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Abstract—We consider allcast and multicast flow problems

to tree and Steiner tree packing problems respectivelyléNVhi

where either all of the nodes or only a subset of the nodes packing of trees is known to be easy (see [4], [5], [6]),

may be in session. Traffic from each node in the session has

to be sent to every other node in the session. If the sessionato
not consist of all the nodes, the remaining nodes act as relay

Steiner tree packing is known to be hard [7]. Due to its
application in multicasting over wired networks and in VLSI

The nodes are connected by undirected links whose capacisie layout optimization, practitioners and theorists haverorany

are independent and identically distributed random variables.
We study the asymptotics of the capacity region (with netwdk
coding) in the limit of a large number of nodes, and show

that the normalized sum rate converges to a constant almost

surely. We then provide a decentralized push-pull algorittm
that asymptotically achieves this normalized sum rate witlout
network coding.

Index Terms—allcast, broadcast, Erdds-Rényi random graph,
flows, matching, multicast, network coding, random graph,
Steiner tree, tree packing

I. INTRODUCTION

years provided hardness results, heuristics, and appabixim
algorithms (see [8], [9], [7], [10], [11], etc.) Are thereUitk-

but-dirty” (terminology from [12]), decentralized, schla, yet
near-optimal algorithms for allcasting and multicastingoa
rich class of random undirected networks?

In this paper, we provide affirmative answers to both these
guestions. We begin by making precise what we mean by
allcast and multicast.

Allcast Consider a setting where there arenodes, all
of which are engaged in a conference over a wired network.
Each node has data that needs to be made entirely available

In this paper, we investigate the capacity of allcast arfYe' the network to each of the other — 1 nodes in a

multicast sessions over random link-capacitated graphes.

TSimultaneous fashion. (To be more precise, this raudtiple

questions motivated us to study these problems in the contglicast problem). The data can be split, or routed, or coded,

of random graphs.

or transmitted in any combination thereof, so long as all

(1) While it is known that network coding in genera|nodes eventually get the information. The underlying caatepl

provides a large coding advantage over multicast flows X ' > ) )
taliNK e has capacity’. sampled independently and identically

directed graphs, Li et al. [1] showed that the coding adwgn

in undirected graphs is upper bounded by 2. In some spec
topologies a tighter upper bound is known [2]. However se
eral simulation experiments showed nearly no coding adval
tage for some class of random undirected graphs [3]. Is thd
a provable statement that there is negligible multicasirapd let r;
advantage for a rich class of random undirected networks .

(2) If we stick to the domain of flows (with duplication),2chievable rate tuples, -- -
as we will soon see, optimal allcasting and multicastingl le
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yhdirected graph on vertices is capacitated: each undirected

fram a distribution". An allcast information flow assignment

Js said to be feasible if for every link, the net (possibly edy
djpw over the link (summed over both directions) respects the

Rk’s capacity constraint. For each feasible flow assigntne
be the bit-rate of traffic sent by nodeto each of

~the other nodes. We address the question of the set of all

,rn in the asymptotics of a large

Qumber of nodes:. As we shall soon see, this problem is

closely related to packing of disjoint spanning trees imé&-li
capacitated network with integer capacities. Minor extams
of some previous results readily yield that the achievaate r
region is almost surely (a.s.)

{(7‘1,7‘2,...)

where the expectation is of a random varialtle having
distribution F'. The linear programming formulation of this
problem is given in Section I, and the proof of (1) is given
in Sections Il (converse) and IV (achievability). Our pfad
achievability is via a combination of “push” and “pull” that
suggests a decentralized implementation. Section V amstai
some estimates needed to establish the correctness (gfth hi
probability) of the push-pull algorithm. Section VIl dsakith
the case when the link probabilities vanish, but not too kjyic

: limsup 1 iri < %E[C]} (1)
=1

n—oo N i



It is known that network coding does not yield any gain imre constructed from the collection of iid random variables
allcast settings [1], and thus we have an asymptotic cherract{Z; ;,« > 1,7 > 1} where once again each entry has
ization of allcast capacity region. the uniform distribution on0, 1]. In the graphG(n,n,p.),

Multicast We next address a more general setting witfor example, there ar@n vertices with vertex set; U 15
only a subset ofk,, nodes in the multicast session, wheravhereV, = {v1,va,...v,} and Vo = {wy,ws,...wy}, and
lim,, 00 kn/n = @ @and0 < a < 1. Data from each of th&,, the capacity on the link between node and nodew; is
nodes has to reach every one of the othgr 1 nodes. The C;; = 1{Z; ; < p,}.
remainingn — k, nodes serve as relays. This is therefore a
problem ofmultiple multicast among commosession nodes B. Allcast

Again, in a link-capacitated framework where each link is Consider the allcast problem described in Section I. Li et

independent and identically distributed (iid) with dibtrtion . :
F, we are interested in the set of all achievable rate tuplalé prove in [1, Cor. 4.a] that a multiple allcast rate vector

. ) is achievable in an undirected capacitated
ri,--+,Tk, in the asymptotics of a large number of nodes T T2, Tn) b

. 2 network if and only if the rate vectof> " , r;,0,...,0) is
We demonstrate that the capacity region is almost surely achievable, i.e., the sum rate is ach(i)c(a%lb_lé f:single aII():ast

1 &n o with node 1 as sender and with the other 1 nodes as
{(7‘1’7‘% ...) : limsup — Zﬁ' < (1 - 5) E[C]-} (2) receivers. This is intuitively clear since network codinged
=1 not help for allcast, and one can make do with multicommaodity
The LP formulation of this problem is in Section Il, proof offlows in multiple allcast.
the converse is in Section Ill, and proof of achievability is We may therefore assume that there is only one sender (say
in Section VII. Here too, our proof of achievability is via anode 1), and all othen — 1 nodes are recipients that must
decentralized push-pull algorithm. Section VI is a digi@ss receive all information sent by node 1. The rates in such a
to study single commodity flows over random networks arsktting are given byr,0,0,...), and we characterize, .
develops the ingredients necessary to establish the toesc  This maximum rate is obtained by solving the following
(with high probability) of the push-pull algorithm. linear programming (LP) problem. Consider the grdph on
Our achievability proofs are based on flows (allowing fon vertices with associated link capacities. /gt be the set of
duplications) and thus do not employ network coding. lall spanning trees on the complete graph (ignoring cagagiti
particular, they establish that any gain from network cgdin  The vertices are labeled, and so Cayley’s formula tellsttheat
multicast settings is at best sublinear in the number of sodaumber of such trees is" 2. Solve the LP (Tutte [4], Nash-
Williams [5], Barahona [6], Li et al. [1]):
Il. ALINEAR PROGRAMMING FORMULATION

Maximize > A )
A. Random graph models Ter.
We are given a countable collection of iid random variables subject to (a) Z Ap < C, foralle
{Ci,;,1 <i < j < oo} where each element has distribution rerTse
F on R,.. We then obtain a sequence of graphs, denoted () Ar >0 forall T e T,.

{Knp,n > 1}, where for eactn, the graphk,, is the complete . _
graph on the vertex sétl, 2, ..., n} along with the collection Denote the maximum value of (3) as,. Thenr, is the
of all (721) links. Each link(i, j) with 1 <4 < j < n has link maximum rate at which node 1 can allcast its informationto al

capacityC; ;. the other nodes. The LP has a simple and intuitive explamatio
Later on, we will have a need to study Erdds-Rényi randome If one tags an infinitesimal information element originat-
graphs where the link capacity distribution is Berndllj ing at node 1 and follows the path of its spread to each
which is Pr{C = 1} = pandPr{C =0} =1 —p. If of then — 1 recipients, one gets a directed graph rooted
C;,; = 0, then the undirected linK:, j) has zero capacity at the source node 1 and spanning all thaodes.
and is effectively absent. We then use the notatigin, p) to « If the undirected version of this directed graph is not
denote the obtained graph for a fixed a tree, i.e., there is some cycle, then some node in the
We will also study Erd6és-Rényi random graphs where cycle is receiving this information element from two other
depends om and vanishes withh. We shall denote these nodes. One of these two incoming links can be removed
G(n,pn). These may be constructed as follows. We assume without affecting the allcast property. We can thus reduce
that we are now given a collection of iid random variables the directed graph to spanning arborescenc&hich is

{Z;;,1 < i < j < oo} where eachZ; ; has the uniform
distribution on[0, 1]. The graphG(n,p,) is the graph om
vertices{1,2,...,n} where each link{s,j} with 1 < i <
j < n has binary capacity; ; = 1{Z; ; < p,}. The notation

1{---} stands for the indicator of an event. This construction

is of course consistent with the construction(@fr, p) when
pn = p iS a constant.

Finally, we will also study random bipartite graph se- e

quenceG(n,n,p),n > 1} and{G(n,n,p,),n > 1}. These

a directed graph with no incoming links at the root node,
exactly one incoming link at every other node, and all
vertices are covered.

This spanning arborescence is in one-one correspondence
with a tree, because the root is specified as node 1. So we
may simply focus on the spanning tree associated with
the arborescence. Call this trée(which is in 7).

Collect all information elements that are spread via this
tree. Call its volume\r.



It is clear that each\y > 0 and constraint (a) in (3) is vertex set{1,2,...,n}. Consider a partitionp € P. Let
the capacity constraint associated with each of the links. Ogp denote the set of intercomponent links. Define
Consequently, the value of the optimization problem in (3)

is an upper bound on the optimal net flow from node 1. N 1= mmw (5)
But it is immediate that any set oy satisfying the two peP  |p| =1
constraints provides a means to achieve a pateAr, since where|p| denotes the number of subsets in the partition.
Ar units of information may be directed through the spanning, Let 7, (k,) denote the strength of the multicast network
arborescence associated with the t#eand root vertex 1. with %, nodes in the session. This is defined as follows.
Thus the maximum rate of allcast flow from a single sender | et P(k,,) denote the set of all partitions of the vertex
is 7, the solution to the LP in (3). set{1,2,...,n} such that each component of a partition

When link capacities are random,, is a random variable contains at least one of the session nofle2, ..., k, }.
whose asymptotics we shall soon characterize. Define

Zeeap Oe

Nn(kn) := min
C. Multicast peP(kn) | =1
For the multicast problem, without loss of generality, lst u 1! €t al- [1] showed the following resuit
index the session nodes 5 2, .. ., k, }. As for allcast, by [1, _Theorem Li(Lietal. [1, Th. 2 and Th. 3])
Cor. 4.a], a multiple multicast rate vecton, o, .. ., 1., ) with (&) For any allcast session,, = x,, = 1n.
identical session nodes is achievable in an undirectedciap4?) FOr any multicast sessiony, (kn) < xn(kn) < 7 (kn). O

tated network if and only if the rate vect@Ef;l r:,0,...,0) o
is achievable, i.e., the sum rate is achievable fosimgle Ve can easily find good upper bounds gp and 1, (k.)

multicast with node 1 as sender and with the othgr— 1 in random settings as shown in the following theorem.

nodes of the session as receiteile may therefore assume 1 neorem 2:Let {C; j}1<i<j<n denote the undirected link
that there is but one sender, he is node 1, and all dther1 capacities. We then have the following upper bounds:

nodes are recipients that must receive all information bgnt 1

(6)

node 1. Denote byT,(k,) the set of all Steiner trees that o S n—1 Z Cij 7
span the verticed,2, ..., k,. Obviously 7, (n) = 7,. For lsi<jsn
multicast, again as for allcast, the maximum simultangousl 1
transmissible rate from one sender (node 1) tokthe 1 other M (kn) < o —1 Z Z Cij+ Z Ci; | (8)
recipients is the maximum value of the modified LP ([3], [13], " i<kn jZkn 1<i<j<kn
[1]): As a consequence, witlim,,_, k,/n = «, the inequalities
Maximi 4 n 1
aximize Z Ar “) 1imsupn— < =E[C] 9)
TETn(kn) nooo M 2
subject to (a) Z A < C, foralle lim sup N (Kn) < (1 _ g) E[C] (10)
TETn(kn):T3e n—o0 n 2
(b) Ar >0 forall T € 7.(kn).  hold almost surely.

0
Proof: Consider the partitiop = {{1},{2},---,{n}}.
e aren subsets in the partition, angl is the set of all
links. Apply now the definition (5) of), and we immediately
get (7) as the upper bound for the allcast case.
For the multicast case, consider the partition

0= {{1}5 {2}7 T v{kn - 1}7 {km e 771}}

There arek,, subsets in the partition. The set of links dp

Consider the following definitions. are

o Let x,, and x,(k,) denote themaximum throughput Nl <i<h iSEYUL(GL):1<i<i<k
achievablein the allcast and multicast settings with the @) sl S i<ka g2k} UG ) s L ST <] <hn}.
added possibility of network coding at each node. (Th&pply now the definition (6) ofy,(k,) and we immediately
dependence of these quantities on the link capacitiesget (8) as the upper bound for the multicast case.

Set o, = k,/n, and denote the maximum value of (4) aﬁ'her
(). The above LP is the same as that of (3) with
replaced by the less restrictivg, (k).

Again, when link capacities are random,(«,) is a random
variable whose asymptotics we shall soon characterize.

I1l. AN UPPERBOUND

understood and suppressed). Note that|0p| = n(n — 1)/2 for allcast, and
« Letn, denote thestrengthof the allcast network defined (ki — 1) (ki — 2)
as follows. LetP denote the set of all partitions of the  [9p| = (k, —1)(n—k, +1) + %
1There is some subtlety involved here since, in general, oritwoding — (k _ 1) n— k_" (11)
provides a coding advantage for multicasting in undirectetivorks; see [1, " 2

Th. 4] for a proof of source independence in the single masticase which )
is then generalized to get [1, Cor. 4.a] for multicast.



Using |0p| = n(n — 1)/2 for allcast in (7), we obtain This is readily done. Fix an arbitrary > 0. By (14) and the
7 11 fact that the function. — F'(z) is Riemann integrable (for it
g L Z Ce. is Lebesgue integrable, bounded, and has at most a countable
n — 2|0p| . h—
e€d number of discontinuities), we can choose a natural number

The sum on the right-hand side is composed of independédt< o andd > 0 such that

and identically distributed random variables. Consedyigitie M
right-hand side converges almost surely:6C] by the strong Y 6-[1=F(kd)] > E[C]-(1—¢). (15)
law of large numbers, and we obtain (9). k=1
For the multicast case, use (11) in (8) to obtain We now build a family of M coupled graphs, each with
(k) 2 1 vertices. For a realization of the iid link capacities, (&t be
Inln) (1 - —") — Z Ce. a new graph on the vertices with link betweer and j if
" 2n ) |0 e€dp and only if C; ; > k6, for k =1,2,..., M. Clearly, G}, is an

Again by an application of the strong law of large numberErdos'Renyl graph on vertices with parameter

the conclusion (10) follows. u p(k) :=Pr{C > ké} =1 — F(kd).
Observe that, by Theorem 1, the upper bounds in Theorem 2 , o . .
apply for capacity with the possibility of network codingetL On G, we interpret each link, if present, as having capacity

us now turn to achievability of these rates in their respecti‘s' While the graphs are coupled across the pafa”_’ﬁt‘ﬁ"’r
settings. a fixed k, the links on the grapld’; are iid Bernoullip(k))

random variables. Lefr,(Gy) be the maximum number of
disjoint trees that can be packed . By the result (13)
applied to each fixe&, we have

In this section we consider the allcast setting and argue tha M
the upper bound in (9) is tight, and moreover, the upper bound  jihinf ™ > liminf 1 25 T (Gr)
is achievable via flows. After first establishing the exisen neo 1N n—oo N —

IV. ALLCAST: ACHIEVABILITY

of a scheme, we then provide a practical decentralized asymp , p(/{i

M

totically optimal push-pull algorithm. > 5. Z —~(1—-¢), as.

Theorem 3:For the allcast problem, we have k=1 2
. oomy 1 1
Jim =% = CE[C]  as. = 5;5- [1—F(k6)]-(1—¢)
U 1

Proof: The fact that we cannot do better th@iC]/2 z 5 El0]-(1-¢)-(1-¢)

was already established in (9). So the proof of the above E[C]
theorem would be complete if we can establish fht]/2 is 2 —5(1-2),

-

achievable. We first argue achievability on the simplerdsrd”
Rényi graphs. We then lift this result to the general case.

Take the random grapt¥(n,p) where each link capacity
is iid with Bernoulli(p) distribution. Catlin et al. [14, Sec. 3]
proved the stronger result that, evenpifvanishes withn,
so long as it is larger thaf28logn/n)'/3, we have for all
sufficiently largen the equality

where the penultimate inequality follows from (15). It fols

as before thatim,, = > @ almost surely. This completes
the proof. (See [15] or [16] for a similar truncation, quaati
tion, and scaling argument). [ ]

The key to proving Theorem 3 is the result (13) on Erd8s-

Rényi graphs. In order to show this, we utilized the resL®)(

of Catlin et al. [14]. The main point of the rest of this sentio
- {Zlgiqgn Cl-_,jJ s is to demonstrate that (13) can be proved constructivelygusi

n—1 (12) 4 rather simple and decentralized algorithm.

For anye > 0, usingp > 0, the result in (12), and the strong

law of large numbers, we have A. ALLCAST: A decentralized algorithm for allcast in a

random graph

liminf ™ > 2(1-¢) as. (13)  In this section we describe a decentralizedsh-pull
n—oo N 2 . . .
algorithm for allcast that achieves (13) for an arbitrary 0.
By excluding all null sets associated with ratiosat (0,1),  For ease of exposition, we shall assume a total @f1 nodes
it follows that P with node 0 as the source node. The source node 0 has to
1inrgi£f - > 5 as push a total ofnp(1 — ¢) bits to all nodes. We have ignored
, - , integer rounding and a factdn + 1)/n both of which are
There now remains the step of lifting this result to ank,qjiy ansorbed inte. The algorithm broadly has two push
generic distribution’”, for the iid capacities”; ;, satisfying steps and two pull steps, as described next. See Figure 1. The
o0 o0 analysis that comes later will argue that with overwhelming
0 <E[C] = /0 Pr{C >} do = /0 [1 = F(z)] dz <o0.  pronability none of the steps falil.

(14)



Owners Relays

o Forl <i<mnp(l-—e¢)/2, we write X, ; = 1 to signify
that nodeO; has bitb;.

e For i # j, since the link{i,j} itself occurs with
probability p, and further, may have either direction with
equal probability, we have

Source

Xiyjzl,iji:O |'|:_]—>’L7
XjJ' = O,Xi,j =1 if 1 — j;
X;i=0,X;;=0 if no link between: and ;.

Figure 1. Graph showing the three sets of nodes: source,reyared relays.

Source pushes bits to owners who then push to relays. Allswduen pull These are mutually exclusive, with the first setting oc-
from owners and any remaining bits from relays. curring with probability p/2, the second setting with
probability p/2, and the third setting with probability
1—p.
Algorithm ALLCAST: o If X;; =1, then node (owner or relay) can obtain bit
« Setting up of directionsAll links that do not involve b; from ownerO; (if 1 < j < np(1 —¢)/2) or some bit

the source node 0 are assigned one of the two directions that relayR; has (if j > np(1 —¢)/2).

with equal probability, independently of the choices of « The set of bits node receives directly from owners
directions at other links. All links that involve the source  corresponds to the set of 1s in the firgp(1 — ¢)/2
node 0 have a direction pointing away from the source.  columns of theith row, for if X;;, = 1, then owner

« Push step 1Source node @ushesinp(1 — ¢) different O, pushes his bib; to nodesi. (For example, in Table I,
bits to that many of its neighbors. We number the bits  ownerO, has bitshy, ba, bt, by,(1—<)/2, but does not have
bi,ba, ..., byp1—c)/2, Call the respective recipient nodes basy by, be).
as ownersof these bits, and denote the owners (some-. The 1s in theith row beyond colummp(1 — €)/2 point
times) asO1, Oz, . .., Oyp(1—¢)/2 instead of saying node to relays that can be used by nad® pull any remaining
1, node 2, ..., nodep(1l — ¢)/2. There may be several bits in pull step 2. (For example, owné is connected to

other neighbors of node 0, but the corresponding links are relays R, R,, R,, with directions pointing toward®;.
left unused. These and other nodes who are not owners These relays will help nod®, get the yet-to-be-pulled

are calledrelays and are denote®,, (1) 241, -, Rn bits by, by, be).

(instead of saying nodep(1 —¢)/2 + 1, ..., noden). « Clearly, while the random variableX; ; and X, ; are
« Push step 2Each ownerO; pushes his bit; one more coupled, the nondiagonal entries of tith row

level along links that point outward from regardless of ] o

the status of the recipient as an owner of another bit or a {Xij1<j<nj#i}

relay. The receiving node will then have (and similarly are iid Bernoullip/2) random variables, fot < i < n.

many other bits) for other nodes to pull in the next couple  The same holds for nondiagonal entries of any column.

of steps of the algorithm. ) _ . Our main assertion is that the algorithtkhLCAST succeeds
« Pull step 1 Each node, say nodg collects all incoming b high probability in distributing theap(1 — ¢)/2 bits to
bits b; coming directly from owner®); via links i — ;. all nodes.

(This is the it pushed bg; in push step 2). Theorem 4:For any s > 0, the following event occurs
« Pull step 2 Having collected some bits directly fromiaqt surely: for all but finitely many, the algorithm

owners, r_10_dej identifies the re_maining bi_ts,_ the relaysy ) casT succeeds in distributing atip(1 —¢)/2 bits to each
to which it is connected with direction pointing towardsy¢ ihe 1, nodes O

j, and the bits that these relays have available haV'ngRemarksl) It follows immediately that, for any > 0, the
received the bits directly from owners. A representatiqﬂequa"ty (13) holds.

of this information is thebit-map matrix of nodes and 2) The above theorem also implies that, for all sufficiently

bits they have available _for p_u_lling (see Table | ar?d it%rgen, we can packip(1 — ¢)/2 disjoint (spanning) trees in
description). _Nodg _then identifies a&zomplete matchlng_ G(n, p), with each tree having the property that it has depth
of these desired bits to the helper relays: each desir; most 3.
yet-to-be-pulled bit is pulled from a suitable relay that 3) 5| casT is decentralized in the following sense. The
ha_ls the b_'t' with each rc_alay accounting for one bit, an&rection of each link, when present and if the source node
this constitutes a matching. is not involved, is picked at random by the toss of a fair
Before we dive into an analysis of this algorithm, wWeoin, and this information is needed only at these two intide
describe the bit-map of Table | in more detail. The rows angbdes. The two levels of pushes, and thus the first pull stage,
columns are indexed as are easily seen to be decentralized. At each node, the action
depend only on the links incident on it and the agreed upon
01,02, Onpa1—cy/2: Bnpa-cyy2 + Ly B Iinkp directioxs. Each node then keeps a list of bits it reesiv
In addition, the firstnp(1 — €)/2 columns will also refer to from owners. For the final pull stage, each node has to get this
the corresponding bits. list associated with each of its potential helper relayss T



Table |
ALLCAST BIT-MAP

O1 O -+ Oy -+ Oa Oy O -+ Onpie | Rupa-er,, -+ Ru Ry Ry - R
2 2
b1 b2 bt ba bb bc bnpm—s)
2
01 1 Xla
O2 1
Oy 1 1 1 0 0 0 1 0 1 1 1 0
Oa Xal l XG'L
Oy 1
O, 1
O np(i-e) 1
2
RTL —£ XL(L
T—'(; )+1
“ 0 1
R, 0 1
Ry 0 1
R, 1

the step that may involve significant exchange of informmgtiothen at least one of the following is true.
but the cost involved is a one-time set-up cost that can be1) The eventAgn) occurs, which is defined to be the event

amortized over multiple rounds of data communication. Notgat there are fewer thanp(1l — ¢) vertices connected to

that all information exchanges (link directions, pushing thode 0. By Lemma 5, there is some > 0 such that for all
owned bits, lists of bits available at neighboring helpéays) sufficiently largen, we havePr{Agn)} < e—en,

are of information which are of local relevance that are, in

addi2tion, locally available. The matching can be identified defined to be the event that the nade connected to a certain

O(n") steps [12]. _ n mber of owners outside the rangep(1 —¢) - p(1 +¢)
4) We need three elementary tools to establish the resk,vlf

The first is the following well known concentration result fo th links pointing towards. (If nodet is an owner, there are
. > (N€ Toflowing wet . inp(1—e))—1 other owners, but the 1 can be absorbed into the
the binomial distribution, which we state without proof.

: 1 —¢) factor). Again by L 5, there i 0 such
Lemma 5: ({17, Th. 1.7()]) Supposé) < ¢ < 3, 0 < t(hat ?ngﬁ :Li‘ficigi:] IZr zzmvTeahavegr?/Ils(”s)(()tr?fz f:;f
e < 1/12, andeng(l — ¢) > 12. Let S, , be the sum of ylarger, (n) 2 —_e o
n Bernoulli(g) random variables. Then 3) For some node, the eventd; " (¢) occurs, which is the
event that the nodeis connected to fewer than
Pr{

2) For some node, the eventAé")(t) occurs, which is

e =3 (16)
Verng Brn = (n - %np(l - 5)) . %p(l —¢)

1
—Sn,q — 1‘ > a} <
ng

|
This result holds for every. a_mdq satisfyingeng(1 — g) > — %np(l —g)- (1 _ %p(l _ 5)>
12, and as suchg can vary withn. The second tool is the

Borel-Cantelli lemma that gives us a sufficient condition fo o o )

almost sure convergence. The third tool is one of existeng@lays with links pointing towards (Again, the case of 1 less

of matchings on random bipartite graphs, which will be th&lay when node is a relay is easily handled). Once again by

subject of Section V. Lemma 5, there is az > 0 such that for all sufficiently large
Proof of Theorem 4: By the Borel-Cantelli lemma, it 7> W€ havePr{A§" (1)} < e,

suffices to show that the probability that the algorithmsfail 4) For some node, if A™ U A (1) U A (¢) does not

for a particularn is summable oven. If the algorithm fails, occur, then the event/(™)(¢) occurs, which is the event that



nodet is unable to pull the desired bits. We claim that V. THE EXISTENCE OF A BIPARTITE MATCHING

n (n) (n) (n) ¢ In this section, we establish the crucial step of existence
Pr{M( '® | (Al U A7) U 4 (t)) }SV(B”)N of bipartite matchings. The following lemma, taken from
(17) Bollobas [17], is key to showing that matchings exist altnos
surely and one can pull thg, bits from relays. We first present
oo the result for a random bipartite graph with vertices on
Z ny(Bn) < oo. (18) each side. The results of this section are well-known and are
n=1 provided only for completeness and ease of reference.
Lemma 6:([17, Lem. 7.12, p. 174]). Let be a bipartite

for some sequence : N — [0, 1] satisfying

The event that the algorithm fails is then a subset of

graph with vertex setd’,V; such that|V;| = |Vz| = n.
(n) (n) (n) ) SupposeG does not have any isolated vertices and it does
A" (Az (t) U A" (t) UM (’5)) not have a complete matching. Then there is a4et V;

t=1 for eitheri = 1 or 2 such that the following three conditions

whose probability is upper bounded via the union bound ah@!d:

(17) by (i) T(A) has|A| — 1 elements,
Cmer | —mes | —nes (i) the subgraph spanned by UT'(A) is connected,
ne (e 4 e 4 e 4 y(B) (i) 2<|A] < (n+1)/2. 0
which, by the summability claim in (18) and the exponengiall The above conditions are simple consequences of Hall's
decaying nature of the other terms, is summable. marriage theorem and some elementary observations. The
Let us now prove (17) and (18). proof can be found in [17, Lem. 7.12, p. 174]. We now bound

") has not the probability of these events on a random bipartite graph
G(n,n,p) (see Section II-A).

Lemma 7:Let F, be the event that there is a sébDf sizea
with A C V; for i = 1 or 2 satisfying (i)-(iii) of Lemma 6. Let
ny = (n+1)/2. ConsiderG(n, n,p). ThenPr{U.1, F,} < e,
wheree,, summable, and heneg — 0. Furthermore, we also
have)_ -, ne, < . a

Fix a nodet, wherel < t < n. The eventAg
occurred, and so the source has sent out exdotly(1 — ¢)

bits to that many owners. The everhi") (t) has not occurred,
and so node is connected to betweebnp(l —¢) - $p(1 +
) owners with links towards node The connected owners
directly furnish their bits to nodé. But nodet needs at least
1 1 1 it i

snp(l —¢) — snp(l —€) - 5p(1 + ¢) additional bits to be 217 : g iy
pulled in pull step 2. This set of yet-to-be-pulled bits sin Proof: Fix a. There are two choices farin the condition

n
to some random selection of columns from amongst the firdt < ‘2 there atre(ar)] waystrt]o chgose theOSUbSA:] and tr;ﬁre
inp(1 — &) columns and does not include column are(,",) ways to choose the subse t4). Once chosen, there
(n) . must be no links between thevertices ofA and then—a+1
The eventAy”(t) has not occurred, and so nodeis

) > vertices ofl,—T'(A). By the union bound (for the possibilities
connected to at least, relays that could potentially furnish for A andT'(A)), we get

these missing bits (that is, with links towards naefleConsider
the rows corresponding to these relays. This set of rows is a n n a(n—a+1)
random selection of at least, rows from amongst the indices Pr{fo} <2 a)\a=1 (1-p) ‘ (19)
inp(1 —¢) + 1 throughn and does not include . o .

Observe that conditioned on these selections, the entrtésing () < n“, by a second application of the union bound,
of the submatrix continue to be iid Bernoullj2) random and by dropping some factors that are smaller than 1, we get

variables. IfM/(")(t) occurs, there is no coverage of these the na
yet-to-be-pulled bits (columns) using the helper relagsvg),  pr{u".,F,} <2 Zn2a—l(1 —p)an(1 —p)—“2 —i e, (20)
with each helper relay furnishing at most one missing bit Bu a2

this in particular implies that there is no coverage of thetge
be-pulled bits (columns) by some subset of exagflyhelper
relays (rows) with each helper relay furnishing at most ahe
But this further implies that any superset @f columns that

For an ag, setng = 2a9 — 1. It suffices to show that
bfor ng Ia_lrge,ZnZn0 en < 00 .Interchang_ing the indices of
summation, and changing limits appropriately, we get

includes the yet-to-be-pulled bits (columns), and corgmto ao )

exclude column, cannot benatchedo the selected,, helper Z En = 2 Z(l —p)° Z n?*1(1 — p)om

relays (rows). Now, Lemma 9 of Section V shows that thisn>n a=2 n>ng

probability is upper bounded by(3,,), which is (17), and +2 Z (1 _p)faz Z n2e1(1 — p)n.
that ny(8,) is summable, which is (18). This concludes the asan n>Za1

proof. ] (21)

The matching step above is the key to complete the deliv-
eries. It ensures that all required bits are available atesoffihe first term is easily seen to be summable for any finite
helper relay, and that each link has at most 1 bit load so that For the second one, observe that for @ny 0 and any
capacity constraints are not violated. We now devote a@ectiC' > 0, there is anag large enough so that for afl > ag
to demonstrating this key step. and alln > 2a — 1, we haven?*~! < n?* < C(1+6)*. By



takingC = (1 —p)(1 —46)(1 — (1 — p)(1 —0)) it follows that
Z n2a71(1 _p)an < (1 _p)2a2(1 + 5)2(12'

n>2a—1

Chooses small enough so thdtl —p)(1+6)% < 1. Substitute  gyces o
this in the second term in (21), and we see that it is summable.
Finally, to show thatzn21 ne, < oo, we modify (21) as

Z ne, = 22(1 _p)—a2 Z n2a(1 _p)an

n>ngo n>ng

e

L ]
L 4
..."*: Destination t
estination
T LLLI P
-

2
+ 2 g (I-p)© g n2“(1 —p)*™. Figure 2. Single source single sink setting indicating hoatahing arises.
a>agp n>2a—1

H 2a < an
By our choice ofay ando, we also havex™ < C(1 +9)*, graph of interest is now#(n + 2, p), where the number + 2

and so all the steps that followed (21) apply, which esthbbs comes fromn relay nodes and the two source and sink nodes.

summability ofney,. L Our interest is in the maximum rate of information flow
We now put these _toge_ther o argl_J_ethata bipartite matChIEgtween source and sink,(2). (To be strictly conforming
exﬁse(l)?fngnéz_’ﬁg W:)T)Qt')?lﬂ ptrﬁ:g?gltﬁ ) does not have a to our earlier notation, we must usg,,»(2) for there are

complete mat.chin pis ¥ er){)oundedlld;; = 2n(1—p)i+ n+ 2 nodes in the network and with the first two nodes being
P 9 PP o p Id‘l session. The asymptotics does not change of course).

T;,L\évg(;r]zs;, defined in (20), has all the properties indicate Grimmett and Suen [18] showed that (2) grows linearly

Proof: If G(n,n, p) does not have a complete matching! " and thatlim,, == = p, almost surely. It is then clear

then either (1) there is an isolated vertex, or (2) there is l%at the ,CUt that |soIa_tes the Source IS a.t|ght cut. So is the
isolated vertex and by virtue of Lemma8?" , F, must occur, cut that isolates the sink. Motivated by this, Karp et al.][12

wheren, = (n+1)/2 as before. By Lemma 7, the probabilityprOVided an algorithm that achieves the minimum cut capacit
of the second case event is at mest The probability that We will show that, for a fixed > 0, the following algorithm

there is no isolated vertex is, by the union bound, at mgSgnsportsnp(l — <) bits from the source to the sink with
2n(1 — p)™. m Vanishing probability of failure. See Figure 2.

In the previous section, we had a need to study existence ofz|gorithm MaxFlow:
bipartite matchings over left and right sets of sizg:= |cn |
where0 < ¢ < 1.

Lemma 9:For a fixed0 < ¢ < 1, let 5, := [en].
The probability thatG(8,,, 8.,p) does not have a complete
matching is upper bounded by(g3,) where v is the up-
per bounding function defined in Theorem 8. Furthermore,
> n>1 1 (Bn) < oo 0

Proof: The upper bound on the probability that a match-
ing does not exist is immediate. We now show that ny(5,)
converges. Note that any particular integer repeats at most
1/c+1 times in the sequencg?,, n > 1}. As a consequence

» The source floods exactlyp(1 — ) links with one bit
per link.

« The sink pulls all these bits fromp(1 — ¢) links con-

nected to it in the following two steps.

(a) If any node connected to the sink is directly connected
to the source, the sink draws the corresponding bit. With
overwhelming probability, there are at leagt(1 — ¢) -

p(1 — ) such connections.

(b) Here is how the sink draws the remaining bits. There
are at mosp,, = np(1 —e)(1 —p(1 —¢)) such yet-to-be-
pulled bits, and these reside with let us smurce side

1 ) relays not in direct contact with the sink. Among those
Z n(Bn) < c Z(m) 7(Bn) relays that did not get a bit directly from the source (and

=t 1 =t these arex — np(1 —e) = n(1 — p(1 — €)) in number)
< 7 D (B +1) - 7(Bn) the sink is connected to at leastl — p(1 —¢)) - p(1 —
n>1 e) = Bn, again with overwhelming probability. Let us
1/1 call these thesink side relaysThere is a matching, again
< c (E + 1> Z(k +1) (k) < oo with overwhelming probability, between the source side

k21 relays and the sink side relays. This matching is then used

u in the obvious way to draw the yet-to-be-pulled bits

Obviously, the direct link betweenandt is inconsequential
VI. A DIGRESSION OFNOT JUST INTERPRETIVEVALUE:  for the asymptotics. It is further obvious from the analysis
MAXIMUM SINGLE COMMODITY FLOW of the previous section that the probability of failure is
Let us now take a step back to see how matching arisagerwhelmingly small, and moreover, it is summable oxer
naturally in the simpler case of a single commodity flolemma 9). This is essentially the argument of Karp et al] [12
between a source nodeand a sink node. We shall assume to show the achievability direction of the result of Grimmet
that additional nodes, 2, . .., n are merely relays. The randomand Suen [18].



. . . Table Il
What if we have not one sink, but two sinkst; andt,? BIT-MAP FOR ONE SOURCE ONE SINK FLOW

There is one matching needed ferand another needed foy.

These matchings depend on the connections at the respective | = | b11 bg bm’%*s) |
sinks, but can be found with overwhelmingly small probaili O; 0o 1 0

of failure via the union bound for probabilities. Once these

are found, while the relays may be overworked, the links are :

utilized within their capacity limits. Indeed, if a commaoinis- Onp(1—¢) 0 0 1
side relay is required to deliver the same bit (from a paldicu Rop1—o)+1

source side relay) to both sinks, then the relay simply opie : ((X:))

the obtained bit on both links to the sinks. If the relay is R,

required to supply two different bits to the two sinks, the
matchings are to different bits, the relay fetches the twe bi
from the respective source side relays on two differentslink
(as per matching), and supplies them to the two sinks via twoTheorem 10:For anys > 0, the following event occurs
different links. This matching on an as-needed basis mizesi almost surely: for all but finitely many, the algorithm
link usage. But every time a new sink is added, new flowdaxFlowPUSHPULL succeeds in transporting alip(1 — )
should be initiated to make all bits available to the new sinkits from the source to the sinkt. 0
Can wepreparethe network to be in a state of readiness so  Proof: This is almost immediate. If the algorithm fails,
that upon addition of a new sink, it is merely the new sinkne of the following must happen.

that does the necessary work to obtain all bits? (1) The eventA{" occurs, which is the event that node
Our next goal is to modify AlgorithnMaxFlow into one that s connected to less tharp(1 — ¢) relays. By Lemma 5, there

pushes two steps and then pulls, as in AlgorithlL,CAST, is a ¢, > 0 such that for all sufficiently large,, we have
yielding a decentralized algorithm that easily extendshi® tpr{Agn)} < emner,

case of multiple sinks.
Consider the single source single sink case again, and FQ
following algorithm.

2) The eventAé") occurs, which is the event that the sihk
onnected to a number of owners outside the range —
) - p(l £ ¢). Again by Lemma 5, there is @ > 0 such that
Algorithm MaxFlowPUSHPULL: for all sufficiently largen, we havePr{Aé”)} < e~ for
« Push step 1 The source nodes floods np(1 — ¢) Somecz > 0.
links with one bit per link. We shall call the bits (3) The eventAé") occurs, which is the event that the sink
bi,ba, ..., bnp—e) and the recipient nodes of these bitd is connected to fewer thas, := n(1 —p(1 —¢)) - p(1 —¢)
as the ownersD;, O, ...,0,,1_. Of the respective relays. Again by Lemma 5, there isca > 0 such that for all
bits. All other nodes are termed relays and indexefficiently largen, we havePr{A{"} < e~nes,
Rup(i—e)415-- - Rn. @) 1f A U AT U AL does not occur, the number of bits
« Push step 2Each ownerO; pushes his bib; one more that remain to be pulled is at leagt(1—¢)—np(1—¢)-p(1+e¢)
level, but only to neighbors who are not owners, and thich is at most3,,. The number relays that can help the sink
the sinkt if there is a link to the sink. Owner-owner linkspull these bits is at leagt,. For the algorithm to fail, the event

are unutilized. M), that there is no coverage of the yet-to-be-pulled bits by
» Pull step 1 The sinkt collects all bits sent directly by the available relays with each relay accounting for at mast o
owners. bit (capacity constraint), must then occur. This implieat tif

 Pull step 2 The sinkt identifies the list of additional bits a particular set o8, relays are chosen, there is no coverage of
needed, the list of relays it is connected to, the list of bithe required bits. This further implies that any superses,of
they have in their possession, and does an appropribigs that includes the yet-to-be-pulled bits cannot be eve
matching of relays with the required bits. It then pullpy the 3, chosen and available relays.
the desired bits from these relays via the by now all-too- The matrix rows corresponding to th&, chosen relays
familiar matching. 0 (rows) and the3, chosen bits (columns) is &, x 3, square
The bit-map for this setting is much simpler (see Table [Isubmatrix whose entries are conditionally iid Berngulli
The columns are indexed by the bits. The rows are indexed tandom variables. Again, we may view this as a bipartite lgrap
the nodes, with the firsip(1 —¢) representing the owners andwith the chosen relays on the one side and chosen bit indices
the rest representing the relays. Rowwhen it corresponds on the other side. Thus, A UA” UA{™ does not occur, but
to ownerO; (which is whenl < i < np(1 —¢)) has a1 only M (™ does, then there is no matching on the random bipartite
on theith column. But when row corresponds to a relay graph. Using Theorem 8, the probabilitg/ that such a matching
(which is wheni > np(1 — ¢)), it has entryX;; = 1 if O; is  does not exist, conditioned qal{™ U A™ U A{™)e, is upper
connected tak;. Clearly, the presence or absence of this linkounded byy(3,).

is independent of the status of all other links, akid; is @ Thus, the event that the sink is unable to pull all the bits
Bernoulli(p) random variable, when > np(1 — ¢) > j. implies the event

We then have the following result. AP uAMUAM UM™,
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Cn (e ™1 4+ e "2 4 7" 4+ ~(f,)). This upper bound is
"ﬂ summable, and the rest follows. [ |

. . s VII. M ULTICAST: ACHIEVABILITY
* E

.. We now return to the setting of nodes of whichk,, are
o in a multicast session. Node 1 is the source node and nodes
o 2,3,...,k, are the sinks. Our goal in this section is to show
that the upper bound (10) is achievable. While one could in
principle proceed as in Catlin et al. [14] to prove achieligbi
we shall directly jump to a constructive proof.

Theorem 12:For the multicast problem witlk,, nodes in
the session, letim,,_, k,/n = « € [0,1]. We then have

*
*
O. *
(K @
TEOTRNE 1 tim T2En) _ (1-%)EC]  as.
n—oo n 2
Figure 3. Therelay(kn,n) network. Source pushes bits to owners who 0

then push to relays (solid lines). The sinks pull the bitsrfreither owners . .

or relays (dashed lines). Proof: As in the proof of Th_eorem 3 converse was
already shown in (10). So showing achievability suffices,
and further showing it on Erd6és-Rényi random graphs with

L 4

and its probability is upper bounded by parametep suffices. Moreover, as before, it is enough to show
that: For any e > 0, the following event occurs almost surely:
e 472 e L 4(By). (22) for all but finitely manyn, there is an algorithm that succeeds

o in transportingm, (k,) > n (1 — a/2) p(1 — 2¢) bits from the
This is summable by Lemma 9, and the rest follows. B goyrce to each of thé, — 1 sinks.We claim that this holds.
Instead of one sink, suppose we have two sitkand t» We first dispose two easy cases.
that are not connected directly to each other or directly to\yhen o — 0, this follows from Theorem 11, by simply

the source. The source has to transport alljtél — ) bits  jgnoring the links between the session nodes and by using
to each of the two sinks using only therelay nodes. We \iaxFiowPUSHPULL and n(1 — ) relays, and with pulls
may continue to usélaxFlowPUSHPULL with the following  jmplemented at each of the sink nodes.

extension. The two push steps are common. But each sinKyhen o = 1, pretend that all nodes are in session and

simply executes its own pull steps based on the connectigglementaLLCAST. The result follows from Theorem 4.
it sees at its end and the information from its helper nodes.omy the case whefi < « < 1 remains. for which we will

Using the union bound, it immediately follows that Theoremise 5 combination of the above.
10 holds for one source and two sinks when there are no direChpserve that the subset of session nodes alone form a

connections between the set of nodes constituted by theesoqfomplete graph withk, vertices for which Theorem 4 is

and the sinks. _ applicable. UsingALLCAST and without using any of the relay
Indeed, we can say something much stronger. One versigijes, we have that the source can distribute
that suffices to address the multicast setting of the nexiosec

is the following. Consider a scenario where there is one M > k_"p(1 —€) (23)
sources and a total ofk,, — 1 sinksty,ts,..., ¢k, —1 Where 2
Sup,, >, ’%n < C for someC < ~o. The source and the sinksbits to the othek,, —1 nodes in the session, for all but finitely
have no links among themselves, but are connected through@nyn, almost surely. (Summability of the probability upper
network ofn relays. See Figure 3. The internal links betweepound sequence holds sinkg = Q(n)).
the relays and the links between the source/sinks and thgsrel Removing these direct links between the session nodes, we
are iid Bernoullip) random variables. The source wishes tend up with the graph in Figure 3, where the session nodes are
transfer all its bits of information to each of the sinks. ust now only connected to the:, = n—k, relay nodes. The link
denote this random network aslay(k,,, ). to each relay node from each session node has Ber(gulli
Theorem 11:For anye > 0, the following event occurs capacity. Further the relay nodes have interrelay link cies
almost surely: for all but finitely many:, the algorithm that are independent BernogH) random variables. By The-
MaxFlowPUSHPULL, with the pull stages implemented byorem 11, usingviaxFlowPUSHPULL, the source can distribute
each sink, succeeds in transporting afi(1 — ) bits from (2) _
the sources to each of thek,, — 1 sinks on therelay(k,,, n) ot Z map(l =€) (24)
network. O bits to thek,,—1 sinks (solely with the help of the relay nodes),
Proof: Observe that the first three terms in the uppder all but finitely manyn, almost surely. (Summability of the
bound for the probability of failure in (22) decay exponatiyi probability upper bound sequence holds sincg = Q(n)).
fast inn. The last termy(f,,) satisfies) ., ny(f,) < oc. The result immediately follows from (23) and (24) since
Since there aré,, — 1 = O(n) sinks, by the union bound, thex(k,) > m(ll) + 7T7(LQ) andk,/24+m, =n—k,/2 > n(l -
probability that the algorithm fails for some sinks is at nosy/2)(1 — ¢) for all sufficiently largen. [ ]
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VIII. VANISHING LINK PROBABILITIES where

oo
Our results extend to the case whers a function ofn, Znén < 0. (28)
denotedp,, and vanishes but sufficiently slowly. We shall n=1

focus only on the allcast problem. The results for multicast the event that the algorithm fails is thus a subset of
can be obtained in an analogous fashion.

. _ Tn logn n " n n n
Theorem 13:Let p, = /™= 5= _ where 7,, — oo but Ag ) U (Ag )(t)uAg )(t)uM( )(t))
pn — 0. For anye > 0, the following event occurs almost —1

surely: for all but finitely manyn, the algorithmALLCAST
succeeds in distributingnp, (1 — ¢) bits to each of then
nodes. Furthermoréim,, 7;;;; = % almost surely. O
Proof: The proof of the first part is similar to the proof of 0. <€cl\/m + b + e—csVnmalogn | 5 >
Theorem 4, with some additional effort to get better prolitgbi L
upper bound estimates. Again, we argue that the probabil
that algorithmALLCAST fails is summable overn. If the

algorithm fails for a particulan, at least one of the following What remains is to prove (27) and (28).
events must have occurred.

D T event | occs, unicn i deine 1 e te eveny 25 PSS 0 Povebtly on e e s of ()
that there are fewer thafnp, (1 — ¢) vertices connected to PP y P y 9

node 0. By Lemma 5, applied with = py /2, there is some a b|par_t|te graph with3,, vertices and link probabﬂny;n. _
- We first sharpen Lemma 7. The bound in (19), after noting
c1 > 0 such that for all sufficiently large, we have

that we now haves,, vertices on one side, can be sharpened

whose probability is upper bounded via the union bound and
(27) by

ne2mn

EX/ (28) and the assumption that — oo, we see that this
bound is summable.

Pr{AM} < e3P /3 — omervATaTog (see [17, p.174]) to
2) For some node, the eventA{"(¢) occurs, which is Pr{F,} < 2(6")( ﬁnl)(l — pp)Br—atD)
defined to be the event that nodés connected to a certain a a=
number of owners outside the rangep, (1 —¢) - $p,(1£¢) , ((a(‘l - 1)) .p2a—2)
with links pointing towardst. (The case when nodeis an 2a -2 "

owner leads to one fewer number of owners which as befqffere the extra term within parentheses in the second line ca
is absorbed intd1 + ¢) factor). Aga_un by Lemma 5, there ispe included because it is an upper bound (via the union bound)
somec; > 0 such that for all sufficiently large, we have  op the probability that somea — 2 links, among the possible

Pr{Ag") O < o snpn(1—2) bpn-c/3 a(a.— 1) Iinks_from A to I'(A), are active. Recall thad is
o, an integer satisfyin@ < a < (8, + 1)/2. Using the bounds
< em e . (™) < (22)" and (1 —z) < e™2, we get
_ —coTp logn
= e g = eaTn . (25) PI‘{Fa}
a a—1
Note thatc, can be arbitrarily small because of thgfactor. < 9 (%) ( ebn > (@)2“_2 p2a—?
3) Let A™ not occur. Then there are exactlyip, (1 — ¢) B a a—1 2 "
owners. For some node the eventA{" (¢) occurs, which is : (e*ﬁnpn“(1*ﬁ+ﬁ))

the event that the nodeis connected to fewer than

eﬂn GQBnPn a2 1 ot
Bn = (n—lnpn(l—s))-lpn(l—g) 2(7) ( 2 ) <1+a—1)

2 2
. (e_BnPnG(l_ﬁﬂ‘ﬁ))

IN

1

= -9 (1-gn-9) @)

2 2.2

2a—2
Cnpn (6 npn) efanpi(172s)/4
relays with links pointing towards (As before, the case of 1 4

less relay when nodeis a relay is easily handled). Once agaify; some finite constan€’, where in the last inequality we
by Lemma 5, there is az > 0 such that for all sufficiently p4e usedl + 1/k)* < e, the boundL — (a — 1)/B, > 1/2
largen, we have when2 < a < (8, + 1)/2, and the obvious upper and lower

i 2
Pr{Aé”) ) | (Agn))c} —(n=3npa(1—e))-Lpa-e?/3 bounds ons,, from (26). Now, usingnp;, = 7, logn, we get

2 2a—2
T e

4 2\ @
o (16 Vn e*(t, logn) .
64(7." log n)1'5 16n7n(1_25)/4

(n) () () () c Since the term inside the second parentheses converga®to ze
Pr {M (t) | (Al U Ay (1) U Ay (t)) } <dn (27) asn — oo, it follows that for all sufficiently large: and some

e

<
< e ¢ vVnt, logn
= : Pr{F,}

IN

4) For some node, if A™ U A (t)u A (t) does not
occur, then the event/ (") (¢) occurs, which is the event that
nodet is unable to pull the desired bits. We claim that

IN
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finite constants”; andCs, we have connection with a conjecture of Li and Li [19] for multiple

1)/2 unicasts. Li and Li [19] conjectured that for multiple uréta
(Br+1)/ 4 1 2 2 _ i ) . .
E : Pr{F,} < ¢} ( vn ) (e (7n logn) ) network coding provides no coding advantage in undirected
s - (Tnlogn)1® ) \ 16nm(1-22)/4 graphs. While their conjecture holds true for some specific

classes of undirected graphs ([20], [21]), the generalexinje
) remains unresolved. The negligible gain for multicasting i
random graphs studied here arises from the dense intercon-
nectivity between relays. The bottlenecks are primarilyhat
The probability that there is no matching is then upp&feriphery. So there does not seem to be much insight that one
bounded by, := k, + 26,(1 — p,)’". The second term can glean from our study to prove or disprove the Li and Li
is upper bounded, using the bounds @n as conjecture for multiple unicasts in undirected networks.
Vnr,logn While we studied multiple multicasts, our communication
nm(1—2e)/2" application naturally restricted us to a single set of sessi

From these two bounds, using — oo, it is clear that not only nodes. We thus had to StUdy. Stginer tree_packings for a si_ngle

5, — 0, but in addition,>", -, nd, < co. This establishes subseF of nodes. VLSI apphcgﬂpns require efficient pagkm

(27) and (28) and proves validity of algorithm LCAST. of Steiner trees across a multiplicity of such subsets (¢s;ne
The above achievability result also establishes that see [8]). One could apply our random network framework to

V(7 logn)?°
rn(1-25)/2

:02(

D K.

Qﬁn(l _pn),@n < npne—npi(l—Qs)/Q _

) such problems and attempt to devise similar quick-butsdirt

s
lim inf =2 >
n—oo NPy, 2

The upper bound
1

lim sup i < -

algorithms. This is an interesting topic that is beyond ttepg
of this paper.
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follows from (7) and Lemma 5. This concludes the proof d?ringing references [6] and [14] to their attention.

the second statement.
The extension to multicasting can be done similarly.

(1]
IX. DISCUSSION

We began the problem of allcast and multicast capacity)
region for multiple allcast and multiple multicast. Yet, we
largely focused on single allcast or single multicast witrE
just one sender and with remaining nodes of the session é
receivers. But study of single multicast suffices, thanktho [4]
result [1, Cor. 4.a] of Li et al. on transferability of ratezrass 5]

sources (even with network coding). It is therefore cleaw ho
the established results imply the validity of (1) and (2)eTh [6]
requirement that the session nodes be identical for eadteof t[7]
multiple multicasts is crucial for this transferability.
Moreover, we largely studied multicasting techniques tha]
do not use network coding. One message coming out of
this work is that though network coding provides a codingg,
advantage in specific undirected scenarios, and one such
example can be found in Li et al. [13], in large dense randolif!
undirected networks of the variety studied in our paper thg
coding advantage is at most- o(1) in the number of nodes.

While our results applied to grapli&n, p,,) with p,, — 0, we
did require thatp,, vanishes sufficiently slowly. In particular,
Dn, \/(mnlogn)/n so that a typical node has degre@s]

np, = +/nm,logn. These are well connected, but by no
means sparse graphs. This naturally raises two questiores. Qg

4

[12]
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