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Abstract— In this paper, a compress-and-forward scheme with
backward decoding is presented for the unicast wireless relay
network. The encoding at the source and relay is a generalization
of the noisy network coding (NNC) scheme. While it achieves the
same reliable data rate as NNC scheme, the backward decoding
allows for a better decoding complexity as compared with the
joint decoding of the NNC scheme. Characterizing the layered
decoding scheme is shown to be equivalent to characterizing
an information flow for the wireless network. A node-flow for
a graph with bisubmodular capacity constraints is presented
and a max-flow min-cut theorem is presented. This generalizes
many well-known results of flows over capacity constrained
graphs studied in computer science literature. The results for
the unicast relay network are generalized to the network with
multiple sources with independent messages intended for a single
destination.

Index Terms— Wireless communication, relay networks,
capacity, bisubmodular flows, max flow min-cut.

I. INTRODUCTION

THE primary focus of this paper is a unicast wireless relay
network: a single source node intends to communicate

reliably with a single destination node with the assistance of
many relay nodes. The communication channels are wireless;
transmitted signals from a node are broadcasted to all other
nodes; received signals at a node is a linear superposition of
the transmit signals with a random additive noise, which has
the familiar Gaussian distribution.

In [2] a quantize-map-forward scheme was presented for
the wireless relay network. It was shown that this scheme
is approximately optimal, i.e. it gives a reliability criterion
for rates within a constant gap of the cutset bound, where

Manuscript received January 10, 2011; revised October 20, 2013; accepted
April 28, 2014. Date of publication July 17, 2014; date of current version
August 14, 2014. This work was supported in part by the National Science
Foundation under Grant CCF-1017430 and Grant ECCS-1232257, in part by
the Army Research Office under Grant W911NF-14-1-0220, and in part by
Intel Corporation, Santa Clara, CA, USA. This paper was presented at the
2011 IEEE International Symposium on Information Theory.

A. Raja was with the Coordinated Science Laboratory, Department of Elec-
trical and Computer Engineering, University of Illinois at Urbana-Champaign,
Champaign, IL 61801 USA. He is now with Fastback Networks, San Jose,
CA 95131 USA (e-mail: araja2@illinois.edu).

P. Viswanath is with the Coordinated Science Laboratory, Department
of Electrical and Computer Engineering, University of Illinois at Urbana-
Champaign, Champaign, IL 61801 USA (e-mail: pramodv@illinois.edu).

Communicated by C. Fragouli, Associate Editor for Communication
Networks.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIT.2014.2334328

the constant gap depends only on the size of the network
and not on the channel parameters. In this scheme, each
node quantizes the received signal, symbol by symbol, at the
noise level. The quantized symbols accumulated together in a
block are then mapped to a transmit codeword at that node.
These transmission codebooks at every node are generated
independently of each other.

In [3], a related scheme was presented for the wireless
relay network. Here, the coding and quantization is done in
a structured manner using lattices. The scheme was shown
to achieve performance similar to the quantize-map-forward
scheme of [2] in terms of the reliable rates.

In [1], a noisy network coding scheme in the more general
setting of the discrete memoryless network was presented for
the unicast relay network and also generalized to the case of
multicast and multiple sources with single destination. In this
scheme, the relay quantizes the received signal in blocks
using vector-quantization, subsequently mapping each quan-
tized codeword to a unique codeword, which is re-transmitted
by the relay. Specialized to the wireless network, the noisy
network coding can be thought of as a vector version of the
quantize-map-forward scheme, where each relay does a vector
quantization rather than the scalar quantization proposed in [2].

In [4], an alternate approach was provided, wherein the
discrete superposition network was used as a digital interface
for the wireless network and the scheme was constructed
by lifting the scheme for the discrete superposition network.
The discrete superposition network provided the quantization
interface for this scheme.

In this paper, a compress-and-forward scheme is presented
for a relay network in the general setting of the discrete
memoryless network. This encoding is similar to the noisy
network scheme, but the relay mapping is generalized, so
that the relay node compresses the received signal in blocks,
on top of the vector quantization in NNC. The additional
compression does not increase the achievable rate beyond
the rate achievable by NNC; however, the first main result
of this paper is that, if the compression rates are chosen
appropriately then a lower complexity backward decoding
achieves approximately the same rate. The above result was
also proved independently in [5]. The second important result
in this paper is to show that this appropriate choice of
compression rates can be computed efficiently by computing
a node-flow on a bisubmodular capacitated graph. The flow
formulation captures the rate of actual information that should
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Fig. 1. A depiction of the communication schemes on the Gaussian and linear deterministic networks. The main result of this paper is represented by the
upper-right bubble in red.

flow through each node to support a given rate of flow of
information from the source to the destination. In other words,
this paper shows that backward decoding does almost as good
as joint decoding, if the relay nodes compress their signals
to capture the right amount of information that should flow
through that given the network topology.

The paper presents a max-flow min-cut result for a node-
flow on a bisubmodular capacitated graph. This is related to
many well-known results of flows over capacity constrained
graphs studied in computer science literature, albeit with two
differences; the first one being that the flow is defined over
nodes rather than the conventional approach of defining over
edges; and the second is that the graphs are restricted to
layered graphs alone. The first difference is a fundamental
difference. Flows over graphs are conventionally defined as
numbers over edges of the graph, such that for every node
the incoming-flow is equal to the outgoing-flow. Since the
motivation here is to model the wireless network where there
are no physical edges, it is more appropriate to define node-
flow rather than edge-flow; the relation being that the node-
flow represents the incoming-flow or outgoing-flow at the
node. The second is less fundamental and the restriction
to layered graphs is done only because the block-coding
scheme for the relay network can be studied by considering
a virtual layered network. the layering offers a convenient
way of defining the bisubmodular capacity functions on the
layered graph.

The bisubmodular capacitated graph presented here is moti-
vated by the ideas of linking systems and flows introduced
in [6]–[9] in the context of the linear deterministic network.
The linear deterministic network was introduced in [2] as a
model that captures many features of the wireless network.
Random coding argument was used to show the existence
of schemes that achieve capacity of the linear deterministic
network [1], [2]. On the other hand [6], [7] developed a
polynomial time algorithm that discovers the relay encod-
ing strategy using a notion of linear independence between
channels. Taking this concept forward, in [8] and [9], the
concept of flow was introduced for the linear deterministic
network. The flow value at each node in this network corre-

sponds to the number of independent equations, that particular
node needs to forward. The result in this paper can be viewed
as a loose analog of these results in the context of the Gaussian
network; see Figure 1. The additional structure of the linear
deterministic channel, is used in [6]–[9] to show that a single-
block coding scheme where a simple permutation matrix at
each node mapping the received vector to the transmit vector is
optimal. Both the flow values at the node and the permutation
mapping were constructed in polynomial time.

The rest of the paper is organized as follows. In Section II
the compress-and-forward scheme for the relay network
is described and characterized. A lower-complexity layered
decoding is presented and the achievable rates are character-
ized. It is shown that this decoding scheme does as well as
the joint decoding scheme. To prove this result, the notion of
node-flows for a bisubmodular capacitated graph is developed
in Section III. In Section IV, the results are generalized to
the network with multiple sources with independent messages
intended for a single destination. In Section V we discuss
the ramifications of our algebraic flow formulation to the
important special cases of the Gaussian wireless relay network
and the deterministic relay network.

II. UNICAST RELAY NETWORK

A communication network is represented by a set of
nodes V . Each node in the network abstracts a radio, which
can both transmit and receive (in full or half duplex modes).
The traffic is unicast: a single source node is communicating
reliably to a single destination node using the other nodes in
the network as relays. We will be interested in a single-source
single-destination relay network, which has a unique source
node s and destination node d and the other nodes function as
relay nodes. At any node v, the transmit alphabet is given by
Xv and the receive alphabet by Yv (supposed to be discrete
sets, for the most part). Time is discrete and synchronized
among all nodes. The transmit symbol at any time at a node
v is given by xv ∈ Xv and the receive symbol is given by
yv ∈ Yv . Memoryless network will be considered here wherein
the received symbol at any node at any given time depends
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Fig. 2. A layered network.

(in a random fashion) only on the current transmitted symbols
at other nodes.

A (2T R, T ) coding scheme for the relay network, which
communicates over T time instants, comprises of the follow-
ing.

1) The message W , which is modeled as an independent
random variable distributed uniformly on [2T R]. W is
known at the source node and is intended for the
destination node.

2) The source mapping for each time t ∈ [T ],
fs,t : (W × Y t−1

s ) → Xs . (1)

3) The relay mappings for each v ∈ V\ {s} and t ∈ [T ],
fv,t : Y t−1

v → Xv . (2)

4) The decoding map at destination d ,

gd : YT
d → Ŵ . (3)

The probability of error for destination d under this coding
scheme is given by

Pe
def= Pr{Ŵ �= W }. (4)

A rate R (in bits per unit time) is said to be achievable if
for any ε > 0, there exists a (2T R, T ) scheme that achieves
a probability of error lesser than ε for all nodes, i.e., Pe ≤ ε.
The capacity of the network is the supremum of all achievable
rates.

It was shown in [2] that any arbitrary communication
network can be converted into a layered network by coding
over blocks of time. Each layer then captures the operations
in the corresponding block of time. Further, if the nodes have
half-duplex constraint, then this time-layering is done with a
fixed transmit-receive schedule, which says which nodes are
transmitting and which ones are listening in any block of time.
It is then a secondary question to optimize over the schedule
in order to get the maximum rate of transmission.

Henceforth, the focus will be only on an L-layered network
as shown in Figure 2, so that

V =
L⋃

l=1

Ol , (5)

where Ol denotes the ml nodes in the l-th layer. The k-th node
in the l-th layer will be denoted by the ordered pair (l, k). The
first layer has only one node which is the source node and is
denoted by (1, 1) or s. The last layer has only the destination
node and is denoted by (L, 1) or d . The nodes other than the
source and the destination node will be referred to as the relay
nodes and are denoted by Vr , i.e.,

Vr =
L−1⋃

l=2

Ol . (6)

In the layered network, the received symbol for a node in
the l+1-th layer depends only on the transmit symbol from the
nodes in the l-th layer. Therefore, for the layered network the
channel which is denoted by a transition probability function
can be simplified into a product across layers as follows:

p (yV |xV) =
L−1∏

l=1

p
(
yOl+1 |xOl

)
. (7)

The noise across each relay node is assumed to be indepen-
dent, which implies that the channel function for each layer
is further given by,

p(yOl+1 |xOl ) =
ml+1∏

k=1

p(y(l+1,k)|xOl ). (8)

Here xOl is used to denote {xv : v ∈ Ol}. yOl ’s are similarly
defined. This models the communication channel for the
layered network.

In particular, if the received symbol is a deterministic
function of the transmitted symbols, i.e.,

yOl+1 = gl
(
xOl

)
, (9)

then the network is called a deterministic network. Further,
if the transmit and received symbols are restricted to vectors
over finite fields and the deterministic function is modeled as
a linear function, such that

yOl+1 = Gl xOl , (10)

then the network is called a linear deterministic network.
If the network is a wireless network, then the alphabet sets
are complex and the probability transition function linear with
an additive complex Gaussian noise zv , such that,

yv =
∑

u∈Ol

hv,u xu + zv , (11)

where v ∈ Ol+1. The wireless network is the one with the
most practical interest and in [2] it was shown that the linear
deterministic network captures many features of the wireless
network.

A. Compress-and-Forward Scheme

In this section, the compress-and-forward scheme is
described and it’s performance is characterized. It is a block-
encoded scheme where each node performs its operation
over blocks of time symbols. The relay node quantizes
(or compresses) the symbols it receives over a block of time
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to finite bits. These bits are then transmitted in the next block.
The compression rate at a relay node is defined to be the rate
of transmission of the compressed bits.

Assuming that uniformly sized blocks of T symbols are
used by each node for this operation, a compress-and-forward
scheme is parametrized by

(
T, R, {rv }v∈Vr

)
, where R is the

overall rate of communication and rv ’s are the compression
rates at the relay nodes. A rate vector

(
R, {rv}v∈Vr

)
is said to

be feasible w.r.t. the compress-and-forward scheme, if for any
arbitrary ε > 0, there exists a compress-and-forward scheme(
T, R, {rv }v∈Vr

)
which achieves a probability of error less

than ε.
The following theorem characterizes the feasible region of(

R, {rv }v∈Vr

)
for the compress-and-forward scheme.

Theorem 1: A rate vector
(
R, {rv }v∈Vr

)
is feasible if for

some collection of random variables
{

XV , ŶV
}
, henceforth

denoted by Q p, which is distributed as

p(XV , ŶV , YV ) =
(

∏

v∈V
p(Xv )

)
p(YV |XV )

(
∏

v∈V
p(Ŷv |Yv )

)
,

(12)

the vector
(
R, {rv }v∈Vr

)
satisfies

R < r(�c\�) + I (Ŷ�; X�|X�c) − I (Ŷ�c ; Y�c |XV ), (13)

∀ �,�, s.t., S ∈ � ⊆ V, D ∈ � ⊆ �c, where r(A)
def=∑

v∈A rv .
Note 1: The choice ŶD = YD is always optimal for (13).
Note 2: In the usual cut-set definition, the node-set is parti-
tioned into two sets; a set containing the source � and the com-
plementary set �c, containing the destination. However, here
the node set is partition into a set containing the source - �,
a set containing the destination - �c, and the rest.

Proof: The proof is by random coding technique. A ran-
dom ensemble of coding scheme is defined using the collection
of random variables Q p distributed as given by (12). A scheme
in the ensemble is generated as follows.

1) Source Codebook and Encoding: For each message w ∈
[2T R], the source generates a T -length sequence xT

s (w)
using i.i.d. p(X S).

2) Relay Codebooks and Mappings: For every relay node
v ∈ Vr a binned quantization codebook is generated with
2T rv bins. The binned quantization codebook is given by
ŷT
v (wv, w̄v ), where wv ∈ [2T rv ] and w̄v ∈ [2T r̄v ]. And

it is generated using i.i.d. p(Ŷv ).
Every relay node also generates a transmission code-
book of size 2T rv , which consists of xT

v (wv) sequences
generated using i.i.d. p(Xv ).
On receiving yT

v , the relay node finds a vector
ŷT
v (wv, w̄v ) in the quantization codebook that is jointly

typical with yT
v , and transmits x T

v (wv) corresponding to
the bin number of the quantization vector.
If the relay cannot find any quantization vector, it
transmits a sequence corresponding to any bin uniformly
at random. The probability that this latter event is
arbitrarily is small is ensured by letting

r̄v = I (Yv ; Ŷv ) − rv + ε1, (14)

for an arbitrarily small ε1 > 0. This ensures that the
total size of the quantization codebook is of the order
2T I (Yv ,Ŷv ).

3) Decoding: On receiving yT
D , the destination node finds

a unique ŵ, and any {(ŵv , ˆ̄wv)}v∈Vr , such that
(

x T
S (ŵ),

{
Ŷ T

v (ŵv , ˆ̄wv), x T
v (ŵv)

}

v∈Vr
, yT

D

)
∈ T T

ε .

(15)
If it is successful, the destination declares ŵ as the
decoded message; if not, the destination declares an
error.

The theorem follows by the standard argument of showing
that the average probability of error, averaged over the ensem-
ble of codes and over all messages, goes to 0 as T tends to
infinity. The details of the error probability analysis are in
Appendix A.

In the usual communication problem setup, one is interested
in only maximizing the overall communication rate R. The
following corollary of the above theorem establishes the
achievable rate by the compress-and-forward scheme.

Corollary 1: The communication rate R is achievable by
the compress-and-forward scheme if

R < min
�⊆V ,S∈�

I (Ŷ�c ; X�|X�c ) − I (Ŷ�; Y�|XV , ), (16)

for some collection of random variables Q p.
Proof: The corollary can be proved by showing that the

RHS of (16) is always greater than the RHS of (13). To shows
this, we will choose the compression rates of the compress-
and-forward scheme to be rv = I (Yv ; Ŷv )+ ε1. (Note that this
is the maximum choice for the compression rate as this makes
r̄v = 0 in (14)). With this choice of compression rates,

RHS of (13) > I (Y�c\�; Ŷ�c\�) + I (Ŷ�; X�|X�c)

−I (Ŷ�c ; Y�c |XV ) (17)

= I (Ŷ�; X�|X�c ) + I (Y�c\�; Ŷ�c\�)

−I (Y�c\�; Ŷ�c\�|XV ) − I (Ŷ�; Y�|XV )

(18)

= H (Ŷ�|X�c) − H (Ŷ�|XV ) + H (Y�c\�)

−H (Ŷ�c\�|XV ) − I (Ŷ�; Y�|XV ) (19)

> H (Ŷ�|X�c) − H (Ŷ�|XV ) + H (Y�c\�|X�c)

−H (Ŷ�c\�|XV ) − I (Ŷ�; Y�|XV ) (20)

= H (Ŷ�|X�c) + H (Y�c\�|X�c) − H (Ŷ�c |XV )

−I (Ŷ�; Y�|XV ) (21)

> H (Y�c |X�c ) − H (Ŷ�c |XV )

−I (Ŷ�; Y�|XV ) (22)

= I (Y�c ; X�|X�c ) − I (Ŷ�; Y�|XV ) (23)

= RHS of (16). (24)

It should be noted that the achievable rate in (16) is the same
as the one obtained in noisy network coding scheme in [1].
This is not surprising as by allowing the compression rates to
be large enough, the scheme essentially reduces to the noisy
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network coding scheme, where every quantized codeword is
uniquely mapped to a re-transmission codeword at the relay
node.

B. A Layered Decoding Scheme

A maximum likelihood decoder maximizes the probability
of the received vector conditioned on the transmitted codeword
at the source. Note that the jointly-typical-set decoding is
a proof technique for the random coding argument and it
upper-bounds the error probability that can be achieved by
the maximum likelihood (ML) decoder.

ML decoder: ŵ = argmaxw p
(
yT

D|x T
S (w)

)
. (25)

The conditional probability depends on the channel model
and the operations (quantization, compression and mapping)
at each node. Therefore implementing a ML decoder has
very high complexity. In this section, a layered decoding
architecture is presented for the compress-and-forward scheme
which operates layer-by-layer and decodes the compressed
bits transmitted by each relay node. As will be discussed in
Section VI, the layered decoding can help reduce the decoding
complexity.

Layered Decoding Scheme: The decoder at the destination
node operates backwards layer-by-layer. First, it decodes the
messages (or compressed bits) transmitted by the nodes in the
layer OL−1. Then using these decoded messages, it decodes
the messages in the layer OL−2. This process continues till
the destination node eventually decodes the source message.
Note that the layered decoding scheme is the same as the
backward decoding for the block-encoding schemes in relay
networks.

The following theorem characterizes the feasible region of(
R, {rv }v∈Vr

)
.

Theorem 2: A rate vector
(
R, {rv}v∈Vr

)
is feasible for the

compress-and-forward scheme, under the layered decoding
scheme, if for some Q p the vector

(
R, {rv }v∈Vr

)
satisfies

r(U) ≤ I (XU ; YD|XOL−1\U ), ∀ U ⊆ OL−1,

(26)

r(U) − r(Ol+1\V ) ≤ I (XU ; ŶV |XOl\U )

−I (ŶOl+1\V ; YOl+1\V |XOl ),

∀ U ⊆ Ol , V ⊆ Ol+1, 2 ≤ l ≤ L − 2,

(27)

R − r(O2\V ) ≤ I (X S; ŶV ) − I (ŶOl+1\V ; YOl+1\V |X S),

∀V ⊆ O2. (28)
Proof: The proof is by backward induction. Assuming

that the destination has decoded the messages transmitted by
the relay nodes in layer Ol+1, the probability of error for
decoding the messages from the layer Ol is considered. To do
so, a hypothetical layered network as shown in Figure 3 is
considered. This network consists of the layers Ol and Ol+1
and in addition a layer with an aggregator node A. A node
v(l+1, j ) in layer Ol+1 is connected to the aggregator node
with wired link of capacity rv(l+1, j) bits per symbol. This layer
represents the forward part of the network beyond layer Ol+1.

Fig. 3. A hypothetical network.

This network is now a multiple-source single-destination
relay network, with all the nodes in layer Ol being source
nodes and the aggregator node as the destination node. The
node v(l, j ) has a message for the aggregator node with rate
rv(l, j) . The noisy network coding scheme [1] assures that the
messages can be decoded with arbitrarily small probability of
error, if

r(U) − r(Ol+1\V ) ≤ I (XU ; ŶV |XOl\U ) − I (ŶV c; YV c |XOl ),
(29)

∀ U ⊆ Ol , V ⊆ Ol+1, where the above inequality corresponds
to the cut � = U

⋃
V c.

Note that the layered decoding scheme is weaker than the
ML decoding scheme. Therefore the feasible region under
the layered decoding scheme should be a strict subset of the
feasible region under the ML decoding scheme.

However, the following theorem shows that the compress-
and-forward scheme with layered decoding achieves similar
communication rate as the noisy network coding scheme.

Theorem 3: The communication rate R is achievable by
the compress-and-forward scheme with layered decoding if for
some collection of random variables Q p,

R < min
�⊆V ,S∈�

I (Ŷ�c ; X�|X�c ) − κ1, (30)

where the constant κ1 is given by the recursive relation,

κl = I (ŶOl+1 ; YOl+1 |XOl ) + κl+1|Ol+1|, (31)

and κL−1 = 0.
Proof: The above theorem will be proved by characterizing

an information flow for the network in the Section III-B.
Note that the conditions of Theorem 2 can be interpreted as

a flow decomposition for the layered network. If R is the infor-
mation that flows from the source to the destination, then the
flow decomposition gives the effective amount of information
that flows through each node. If the compression rate at each
relay node is made approximately equal to the information
flowing through that node, then the layered decoding where
the destination ends up decoding the effective information at
each node has a chance to work. Thus, in order to choose the
right compression rates at each node, a flow decomposition for
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the network must be obtained. These notions are made more
precise in the next section.

III. FLOWS WITH BISUBMODULAR CAPACITY

CONSTRAINTS

Maximum flow problems are extensively studied in graph
theory and combinatorial optimization [10]. The problems are
most often motivated from the study of transportation and
communication networks. A directed graph (V, E) consists of
the set of vertices or nodes V and the set of edges E ⊆ V×V .
Traditionally, flow is defined to be a non-negative function
over the set of all edges which satisfy the flow-conservation
law at each vertex other than the source and the destination
node. Further, the flow over any edge is less than the capacity
of that the edge. The classic max-flow min-cut result of [11]
characterizes the maximum flow from the source to destination
node and shows it to be equal to the min-cut of the graph.
In order to distinguish from the concept of the node-flow that
will be introduced here, such a flow is called an edge flow
over an edge-capacitated graph. Beginning from the single
commodity result of [11], various extensions of these problems
have been considered. In particular, the edge-capacitated graph
was extended to a polymatroidal network [12], where the flow
is constrained not only by the edge-capacities but by joint
capacities on sets of incoming and outgoing edges at every
vertex. A special case is the node-capacitated graph [13],
where the constraints on the flow are on the sum-total of the
incoming and outgoing flow at each node.

In this section, the concept of a node-flow in the context of
a layered graph with bisubmodular constraints on the flows is
introduced. The node-flows can be related to the edge-flows
with flow-conservation at the node. Note that the conservation
law for edge-flow enforces that the net incoming flow at any
node is equal to the net outgoing flow at the node and this
quantity can be viewed as the node-flow for a node. The
bisubmodular constraints can be viewed as generalizations
of the polymatroidal constraints of [12]. The definitions here
are motivated by the layered coding scheme for the wireless
network, which was presented in the previous chapter. The
main result is a max-flow min-cut theorem for the single-
commodity node-flow for a graph with bisubmodular capacity
constraints. The result is closely related to, and can be viewed
as a generalization of, the flow introduced in the context of
the linear deterministic networks and polylinking systems in
[8] and [9].

A. A Max-Flow Min-Cut Theorem

In this section, the max-flow min-cut theorem is proved
for single-commodity node-flow on a layered graph with
bisubmodular capacity constraints.

Layered graph: A layered graph is considered, which is
represented by a set of nodes V , which can be decomposed into
subsets Ol , 1 ≤ l ≤ L as shown in Figure 2. The layering is
ensured by the edges of the graph, which connect nodes in any
layer l to nodes in the subsequent layer l + 1. Since the edges
do not play any role in the problem here, beyond ensuring
the layering, they will henceforth be neglected. The first

layer O1 has a single node, which is the source node and
the last layer OL has a single node, which is the destination
node.

Bisubmodular Capacity Functions: The bisubmodular
capacity functions are defined for the layered graph using a
family of L − 1 functions
{ρl : 1 ≤ l ≤ L − 1}, ρl : 2Ol × 2Ol+1 → R

+, which satisfy
the following properties:

1) ρl is bisubmodular, i.e., ∀U1, U2 ⊆ Ol , V1, V2 ⊆ Ol+1,

ρl(U1 ∪ U2, V1 ∩ V2) + ρl(U1 ∩ U2, V1 ∪ V2)

≤ ρl(U1, V1) + ρl(U2, V2). (32)

2) ρl is non-decreasing, i.e.

ρl(U, V ) ≤ ρl(U1, V1), for U ∪ V ⊆ U1 ∪ V1. (33)

3) If U = ∅ or V = ∅, then

ρl(U, V ) = 0. (34)

Node-flow: The node-flow for the layered graph is defined
as a function f : V → R

+ which satisfies the capacity
constraints, i.e.,

f (V ) − f (Ol\U) ≤ ρl(U, V ),

∀ U ⊆ Ol , V ⊆ Ol+1,∀l ∈ [L − 1], (35)

where f (A) is an over-loaded notation, such that when A ⊆ V
then f (A)

def= ∑
v∈A f (v). Further, the destination node must

sink the flow from the source. Therefore f (D) = f (S).
The max-flow problem is to find the maximum f (S) that

can be supported given the capacity constraints on the graph.
An efficient algorithm to compute the flow at each node given
any f (S) that can be supported is also sought.

An upper bound on the max-flow is given by the cut
function.

Cut function: The cut function C : 2V → R+ is defined as

C(�)
def=

L−1∑

l=1

ρl(�l,Ol+1\�l+1), (36)

where �l
def= � ∩ Ol .

Clearly,
max f (S) ≤ min

�⊆V
C(�). (37)

The next theorem shows that the min-cut is achievable.
The proof is constructive and gives and efficient method of
computing the flow.

Theorem 4:
max f (S) = min

�⊆V
C(�). (38)

Proof: The proof is based on the polymatroid intersection
theorem. The details are in Appendix B.

The max-flow min-cut theorem for node-flows with bisub-
modular constraints presented here is closely related to the
max-flow min-cut results of [8] and [9]. [8] considered linear
deterministic networks, which led to bisubmodular capacity
functions arising from the rank of a matrix. [9] considered
polylinking systems, where the bisubmodular capacity func-
tions are given by the polylinking function. The results of
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[9] generalized the results of [8] by showing that a linear
deterministic network is a special case of polylinking system.

The max-flow min-cut theorem can be easily generalized to
the following two cases:

• Multi-source: Consider a layered graph with J source
nodes in O1 and a single destination node in OL , such
that f (O1) = f (D). For this case, the following corollary
generalizes Theorem 4.
Corollary 2: { f (v)|v ∈ O1} is a feasible flow iff,

f (�1) ≤ C(�), ∀ � ⊆ V, (39)

where �1
def= � ∩ O1.

• Multi-destination: Consider a layered graph with a single
source node in O1 and J destination nodes in OL , such
that f (S) = f (OL). For this case, the following corollary
generalizes Theorem 4.
Corollary 3: { f (v)|v ∈ OL} is a feasible flow iff,

f (�L) ≤ C(�), ∀ � ⊆ V, (40)

where �L
def= � ∩ OL .

Note that the proof for the multiple sources (or destina-
tions) case follows by adding a hypothetical supernode A
in layer 0 (or L + 1) with capacity functions ρ0 (or ρL )
given by ρ0(A, V ) = ∑

f (v), ∀ V ⊆ O1 (or ρL(V , A) =∑
f (v), ∀ V ⊆ OL ).

B. Proof of Theorem 3: A Compress-and-Forward Scheme
From Flows

In this section, Theorem 3 is proved by establishing a con-
nection between the compression rates of the compress-and-
forward scheme with the layered decoding and the node-flows
with bisubmodularity constraints. Recall that the achievable
rates for the compress-and-forward with the layered decoding
scheme are given by (26)–(28), which appear very much like
the bisubmodular capacity constraints.

To make this connection more precise, first observe the
following proposition.

Proposition 1: Given the collection of random variables
Q p distributed as given by (12), the family of L − 1 functions
ρl : Ol × Ol+1 → R

+, ∀l ∈ [L − 1] defined by

ρl(U, V )
def= I (XU ; ŶV |XOl\U ) (41)

forms a family of bisubmodular capacity functions.
Proof: Appendix D.

For any � ⊆ V , the corresponding cut value C(�) is now
given by

C(�) =
L−1∑

l=1

I (X�l ; ŶOl+1\�l+1 |XOl\�l ) (42)

= I (Ŷ�c ; X�|X�c). (43)

Theorem 4 is then used construct a flow f (v) for this network,
such that

f (S) ≤ min
�

I (Ŷ�c ; X�|X�c), S ∈ �, D ∈ �c, (44)

Fig. 4. A layered multi-source network.

and

f (V ) − f (Ol\U) ≤ ρl(U, V ),

∀ U ⊆ Ol , V ⊆ Ol+1,∀l ∈ [L − 1]. (45)

For any v ∈ Ol , l ∈ [L − 1], let

rv = f (v) − κl, (46)

and R = f (S) − κ1, where κl is given by (31).
Then ∀U �= ∅ ⊆ Ol , V ⊆ Ol+1,

r(U) − r(Ol+1\V ) = f (U) − f (Ol+1\V )

−|U |κl + |Ol+1\V |κl+1 (47)

≤ ρl(U, V ) − κl + |Ol+1|κl+1 (48)

= ρl(U, V ) − I (ŶOl+1 ; YOl+1 |XOl ) (49)

≤ I (XU ; ŶV |XOl\U )

−I (ŶOl+1\V ; YOl+1\V |XOl ). (50)

Therefore
(
R, {rv }v∈Vr

)
satisfies (26)–(28). And therefore

Theorem 2 implies that the rate R = f (S) − κ1 is achievable.
This proves Theorem 3.

IV. GENERALIZATIONS TO MULTI-SOURCE NETWORKS

The communication network with multiple source nodes
{Si |i ∈ [J ]} is illustrated in Figure 4. The source node Si

has independent message Wi at rate Ri . There is a common
destination node D. The multi-source relay network was
perhaps first studied in [14], [15], where the rate region for
the deterministic case and an approximate rate region for the
Gaussian case were established. The noisy network coding
scheme of [1] extends to this case as well. In fact this result
was used for each layer to analyze the layered decoding
scheme in the proof of Theorem 2.

The results of the compress-and-forward scheme and the
layered decoding scheme can be generalized to the commu-
nication network with multiple source nodes and a common
destination node.

The following corollary extends the results of the compress-
and-forward scheme for the unicast network to the multi-
source relay network.
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Theorem 5: The communication rates �R = (R1, . . . , RJ )
are achievable by the compress-and-forward scheme (with
joint decoding) for the multi-source single destination network
if, for some collection of random variables Q p which is
distributed as (12), the rates satisfy

R(�1) < I (Ŷ�c ; X�|X�c) − I (Ŷ�; Y�|XV ),

∀ �, s.t., � ⊆ V, D ∈ �c, (51)

where �1
def= � ∩ O1.

Further, with the layered decoding scheme, the rates �R =
(R1, . . . , RJ ) are achievable if

R(�1) < I (Ŷ�c ; X�|X�c ) − |�1|κ1, (52)

where κ1 is given by (31).
The results can be proved by adding a hypothetical supern-

ode in layer 0, which is connected to the source nodes with
orthogonal wired links such that the wired link to node Si is
of rate Ri .

V. SPECIAL CASES

A. Wireless Network

For the special case of the Wireless network described
by (11), the achievable rates can be compared to the cutset
bound [16].

Corollary 4: If �R = (R1, . . . , RJ ) is in the cutset bound,
then rates �R − 3|V|�1 are achievable by the compress-and-
forward scheme (with joint decoding) for the multi-source
single destination Gaussian network. Further, with the layered
decoding scheme, the rates �R − (2|V| + κ

g
1 )�1 are achievable,

where
κ

g
l = |Ol+1|(κg

l+1 + 1), (53)

and κ
g
L−1 = 0.

Proof: To characterize the achievable rate we will use a
joint Gaussian Q p . Let XV ∼ CN (0, I ). As also noted in [1],
a good choice for Ŷv for the Gaussian network is given by

Ŷv = Yv + Ẑv , (54)

where Ẑv ∼ CN (0, 1) is independent across nodes.
The particular choice of Ŷv implies that the quantization is

done at the noise level. This also agrees with the philosophy in
[2] and [4], where the quantization was done at the noise level
to show approximate optimality; in [2], scalar quantization
was done at the noise level, and in [4], quantization was done
using the discrete superposition network, which was a model
obtained from the wireless network by clipping the signal at
the noise level.

As shown in [1], with this choice of Ŷv and with XV ∼
CN (0, I ),

I (Ŷ�c ; X�|X�c ) = log

∣∣∣∣I + H��c H ∗
��c

2

∣∣∣∣ (55)

≥ log
∣∣I + H��c H ∗

��c

∣∣ − |�c|
2

. (56)

And further,
I (Ŷv ; Yv |XV ) ≤ 1, (57)

which implies
I (Ŷ�; Y�|XV ) ≤ |�|. (58)

This allows us to lower bound the RHS of (51) as follows,

I (Ŷ�c ; X�|X�c) − I (Ŷ�; Y�|XV ) > log
∣∣I + H��c H ∗

��c

∣∣
−|V|. (59)

Lemma 6.6 in [2] lower bounds the quantity
log

∣∣I + H��c H ∗
��c

∣∣ to within 2|V| of the cut-set bound. The
corollary then follows from Theorem 5.

Remark 1: We showed that the layered decoding scheme is
approximately optimal like the joint-decoding scheme, i. e. the
gap from capacity can be bounded by a constant, which
only depends on the size of the network and not the channel
characteristics or power. However, in general, our bounds on
the gap from capacity with the layered-decoding scheme can
be much larger than the bounds on the gap from capacity for
the joint-decoding scheme. For example, consider a layered
network with L-layer of relay nodes each with n relay nodes
in each layer. With joint decoding scheme, the gap is O (nL).
With layered decoding, the gap is dominated by κ

g
1 = O

(
nL

)
.

B. Deterministic Network

For the special case of the deterministic network described
by (9), the optimal choice of Ŷv is Yv and with this choice

I (Ŷ�c ; X�|X�c ) = H (Ŷ�c |X�c). (60)

And further,
I (Ŷv ; Yv |XV ) = 0. (61)

Therefore, specializing the results of Theorem 5 leads to
the following corollary.

Corollary 5: For the multi-source single-destination deter-
ministic network, �R = (R1, . . . , RJ ) is achievable by the
compress-and-forward scheme with the layered decoding
scheme if for some collection of random variables Q p which
is distributed as (12),

�R ∈ C̄(Q p), (62)

where C̄(Q p) is the cutset bound evaluated under the product
distribution for the network [2].

Specializing further to the linear deterministic region, it
can be shown that the product distribution (with uniformly
distributed Xv over all input alphabets) maximizes the cutset
bound, thereby showing that all rates in the cutset bound are
achievable.

VI. DISCUSSION: LAYERED DECODING VS.
JOINT DECODING

As mentioned previously, layered decoding could reduce
the decoding complexity as compared to joint decoding. This
advantage comes in at a potential decrease in the rate that
can be achieved. The rate achieved by layered decoding is,
in general, always lesser than the rate achieved by the joint-
decoding.

The comparison of the decoding complexity between the
joint decoding and the layered decoding will be done with
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respect to an exhaustive search ML decoder. In practical
implementation a more structured codebook is sought, which
simplifies the ML decoding complexity. For example, in [17],
the ML decoder is implemented for a simple one-relay network
with binary LDPC codes and a reduced quantizer operation.
The ML decoding can be reduced to belief-propagation over
a large Tanner graph, which comprises the Tanner graphs of
the LDPC codes for each node, the quantization and mapping
operation, and the network itself. If this simplified encoding
scheme is extended to a network with multiple layers of
relay nodes, the resulting graph would be humongous, and
the decoding complexity would be large. It is very much
possible that the layered decoding will help to reduce this
complexity by breaking the joint decoding over a large graph,
into decoding over smaller sub-graphs corresponding to each
layer, thereby reducing the complexity.

Assuming the maximum likelihood (ML) decoding is done
by an exhaustive search as given by (15), the decoding com-
plexity of the joint decoding is the product of the codebooks of
all the nodes. Therefore the complexity of the joint-decoding
is given by

Cjoint = 2RT
∏

v∈Vr

nQ,v , (63)

where nQ,v is the number of quantization points in the
relay quantization codebook. With the compress-and-forward
scheme with the layered decoding, the complexity is reduced
to

Clayered =
L−1∑

l=1

2r(Ol )T
∏

v∈Ol+1

nQ,v . (64)

VII. CONCLUSION

In this paper, the compress-and-forward scheme is analyzed
for the unicast relay network. It is shown that while it achieves
the same overall rate as NNC, it allows for a lower complexity
layered/backward decoding algorithm. However, this requires
each relay node to compress their information to the right
amount. This paper also presents a computationally efficient
way of finding the optimal compression rates at each relay
node using a node-flow formulation over a bisubmodular
constrained graph.

APPENDIX A
PROBABILITY OF ERROR ANALYSIS FOR CF SCHEME

Without loss of generality we assume that the message
with index 1 is transmitted at the source and the index
corresponding to the quantized vectors at each node is (1, 1).
We will find the probability of error that this message is
wrongly decoded at the destination. We denote by Ew,(w,w̄)Vr
the event that

(
x T

s (w),
{

ŷT
(l,k)(w(l,k), w̄(l,k)), x T

(l,k)(w(l,k))
}

(l,k)∈Vr
, yT

d

)

∈ T T
ε . (65)

Here (w, w̄)Vr is shorthand for {(wv, w̄v ) |v ∈ Vr }. The error
event is the union of two terms and is given by
⎛

⎝
⋃

wVr ,w̄Vr

E1,(w,w̄)Vr

⎞

⎠
c
⋃

⎛

⎝
⋃

w �=1,wVr ,w̄Vr

Ew,(w,w̄)Vr

⎞

⎠ . (66)

The first term corresponds to the event that the transmitted
message is not jointly typical and the second term corresponds
to some other message other than the transmitted being jointly
typical. The first event can be upper bounded by Ec

1,(1,1)Vr
. For

any � ⊆ Vr , and � ⊆ Vr\�, let

S�,�
def= {

(w, (w, w̄)Vr )|
w �= 1,

w(l,k) �= 1∀(l, k) ∈ �,

w(l,k) = 1, w̄(l,k) �= 1∀(l, k) ∈ �c\�,

w(l,k) = 1, w̄(l,k) = 1∀(l, k) ∈ �
}
, (67)

and

E�,�
def=

⋃

S�,�

Ew,(w,w̄)Vr
. (68)

The second event can be equivalently written as,
⎛

⎝
⋃

w �=1,wVr ,w̄Vr

Ew,(w,w̄)Vr

⎞

⎠ =
⋃

�,�

E�,�, (69)

The probability or error by union bound can be upper bounded
by,

P(error) ≤ P(Ec
1,(1,1)Vr

) +
∑

�,�

P
(
E�,�

)
. (70)

From the properties of joint typicality, it can be shown that
the first term goes to 0 and T → ∞. It can be shown that

P
(
E�,�

) .= 2T (R+r(�)+r̄(�c))2T (H(Yd ,Ŷ�,Ŷ�c ,X�,X�c ,Xs ))

2−T (H(X�,Xs )+H(Yd ,Ŷ�,X�c )+∑
(l,k)∈�c H(Ŷ(l,k) ))

(71)

= 2T (R+r(�)+r̄(�c))2T (H(Yd ,Ŷ�,Ŷ�c ,X�,X�c ,Xs ))

2−T (H(Yd ,Ŷ�|X�c )+∑
(l,k)∈�c H(Ŷ(l,k) )) (72)

= 2T (R+r(�)+r̄(�c))

2−T (H(Yd ,Ŷ�|X�c )−H(Yd ,Ŷ�|X�,X�c ,Xs ))

2−T (
∑

(l,k)∈�c H(Ŷ(,k))−H(Ŷ�c |X�,X�c ,Xs)) (73)

= 2T (R+r(�)+r̄(�c))2−T (I (Yd ,Ŷ�;X�,Xs |X�c ))

2−T (
∑

(l,k)∈�c I (Ŷ(l,k) ;XVr ,Xs )). (74)

Here r(A)
def= ∑

v∈A rv . Using the Markovian property of the
random variables, we have that

I (Ŷ(l,k); XVr , Xs) = I (Ŷ(l,k); Y(l,k))−I (Ŷ(l,k); Y(l,k)|XVr , Xs),
(75)

and using (14) we have

P
(
E�,�

)

= 2T (R−r(�c\�)−I (Yd ,Ŷ�;X�,Xs |X�c )+I (Ŷ�c ;Y�c |XVr ,Xs)). (76)
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Therefore P
(
E�,�

) → 0, if

R < r(�c\�) + I (Yd , Ŷ�; X�, Xs |X� c)

−I (Ŷ� c ; Y� c |XVr , Xs). (77)

APPENDIX B
PROOF OF THEOREM 4

The theorem will be proved in a slightly general setting,
allowing multiple nodes in layer O1 and layer OL . Assuming
that the flow values for these layers O1 and OL are given and
satisfy

f (O1) = f (OL), (78)

f (�1) − f (�L) ≤ C(�), ∀ � ⊆ V, (79)

the flow for all intermediate layers will be constructed.
The proof is by inductive construction.
For L = 2, there are no intermediate layers and the theorem

holds by definition. Consider L > 2. The induction hypothesis
assumes that the flow can be constructed with fewer than L
layers and the flow for the boundary layers are specified with
the constraints given by (79).

Consider any L0 ∈ {2, . . . , L − 1}. Define networks NA and
NB to be the sub-networks of N with the set of vertices VA =
∪L0

l=1Ol and VB = ∪L
l=L0

Ol respectively. Similarly, denote the
cut for the two networks by CA and CB respectively.

Next, a flow for the layer OL0 will be constructed which
satisfies the following conditions.

f (OL0) = f (O1), (80)

f (�A ∩ O1) − f (�A ∩ OL0) ≤ CA(�A),

∀ �A ⊆ VA, and (81)

f (�B ∩ OL0) − f (�B ∩ OL) ≤ CB(�B),

∀ �B ⊆ VB . (82)

The induction hypothesis would then guarantee that the flows
for the intermediate layers in the sub-networks NA and NB

can be constructed.
Using (80), the set of linear inequalities given by (81) can

be written as,

f (�c
A ∩ OL0) − f (�c

A ∩ O1) ≤ CA(�A),

∀ �A ⊆ VA, (83)

where �c
A = VA\�A. For any fixed T ⊆ OL0 , the collection

of inequalities where �c
A ∩ OL0 = T , can be concisely

represented as,

f (T ) ≤ min
{
CA(�A) + f (�c

A ∩ O1) : �c
A ∩ OL0 = T

}
.

(84)

Defining

rA(T )
def= min

{
CA(�A) + f (�c

A ∩ O1) : �c
A ∩ OL0 = T

}
,

(85)

the set of linear inequalities given by (81) can be concisely
written as,

f (T ) ≤ rA(T ), ∀ T ⊆ OL0 . (86)

Similary, defining

rB(T )
def= min

{
CB(�B) + f (�B ∩ OL) : �B ∩ OL0 = T

}
,

(87)

the set of linear inequalities given by (82) can be concisely
written as,

f (T ) ≤ rB(T ), ∀ T ⊆ OL0 . (88)

The following properties for the functions rA(T ) and rB(T )
can be established.

Lemma 1: The functions rA(T ) and rB(T ) are
• submodular,
• non-decreasing, and
• satisfy rA(∅) = 0 and rB(∅) = 0.

Proof: Appendix C.
Define the following polymatroids with the functions rA and

rB .

PA =
{

x ∈ R
mL0+ : x(U) ≤ rA(U), ∀ U ∈ OL0

}
(89)

PB =
{

x ∈ R
mL0+ : x(U) ≤ rB(U), ∀ U ∈ OL0

}
, (90)

where x = [x(1) . . . x(mL0)] and x(U)
def= ∑

u∈U x(u). The
conditions (80)–(82) are now equivalent to finding

[ f (L0, 1) . . . f (L0, mL0)] ∈ PA ∩ PB , (91)

such that f (OL0) = f (O1). It then follows from Edmond’s
polymatroid intersection ( [10], Corollary 46.1c) that:

max
{
x(OL0) : x ∈ PA ∩ PB

}

= min
T ⊆OL0

{
rA(OL0\T ) + rB(T )

}
. (92)

Therefore the required flow exists since

f (O1) ≤ min
T ⊆OL0

{
rA(OL0\T ) + rB(T )

}
(93)

= min
�∈V

{C(�) + f (O1\�1) + f (�L)} . (94)

Further, in [10, Th. 47.1] it is shown that the maximizing x
in (92) can be computed in polynomial time in the dimension
of x. Hence, the flow can also be computed in polynomial
time in the number of nodes.

APPENDIX C
PROOF OF LEMMA 1

We will prove the lemma for rB(T ). The proof for rA(T )
is similar.

1) Submodularity:
Let,

rB(T (1)) = CB(�
(1)
B ) + d(�

(1)
B ∩ OL),

�
(1)
B ∩ OL0 = T (1) (95)

rB(T (2)) = CB(�
(2)
B ) + d(�

(2)
B ∩ OL),

�
(2)
B ∩ OL0 = T (1). (96)

Since,

(�
(1)
B ∪ �

(2)
B ) ∩ OL0 = T (1) ∪ T (2), (97)

(�
(1)
B ∩ �

(2)
B ) ∩ OL0 = T (1) ∩ T (2), (98)
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it follows that

rB(T (1) ∪ T (2)) ≤ CB(�
(1)
B ∪ �

(2)
B )

+d((�
(1)
B ∪ �

(2)
B ) ∩ OL), (99)

rB(T (1) ∩ T (2)) ≤ CB(�
(1)
B ∩ �

(2)
B )

+d((�
(1)
B ∩ �

(2)
B ) ∩ OL). (100)

By definition of cut and the bi-submodularity of ρl , it
is easy to verify that CB(�B) is submodular. And since
d is an additive function, it then follows that rB(T ) is
sub modular.

2) Non-decreasing:
Consider T (1) ⊆ T (2). Let

rB(T (1)) = CB(�
(1)
B ) + d(�

(1)
B ∩ OL),

�
(1)
B ∩ OL0 = T (1). (101)

Let �B = �
(1)
B ∪ T (2)\T (1) ⊇ �

(1)
B , so that �B ∩OL0 =

T (2). By the definition of cut and the non-decreasing
property of ρl , it follows that CB(�

(1)
B ) ≤ CB(�B). Also

d(�
(1)
B ∩ OL) ≤ d(�B ∩ OL). Therefore

rB(T (2)) = CB(�B) + d(�B ∩ OL) (102)

≥ CB(�
(1)
B ) + d(�

(1)
B ∩ OL) (103)

= rB(T (1)). (104)

3) rB(∅) = 0:
When T = ∅, by letting �B = ∅, it follows that
rB(∅) = 0.

APPENDIX D
PROOF OF PROPOSITION 1

We need to show that I (XU ; ŶW |XOl\U ) satisfies the three
properties of channel functions. Firstly we show that it is
bi-submodular.

I (XU ; ŶW |XOl\U ) = H (ŶW |XOl\U ) − H (ŶW |XOl ) (105)

= H (ŶW , XOl\U ) − H (XOl\U )

−H (ŶW |XOl ). (106)

The submodularity of entropy [18] implies that H (ŶW , XOl\U )
is bi-submodular.

The submodularity of entropy follows from the fact that
given collection of random variables ϒ1 and ϒ2, we have

H (ϒ1) + H (ϒ2) −H (ϒ1 ∪ ϒ2) − H (ϒ1 ∩ ϒ2)

= I (ϒ1\ϒ2; ϒ2\ϒ1|ϒ1 ∩ ϒ2) (107)

≥ 0. (108)

The product form of the random variables implies that
H (XOl\U ) and H (ŶW |XOl ) are modular or additive.
Therefore, I (XU ; ŶW |XOl\U ) is bi-submodular.

Next, we show the non-decreasing property. Given U1 ⊆
U ⊆ Ol and W1 ⊆ W ⊆ Ol+1, we have

I (XU ; ŶW |XOl\U ) = H (XU |XOl\U ) − H (XU |XOl\U ŶW )

(109)

≥ H (XU |XOl\U ) − H (XU |XOl\U ŶW1)

(110)

= I (XU ; ŶW1|XOl\U ) (111)

= H (ŶW1|XOl\U ) − H (ŶW1|XOl ) (112)

≥ H (ŶW1|XOl\U1) − H (ŶW1|XOl ) (113)

= I (XU1 ; ŶW1|XOl\U1), (114)

where both the inequalities follow from the fact that condi-
tioning reduces entropy.

The third property is readily seen.
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