for either
of the two states, the receiver adopts the same decoding
method. Further, since we have restricted ourselves to
Gaussian code books, we see that the performance is
restricted only by the state that has the weaker of the
two direct links. Therefore, at any receiver, for a fixed
cross link value the direct link which is the weakest is the
bottleneck.
We can discard the state to reduce the set .
The compound channel with the reduced state-sets and the
original compound channel have the same capacity and a
scheme that works for the reduced state-set also works for
the original compound channel.

We now succinctly describe the quantization procedure but
will leave out the finer details of the proof. For the state set

, we define the quantized state set obtained by taking an
-level quantization of the cross link gains and the maximum

quantization interval of length . As . We
consider a scheme for this -state compound channel . This
is an -level superposition coding scheme with Gaussian code-
books. We know that this scheme achieves within 1 bit of the
capacity of the compound finite state compound interference
channel .

We look at its performance when the channel is actually an in-
finite state compound channel . The cross links do not take just
the quantized state value but instead take values in an interval
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of length at most . However, the decoding (i.e., the number of
interfering streams the receiver will decode) is done assuming
that the receiver took value from the quantized state. The right
hand side of the constraint inequalities on the sub-rates (which
are similar to the right hand side of (30)–(53)) must now de-
crease to incorporate this difference. Assuming that these terms
are continuous functions of the cross link gains with bounded
derivatives they would decrease by a maximum amount of ,
where as . It can be shown that if can
be achieved by this scheme for the finite-state compound inter-
ference channel , then can be achieved
by the this scheme for the infinite-state compound interference
channel .

Note that the capacity of the finite-state compound interfer-
ence channel is itself an upper bound to the capacity of the
compound interference channel . Hence by taking a quantiza-
tion large enough, we can achieve the capacity of the compound
interference channel to within 1 bit of its capacity.

APPENDIX A
ANALYSIS OF PROBABILITY OF ERROR

In the following we consider the decodability conditions at
receiver only. A very similar analysis applies to the other
receiver-state pairs.

Due to the symmetry of the random code book generation,
the probability of error averaged over the ensemble of random
random code books, does not depend on which codeword was
sent. Hence, without loss of generality, we can assume that the
messages indexed by

(265)

were sent by the two transmitters respectively. Let us define the
following event:

Letting denote the probability of decoding error at
we have

(266)

(267)

The final inequality used the union bound. Let us consider each
term in (267) and study the conditions needed to make it go to

asymptotically (in ).
• It is straightforward to see that goes to as .
• Now consider . We begin by noting that

. Therefore if then .
Else

(268)

Therefore for to go to as , we must have

if (269)

• Similarly, is 0 if or . Else, it must be
that

(270)

It is important to note that if , but then,
(270) is redundant because of (269). Therefore for to
go to 0 as (assuming that goes to 0 too), we
must have,

if

(271)

Similarly for and , we must have

if (272)

if (273)

if (274)

if (275)

respectively.

APPENDIX B
PROOF OF LEMMA 7

Consider any . Then there exists an

(276)

such that,

and (277)

We will find a

(278)
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such that,

by the following algorithmic procedure.
Step 1a) For , if then

(279)

Step 1b) For , if then

(280)

Step 2a) For , if then

(281)

Step 2b) For , if then

(282)

First up, we note that at each step we are ensuring that
and stay invariant. Next, note that

if

(283)

and , and are all nonnegative,
then it follows by definition of and that

(284)

and hence

(285)

Claim 1: At the end of Step 1b, the new
still remains in and

satisfies

(286)

Proof: Consider Step 1a). Note that in this step we are po-
tentially increasing , but the rest of the components either
remain the same or decrease. Also note that in this step, we are
keeping invariant. Therefore, we only need to en-
sure that the inequalities among (24)–(53) that have , but
not are not violated. This can be verified to be true, because
of the polymatroidal nature of each block of the inequalities in
(24)–(53). The argument is similar for Step 1b).

Claim 2: At the end of Step 2b), the new

is in .
Proof: Note that in Step 2a), the only component that po-

tentially increases is , and so we might be violating one of

the following constraints: (24), (25), (30)–(32), (39), (40), and
(45)–(47). However, by setting , these violated con-
straints no longer matter for . The argument is similar
for Step 2b). Note that at the end of Step 2b), we have ensured
that all the components are nonnegative.
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