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Abstract—Performance of reliable communication over a
coherent slow-fading multiple-input multiple-output (MIMO)
channel at high signal-to-noise ratio (SNR) is succinctly captured
as a fundamental tradeoff between diversity and multiplexing
gains. This paper studies the problem of designing codes that
optimally tradeoff the diversity and multiplexing gains. The main
contribution is a precise characterization of codes that are univer-
sally tradeoff-optimal, i.e., they optimally tradeoff the diversity
and multiplexing gains for every statistical characterization of the
fading channel. This characterization is referred to as approximate
universality; the approximation is in the connection between error
probability and outage capacity with diversity and multiplexing
gains, respectively. The characterization of approximate univer-
sality is then used to construct new coding schemes as well as to
show optimality of several schemes proposed in the space–time
coding literature.

Index Terms—Compound channel, diversity-multiplexing
tradeoff, fading channel, multiple-input multiple-output (MIMO),
space–time codes, universal codes.

I. INTRODUCTION

RELIABLE communication over slow fading point-to-
point channels, where the (random) channel realization

is fixed over the time scale of communication, is characterized
by the tradeoff between data rate and error probability: typical
fading distributions have a nonzero probability of being very
small and thus arbitrarily reliable communication is not possible
at any nonzero rate. The tradeoff between the data rate and the
error probability is captured by the outage capacity, the largest
rate of reliable communication for a fixed error probability.
The information theoretic view is that of a compound channel:
the slow fading channel is composed of a class of channels
parameterized by the different channel realizations that are
not in outage. The outage capacity is achieved by universal
codes, those that work reliably over every one of the channel
realizations not in outage.

At high signal-to-noise ratio (SNR), the precise (but too
involved to derive code design principles) tradeoff between
error probability and data rate is coarsely captured in terms of
a tradeoff between diversity and multiplexing gains [1]: these
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are the rate of decay of error probability and the increase of
data rate with increasing SNR. Since the tradeoff is captured at
a coarser scale, we shall denote codes that optimally tradeoff
diversity and multiplexing gains for every slow fading channel
as approximately universal; the approximation here refers to
the coarseness in the definition of diversity and multiplexing
gains as opposed to studying error probability and data rate
directly. Our main result is a precise characterization of approx-
imately universal codes. We use this characterization to show
the approximate universality of some codes proposed in the
literature and to also construct new space–time codes that are
approximately universal. These codes are robust to statistical
channel modeling errors, hence their engineering appeal is
clear. This approach of using compound channel viewpoint
to construct robust codes for multiple-input multiple-output
MIMO channels has also been taken in a series of works in
[2]–[4].

We are interested in codes that achieve reliable communica-
tion over all channel realizations not in outage: this suggests,
as done in [3], asking for the performance of the code for the
worst channel not in outage. This is in contrast to the tradi-
tional performance analysis where the error probability is av-
eraged over the statistics of the fading channel. In particular, if
the worst-case pairwise error probability decays exponentially
with increasing SNR then such a code is approximately uni-
versal. For a parallel channel, the worst channel for a given pair
of codewords is “inverse waterfilling” over the pairwise squared
codeword differences. For a MIMO channel, the worst channel
(derived in [3]) aligns its singular vectors in the same directions
as those of the pairwise codeword difference matrix and then the
singular values inverse waterfill the singular values of the pair-
wise codeword difference matrix. While the exact expression of
the worst-case pairwise error is somewhat involved, a simple
worst-case code design criterion emerges at high SNR for both
the parallel channel and the MIMO channel.

For a parallel channel, somewhat surprisingly, the worst-case
code design criterion at high SNR simplifies to the product dis-
tance criterion which was derived initially for the independent
and identically distributed (i.i.d.) Ricean-fading channel [5],
though is better known for the i.i.d. Rayleigh-fading channel
(see [6, Ch.3]). In a compound channel setting the criterion
was heuristically derived in [2], here we give a more precise
statement for the criterion. In particular, we show that if the
products of all normalized squared codeword differences is
larger than where is the communication rate, then the
code is approximately universal. This design criterion suggests
a class of codes based on permutations of the quadrature ampli-
tude modulation (QAM) constellation that we call permutation
codes. Even random permutation codes are approximately
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universal and we provide examples of simple and explicit
permutation codes that are approximately universal. We show
that a code based on a rotated QAM constellation proposed
in the literature [7] also satisfies the desired product distance
property and is hence approximately universal.

For a MIMO channel, the worst-case code design criterion
is in general not simply to maximize the determinant of the
codeword difference matrix, the criterion derived for the i.i.d.
Rayleigh-fading channel [8]. This can be explicitly seen in the
case of the multiple transmit but single receive antenna (MISO)
channel: the worst channel chooses the most susceptible direc-
tion to confuse between a pair of codeword matrices–this is the
direction of the smallest singular value of the codeword differ-
ence matrix. Thus the worst-case code design criterion for the
MISO channel is to maximize the smallest singular value of
the codeword difference matrix; different from the determinant
criterion derived for the i.i.d. Rayleigh-fading channel. More
generally, the worst-case code design criterion at high SNR for
a MIMO channel (with transmit and receive antennas)
is to maximize the product of the smallest sin-
gular values of the codeword difference matrix. With more re-
ceive than transmit antennas, the worst-case code design crite-
rion reduces to the determinant criterion derived for the i.i.d.
Rayleigh-fading channel.

An important implication of our worst-case code design crite-
rion is the following: if a code is approximately universal on an

MIMO channel, then it is also approximately universal
for MIMO channel for every . Several space–time
codes proposed in the literature satisfy the worst-case code
design criterion and are hence approximately universal. In par-
ticular, the QAM rotation codes in [7], [9] are approximately
universal for every MIMO channel with two transmit antennas.
The recently proposed codes in [10]–[12] that are derived from
cyclic division algebra are also approximately universal. In fact,
it follows from the results in [10] that explicit approximately
universal codes exist for the shortest theoretically possible
block-length for every MIMO channel.

V-BLAST [13] and D-BLAST [14] are classical architec-
tures for communication over a MIMO channel. While they
are not approximately universal, we show that they are tradeoff
optimal in some rate regime universally over a (restricted) class
of channels which are rotationally invariant. In particular, this
class of channels includes the i.i.d. Rayleigh-fading channel:
we show that V-BLAST with simple QAM constellations as
the independent data streams achieves the last segment of the
tradeoff curve for the i.i.d. Rayleigh-fading MIMO
channel and D-BLAST achieves the first segment of every

i.i.d. Rayleigh fading MIMO channel. These results
are illustrated in the context of a i.i.d. Rayleigh fading
MIMO channel in Fig. 1.

We have organized this paper into two distinct parts: first,
we present a precise characterization of approximate universal
codes for the general MIMO channel. In the second part, we dis-
cuss explicit approximately universal codes, starting with sim-
pler channel models and moving on to the more involved ones.
In particular, we start with the scalar channel and show that a
simple QAM is approximately universal (this is done in Sec-
tion IV). Next, we study the parallel channel and the MISO

Fig. 1. Tradeoff curves: n = n = 2.

channel in Sections V and VI, respectively. Finally we consider
the general MIMO channel in Section VII by demonstrating the
approximately universality of some codes proposed in the lit-
erature, and then analyzing the approximately universal perfor-
mance of V-BLAST and D-BLAST in Sections VIII and IX,
respectively.

II. CHANNEL MODEL AND THE OUTAGE FORMULATION

The main focus of this paper is on the slow-fading (point-to-
point) MIMO channel

(1)

where is the time index and and denote the output and
the input vectors respectively. The complex matrix
of fading gains is randomly picked, but stays constant over the
time-scale of communication; we suppose that the exact real-
ization of is known at the receiver. The additive noise has
i.i.d. complex Gaussian entries. We are interested in
one-shot communication over this channel over a (small) length
of time . There is a transmit power constraint of for
any transmit codeword of length .

In this paper, we focus on the scaling at high introduced
in [1]: the data rate is measured on a scale of and the
decay rate of error probability is measured on a scale which is a
negative exponent of . All logarithms in this paper are to the
base . More precisely, the multiplexing and diversity gains are
defined as follows. A sequence of coding schemes (sequence in

) achieves a multiplexing rate of and diversity gain of if

and

where is the rate of the scheme and is the
probability of error with maximum-likelihood (ML) decoding
for the scheme. For a given multiplexing gain , the largest
diversity gain supported by any coding scheme is denoted by

. The goal is to find a characterization of this optimal di-
versity-multiplexing tradeoff, , for any correlated channel
and then to find (simple) coding schemes with as small a block
length as possible that achieve this optimal tradeoff curve.
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The outage event turns out to be closely related to the problem
of characterizing . It is defined as the set of channel real-
izations for which the mutual information is below the data rate

(2)

where the input distribution is independent of the realization
of . It is shown in [1] that, in the scale of interest, the input
distribution can be taken to be i.i.d. complex Gaussian for
the Rayleigh fading channel; a similar argument for any fading
distribution shows that the input distribution can be taken to be
i.i.d. complex Gaussian. This means that the outage curve can
be defined as shown in (3) at the bottom of the page.

The outage curve is an upper bound to [1]. On
the other hand, the set of channel realizations that are not in
outage constitute a compound channel, the capacity of which is

. The compound channel coding theorem guarantees
the existence of universal codes: codes that achieve reliable
communication over every MIMO channel realization that is not
in outage. This means, that by coding over possibly long block
lengths, one can actually achieve the outer bound of .
Therefore for the rest of this paper, we identify the outage curve
with the optimal diversity-multiplexing tradeoff curve. Note
that, we are mainly interested in fading distributions such that
the eigen-values are not bounded away from zero (e.g., AWGN
channel can be considered as a fading channel). Otherwise, the
outage curve will be infinite, and an approximately universal
code will achieve it. But, the diversity-multiplexing tradeoff is
not the right setup to study this problem.

We are interested in universal codes that achieve the upper
bound of only to the extent that they are tradeoff-op-
timal; we call such codes approximately universal. Our main
focus is on a characterization of approximately codes with small
block-length.

III. MAIN RESULT

Our main result is a precise characterization of approximately
universal codes. We define to be .

Theorem 3.1: A sequence of codes of rate
bits/symbol is approximately universal over the MIMO channel
if and only if, for every pair of codewords

(4)

where are the smallest singular values of the
normalized (by ) codeword difference matrix for a pair
of codewords in .

For , (4) turns out to be the same as the “non-
vanishing determinant” criterion introduced in the context of
i.i.d. Rayleigh-fading channels in [15]. This criterion was also
studied in [7][10], also in the context of i.i.d. Rayleigh-fading

channels. In [7], it was shown that for two transmit antennas, if
a code satisfies this nonvanishing determinant criterion, then it
is tradeoff-optimal for the i.i.d. Rayleigh-fading channel.

Our result is much stronger: for an MIMO channel,
if a code satisfies the nonvanishing determinant criterion, then
it is tradeoff-optimal for every fading distribution. Thus, our re-
sult gives the well-known determinant criterion a precise op-
erational interpretation in terms of approximate universality.
Through this characterization, we will see that codes with small
block lengths can be approximately universal. We start with a
few implications of this criterion and then prove the sufficiency
part of the criterion. The necessity part is proved in Appendix I.

A. Approximately Universal Codes in the Downlink

Some interesting observations follow from our characteriza-
tion of approximately universal codes.

• If a code is approximately universal over an MIMO
channel with , i.e., the number of receive antennas
is equal to or larger than the number of transmit antennas,
then it is also approximately universal for an MIMO
channel with .

• The singular values of the normalized codeword difference
matrices are upper bounded by a fixed number .
Thus, a code that is approximately universal over an

MIMO channel is also approximately universal over an
MIMO channel with .

• Consider the downlink of a cellular system where the base
stations are equipped with multiple transmit antennas. Sup-
pose we want to broadcast common information to all the
users in the cell. We would like our transmission scheme
to not depend on the number of receive antennas at the
users: each user could have a different number of receive
antennas, depending on the model, age, and type of the
mobile device. Universal MIMO codes provide an attrac-
tive solution to this problem. Suppose we broadcast the
common information at rate using an approximately uni-
versal space time code over an MIMO channel.
Since this code is approximately universal for every
MIMO channel, the diversity seen by each user is simulta-
neously the best possible at rate . To summarize: the di-
versity gain obtained by each user is the best possible with
respect to both
— the number of receive antennas the user has;
— the statistics of the fading channel the user is currently

experiencing.

B. Characterization of Approximately Universal Codes

Toward our goal of characterizing approximately universal
codes, we first calculate the pairwise error probability for a
pair of codewords based on the worst channel realization not
in outage, i.e., we consider the realization (not in outage) as a
function of the specific pair of codewords so as to yield the worst

(3)
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pairwise error probability. If this worst-case pairwise error prob-
ability decays exponentially with SNR for every pair of code-
words (we allow the worst channel to change as a function of
the pair of codewords), then a simple union bound argument
shows that the error probability conditioned on the channel re-
alization not in outage decays exponentially with SNR: the total
number of codewords is only polynomial in SNR; for example
if the multiplexing rate is , the rate is and the
total number of codewords is . Since the error probability
is lower bounded by the outage probability, we arrive at a suffi-
cient condition for approximate universality of a code:

the worst-case (over channels not in outage) pairwise
error probability for every pair of codewords should decay
exponentially with SNR.

It turns out that this condition is necessary as well; thus we have
an exact characterization of approximately universal codes.

In Section III-B1 we derive an expression for the worst-case
pairwise error for a pair of codewords. This derivation allows us
to explicitly characterize approximate universality of a code in
terms of a condition on its pairwise difference codewords. It is
fruitful to contrast our approach with the traditional “code de-
sign criterion” for space-time codes in the literature where the
pairwise error probability is averaged over the channel statis-
tics. This criterion indeed depends on the specific channel statis-
tics being considered. This is in stark contrast to the worst-case
analysis we have proposed; the corresponding “universal code
design criterion” does not depend on the channel statistics and
characterizes properties of a universal code: the engineering ap-
peal of the universal code design criterion is natural; modeling
channel statistics is a bit of an “art” in practice and it is useful
to have a code that is robust to a variety of channel statistics.

The classical code design criterion for the i.i.d. Rayleigh-
fading channel is the determinant criterion; as we will see in
Section III-B1, the universal code design criterion at any specific
SNR is quite different from the determinant criterion. However,
it is also somewhat involved and is not directly suited to verify
or to design approximately universal codes. In Section III-B3
we derive a simplified condition for approximate universality
taking the high SNR scaling into consideration and this high
SNR criterion is indeed very closely related to the determinant
criterion.

1) Worst-Case Pairwise Error Probability: Our approach is
to study the worst-case pairwise error probability of the code
over MIMO channel realizations not in outage. The pairwise
error probability between two codeword matrices and
(of length ), conditioned on a specific realization of the
MIMO channel , is

(5)

where is the normalized codeword difference matrix

Expanding the channel and codeword difference matrices using
the singular value decomposition (SVD)

and (6)

the pairwise error probability in (5) can be rewritten as

(7)

Suppose the absolute values are increasingly ordered in and
decreasingly ordered in

Then the worst-case rotation can be determined and it turns
out to be the one that aligns the weaker singular values of the
channel matrix with the stronger singular values of the code-
word difference matrix [3]. More precisely, the channel eigen-
directions that maximize the pairwise error probability in
(7) is [3]

(8)

Now, the no-outage condition is only a condition on the nonzero
singular values of the fading matrix and is given by:

(9)

Hence the worst-case pairwise error probability for the MIMO
channel reduces to the optimization problem

(10)

subject to the constraint in (9).
If we define , then the optimization

problem can be rewritten as

subject to the constraint

This is the dual of the problem of minimizing the total power
required to support a target rate bits/symbol per sub-channel
over a parallel Gaussian channel; the solution is just standard
waterfilling, and is given by

(11)
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Here is the Lagrange multiplier chosen such that the channel
in (11) satisfies (9) with equality. The worst-case pairwise error
probability is

(12)

where satisfies

(13)

For convenience, we denote the argument of the func-
tion at the worst-case channel realization as the universal code
construction criterion for the given difference codeword pair. In
general, the goal is to maximize this universal code construction
criterion

(14)

2) A Closer Look at the Universal Criterion: To get a feel
for the universal criterion in (14), consider the simple case when
codeword difference eigenvalues have the same magnitude, i.e.,

. Then can be explicitly calculated

Thus, the universal criterion is given by

a simple function of the magnitude of the normalized codeword
difference. To understand the situation in general, let us suppose
without any loss of generality that . Now
consider the largest such that

(15)

with defined as . Then can be calculated
explicitly

(16)

satisfies (13). Thus, the universal code design criterion turns out
to be

(17)

a combination of the geometric and arithmetic means of the
magnitudes of the smallest singular values of normalized
codeword differences. While this calculation sheds some in-
sight into the nature of the universal code design criterion,

it still does not lend itself to designing or verifying approxi-
mately universal codes. Toward making this expression more
amenable to code design, we would like to develop a high SNR
approximation; this is done next.

3) Proof of Theorem 3.1: Our goal here is to show that for a
sequence of codes satisfying (4), the probability of error has the
same decay rate as that of the outage probability for all fading
distributions. The probability of error can be upper bounded
using a smart union bound (as in [1])

(18)

Here we have denoted the outage event by . Similar to the
union bound, the second term can be upper bounded by a sum
of pairwise errors averaged over all channel realizations not in

. This sum can be further upper bounded by the sum of the
worst-case (over all channel realizations not in ) pairwise error
probabilities. For the probability of error to behave like the prob-
ability of outage for every fading distribution, we require the
second term in (18) to decay exponentially in (
for some ). One way to do this is to make every worst-case
pairwise error decay exponentially in .

Instead of considering a single outage event, we consider a
sequence of outage events , parameterized by : the
channel realizations not in are those that are strictly inside
the no-outage region

For a pair of codewords, the worst case pairwise error proba-
bility is (12)

where satisfies (see (13))

(19)

Since the codeword differences satisfy the condition in (4),
can be explicitly calculated (see (15) and (16))

(20)

Thus the worst-case pairwise error probability can be upper
bounded by (see (17))

(21)

Again using the supposition in (4), the first term in (21) is
growing unbounded with increasing SNR, while the second
term in (21) is bounded above by (a constant) because of
the power constraint. Thus, the second term can be ignored for
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increasing SNR and we can write the following upper bound to
the worst-case pairwise probability of error (using (4))

With , we conclude that the pairwise error prob-
ability conditioned on the channel realization not in decays
exponentially with SNR. Since the number of codewords is
polynomial in , the overall error probability conditioned
on the channel realization not in decays exponentially with
SNR. Thus the error probability decays at the same rate as

. Letting become arbitrarily close to zero, this decay
rate can be made arbitrarily close to that of the outage proba-
bility. Thus the sequence of codes achieves the optimal tradeoff
curve, and further for every fading distribution, we conclude
that the sequence of codes satisfying (4) is approximately
universal. This completes the sufficiency part of Theorem 3.1;
necessity is proved in Appendix I. Next, we discuss some
explicit schemes that are approximately universal, starting with
the simple scalar channel and then moving onto more complex
channel models.

IV. QAM IS APPROXIMATELY UNIVERSAL FOR THE

SCALAR CHANNEL

The single antenna (transmit and receive) channel model can
be written as (dropping the time index)

The criterion for approximate universality (cf. Theorem 3.1)
simply translates into a minimum distance one for the code

(22)

where is the normalized minimum distance over all the
codeword pairs for the coding scheme. Now, consider a simple
coding scheme with unit block length: QAM of size . The
normalized minimum distance of this QAM has the property

and is therefore approximately universal for the scalar fading
channel.

V. THE PARALLEL CHANNEL

The parallel fading channel with diversity branches at time
is

(23)

Here are i.i.d. . The approximate
universality criterion for the parallel channel is stated in the fol-
lowing theorem. The proof is very much similar to the general
approximate universality proof in Section III-B3, hence we omit
it here.

Theorem 5.1: A sequence of codes with rate bits/
symbol is approximately universal if and only if, for every pair
of codewords, the normalized codeword differences
(the rows of the difference codeword matrix) satisfy

(24)

In the rest of the section, we study a simple class of codes that
are approximately universal. Our main focus is on unit block
length codes based on permutations of a QAM constellation
that we call permutation codes.1 We show in Section V-B that
even a random permutation code is approximately universal;
thus space-only approximately universal codes exist. Finally, we
demonstrate simple examples of approximately universal per-
mutation codes: these codes are easy to represent (so the storage
complexity is low) and very easy to encode and decode (so
the run time complexity is small as well). The parallel channel
with two subchannels is studied in Section V-C where a bit-re-
versal permutation is shown to be approximately universal; this
scheme also provides an operational interpretation to the outage
condition (defined based on an information theoretic underpin-
ning) of the parallel channel. Simple permutation codes for the
parallel channel with more than two sub-channels are the topic
of Section V-D.

A. Approximate Universality of Codes Based on Rotation of
PAM

The criterion of maximizing the product-distance has been
known in the context of the i.i.d. Rayleigh-fading channel.
A code construction based on rotations of PAM constel-
lations is discussed in [16]: the transmit codeword vector

is defined as

(25)

where are independent PAM constellations and is
an orthonormal matrix. [16] shows existence of such that the
code has the maximum diversity possible, i.e., a nonzero product
distance. The problem of explicitly maximizing the minimum
product distance was later considered in [17]: it was treated as
an optimization problem over for fixed input constellations.
For , the that maximizes the product distance was ex-
plicitly found using computer simulations. Later, a similar idea
of rotating QAM constellations was proposed in [7] as a part of
the code construction. It follows from Theorem 2 in [7]
that these codes are also in fact approximately universal for the
parallel channel.

Unfortunately, no generalizations of the rotation based codes
exist when there are more than two sub-channels. Further, these
codes are hard to decode for large constellation sizes. There-
fore, we propose another approach: QAM constellations are the
basis of the code design but we consider mappings that utilize
the algebraic structure of the constellation; these mappings are
nonlinear with respect to the Euclidean vector space in which
the QAM constellations are embedded—this is in contrast to the
rotation operation which is a linear mapping.

1These codes are intimately related to interleaver designs in turbo codes.
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Fig. 2. Repetition coding: L = 2; R = 4.

B. Permutation Codes

We would like to construct simple space-only (i.e., unit block
length) approximately universal codes. As a step toward simple
encoding and decoding, suppose the QAM constellation to be
the alphabet for each subchannel. We need to protect every code-
word by coding it across every subchannel: for the code to have
any chance of being approximately universal, it should allow re-
liable communication for every channel realization not in outage
and, in particular, over the parallel channel where all but one
subchannel is zero. Two design implications are suggested.

1) With a rate of bits/symbol, each of the QAM constella-
tions on the subchannels has points.

2) With -point QAM as the alphabet for each subchannel,
the points in the constellation over each subchannel can be
identified one-one with points in the constellation of the
other subchannels. In other words, the QAM constellation
over one subchannel is a permutation of the points in the
QAM constellation over any other subchannel.

Mathematically, the permutation code can be represented as

where

(26)

is the integer-QAM with points, and are permu-
tations of .

1) Examples: Repetition coding is a simple example of a
permutation code: the permutations are just the identity. Fig. 2
illustrates the permutation code with identity permutation for

. Here is the QAM with 16 points.
For , Fig. 3 shows a permutation code with 16 code-

words that is designed to maximize the minimum product dis-
tance. Product distance of this code is an improvement over the
repetition code in Fig. 2 by a factor of . The code in Fig. 3 and
its generalization to larger is discussed in [18] using the theory
of spreading transforms. The focus in [18] is on finding codes
that have a nonzero product distance and can be efficiently con-
structed from smaller constellations (QPSK) using spreading
transforms.

Fig. 3. Permutation code: L = 2; R = 4.

2) A Random Permutation Code Ensemble: Our search for
permutation codes that are approximately universal leads us to
study permutations with large QAM alphabet sizes. To get a
feel for whether there indeed exist permutation codes with large
enough product distance, we can look at an appropriate random
permutation ensemble and see if the product distance averaged
over this ensemble of permutation codes has the desired prop-
erty. If this is the case, then there must have been at least one per-
mutation code in the ensemble that is approximately universal.
Averaging the product-distance itself is not good enough; we
look at the inverse of the product distance and average it over all
possible permutation codes with the uniform measure. Our main
result is the demonstration of existence of permutation codes
that are approximately universal.

Theorem 5.2: There exists a sequence of permutation codes
that is approximately universal over the parallel channel.

The details of the proof are relegated to Appendix II.

C. Two Subchannels: Bit-Reversal Permutation Code

While it is encouraging to know the existence of permutation
codes that are approximately universal, it is of engineering
interest to actually construct simple approximately universal
codes from this ensemble. It turns out that an operational in-
terpretation of the outage condition (which was defined based
on an information theoretic understanding of the compound
channel) suggests natural permutation codes that are approxi-
mately universal. In this section, we focus on the special case
when the parallel channel has just two subchannels, i.e., .

1) Operational Interpretation to the Outage Condition: If
we communicate at a rate of bits/symbol over the parallel
channel, the no-outage condition is

(27)

One way of interpreting this condition is as though the first
sub-channel provides bits of information and
the second sub-channel provides bits of in-
formation, and as long as the total number of bits provided ex-
ceed the target rate, then reliable communication is possible. In
the high SNR regime, we exhibit below a permutation code that
makes the outage condition concrete.

Suppose we independently code over the I and Q channels of
the two subchannels. So we can focus on only one of them, say,
the I channel. We wish to communicate bits over two uses
of the I-channel. Analogous to the typical event analysis for the
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Fig. 4. The bit-reversal map for a 4-PAM.

scalar channel, we can exactly recover all the information
bits from the first I sub-channel alone if:

However, we do not need to use just the first I subchannel to
recover all the information bits: the second I sub-channel also
contains the same information and can be used in the recovery
process. Indeed, if we create by treating the ordered bits
as the binary representation of the points , then one would
intuitively expect that if

(28)

then one should be able to recover at least of the most sig-
nificant bits of information. Now, if we create by treating the
reversal of the bits as its binary representation, then one
should be able to recover at least of the most significant bits,
if

(29)

But due to the reversal, the most significant bits in the represen-
tation in the second I sub-channel are the least significant bits
in the representation in the first I sub-channel. Hence, as long as

, then we can recover all bits. This trans-
lates to the condition

(30)

which is precisely the no-outage condition (27). Thus, the
bit-reversal scheme gives an operational meaning to the outage
condition.

2) Bit-Reversal Permutation Code: To make this idea con-
crete, first we need to define bit reversal. A QAM can be thought
of as two independent PAM’s, and using I and Q channels sep-
arately is equivalent to taking the QAM permutation as two in-
dependent PAM permutations. Therefore we concentrate on one
of the PAM’s and define the bit-reversal permutation for it. For
a PAM with points, we number the points from left to right
by to . Based on this numbering, a canonical bit se-
quence of length represents each point in the PAM constella-
tion. Bit reversals are defined based on this representation. The
bit-reversal map for the 4-PAM is illustrated in Fig. 4.

3) Product Distance and Bit Reversals: To show that the bit
reversal scheme is approximately universal, we have to show
that it satisfies the criterion in (24). However, the plain bit-re-
versal is not approximately universal. The problem is the in-
herent assumption in the operational interpretation that if two
points have different MSB, then they are far apart geometrically
and hence cannot be confused with each other. This, however,
is not true. Consider the points with the binary representations

and

Even though their MSB is different, they are separated by a fixed
distance of independent of the length of the binary rep-
resentation. The same is true for their bit-reversals. Thus, the
product distance between this codeword pair is and it does
not satisfy (24) for large .

Even though the simple bit-reversal is not optimal, it can
be modified so that it essentially retains the operational inter-
pretation (so it is still easy to decode) and is approximately
universal. We discuss two such modifications here: irregularly
spaced PAM and alternate-bit-flipping.

4) Irregularly Spaced Pam Permutation Code: We have seen
that the problem with the bit-reversal scheme is the inherent as-
sumption that the two points having different MSB are geomet-
rically far apart. A simple way to get around this problem is to
put gaps in the PAM constellation. That is, we introduce a gap
of between and so that any two points
with different MSB are indeed far apart. More precisely, to re-
tain the operational interpretation, one has to put a gap of
for every th bit-change to ensure that the product distance con-
dition is met. The PAM constellation is now irregularly spaced.2

Consider any two points in the irregularly spaced PAM con-
stellation. Suppose the first MSB they differ in their bit repre-
sentation is the th one: then by construction the normalized
distance between the two points is lower bounded by

. The bit-reversals of these two points must have the same
LSBs but a different th LSB; so the normalized distance

between the bit-reversals of these two points is lower bounded
by

Putting these two together, we conclude that the normalized
product distance between a pair of codewords in the bit-reversed
irregularly spaced permutation code is lower bounded as

Comparing this with (24), we conclude that the code is approx-
imately universal.

A potential drawback of this approach is that the extra gaps
translate into an increase in the amount of power used for the

2The same idea of introducing gaps is also present in the Cantor set based
representation in [19].



TAVILDAR AND VISWANATH: APPROXIMATELY UNIVERSAL CODES OVER SLOW-FADING CHANNELS 3241

Fig. 5. Bit Reversals with alternate bits flipped.

same rate. Thus, for a PAM of size , the normalized increase
in size is given by

number of th bit changes

With , the SNR of this scheme is increased by
a factor of . In the diversity-multiplexing
scaling of our interest, this is an insignificant increase and thus
the code is still approximately universal.

5) Alternate-Bit-Flipping Permutation Code: Another mod-
ification of the plain bit-reversal scheme is to flip every alternate
bit after reversing. For example, the point in the PAM constella-
tion with bit representation is mapped to the point in the
PAM constellation with bit representation . The scheme
is illustrated for the 4-PAM constellation in Fig. 5.

In general, consider the -bit representation of integers
and between and

The the alternate-flip bit-reversal map is defined as (assuming
is even)

An easy observation is that this scheme maintains the integrity
of the operational interpretation since the decoder can always
flip the bits back after estimating the flipped bits. Further, this
scheme turns out to be approximately universal.

Theorem 5.3: For every and between and

(31)

The details of the proof are somewhat involved and are relegated
to Appendix III.

D. Explicit Permutation Codes for General Parallel Channel

In an effort to generalize the bit-reversal scheme consider the
following alternative, but equivalent, view of the same scheme
(for ).

1) Bit-Reversal as a Linear Operation: Each codeword in
the bit-reversal permutation code is represented by a sequence
of, say bits. The first bits correspond to a point in a

-PAM constellation. The corresponding PAM constella-
tion point is then transmitted over the I channel of the first
sub-channel. The last bits similarly correspond to a point in
another -PAM constellation which is then transmitted over
the Q channel of the first subchannel. The transmissions over
the I and Q channels of the second subchannel are the points
in the PAM constellation that correspond to bit-reversals of the
first and last bits, respectively, of the total bits that define
the codeword.

If we fix the mapping between the sequence of bits and points
in a PAM constellation, the bit-reversal scheme can be viewed
entirely as an operation on the bits that represent the code-
word. Further more, if we decide to do the same operation over
both the I and Q channels (as in the bit-reversal scheme), then
we only need to consider operations over the first bits that rep-
resent the codeword. In the rest of this discussion, we consider
only the operation on the first bits representing the codeword.
The operation involved in bit-reversal is particularly simple: it is
a linear operation on the vector of bits (over the field ). Linear
operations can be represented by matrices and the bit reversal
scheme corresponds to two matrices: the identity matrix
for the first subchannel and the cross-diagonal matrix with unit
entries on the cross diagonal for the second subchannel.

The outage interpretation implies that the decoder can deduce
most significant bits from the first subchannel (see (28)) and
most significant bits from the second subchannel (see (29)).

Because of the simple mappings in this case, the bits from
the first subchannel correspond to the first bits of the vector
of bits representing the codeword and bits from the second
subchannel that correspond to the last bits of the vector of

bits representing the codeword. As long as , the
decoder can determine the codeword correctly.

2) Universally Decodable Matrices: This view of the bit-re-
versal scheme suggests a natural generalization to more than two
sub-channels. We first generalize the bit representation of the in-
tegers points of the PAM constellation: we allow -digit repre-
sentation over a finite field . Next we consider a (sequence of)
collection of matrices of size with
entries selected from the finite field . These matrices naturally
generate a sequence of permutation codes: for a permutation
code conveying -digits of information, we transmit over the
I channel of the th subchannel the point in the -PAM constel-
lation that corresponds to the -digit sequence that results from
the linear operation of over the first -digits of the
information -digits. This is done for each of the
subchannels. Further, the same linear operations are used on the
last information -digits to transmit points from the PAM con-
stellation on the Q channels of the subchannels.

We say that this collection of matrices is universally decod-
able if for any such that

and (32)
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the collection of the first rows of the matrices
respectively is full rank, i.e., spans the vector

space .
Universally decodable matrices (UDMs) provide an oper-

ational interpretation to the information theoretically defined
outage condition. The number can be interpreted as the
amount of -digits provided by the th subchannel; this de-
pends on the corresponding channel amplitude . If the
channel is not in outage, then (32) holds. The full rank condi-
tion implies that a unique codeword can be decoded whenever
the channel is not in outage. We formally state the implication
of this operational interpretation to outage below; the proof is
relegated to Appendix IV.

Theorem 5.4: A sequence of UDMs leads to an approxi-
mately universal permutation code sequence.

Observe that the encoding and decoding complexity of the
code based on UDMs is simply linear in the number of bits

and the number of subchannels . The representation of the
code involves storing the matrices with a total of entries,
again a very small number.

In the rest of this section, we focus on explicit construction
of UDMs. First, we show how UDMs can be easily constructed
from maximum-distance separable codes (MDS) (though these
constructions require a field size that grows with ). In Sec-
tion V-D4, we present fixed field size constructions for
and then discuss a recent construction [20], for arbitrary .

3) Reed–Solomon Codes Are Approximately Universal: In
general, some progress on the search for universally decodable
matrices can be made by strengthening the requirement on the
collection of matrices by requiring the collection of any rows
from the matrix

to be full rank. Note that such a collection of matrices is still uni-
versally decodable. This problem is same as designing a max-
imum distance separable (MDS) codes with as its parity
check matrix. The condition universal decodability condition is
the same as requiring that the minimum distance of the code to
be at least . Since is an matrix, such a code
has length and rate . A simple singleton bound shows
that then the code must be .3

Simple examples of such a code exist and this allows us to
explicitly construct the parity check matrix . For a finite
field , a extended Reed–Solomon code
can be explicitly constructed for every (see Chapter
6.8 of [21] for the exact parity check matrix). For the extended
Reed-Solomon codes, the field size grows with the block-length.
In fact, the field size is at least . In our setting, grows as

, thus the field size grows like . As noted in the
proof of Theorem 5.4, this still gives an approximately universal
code.

3An [n; k; d] code over is a linear, length-n code with q codewords and
a minimum Hamming distance of d. Its parity check matrix is a n � k � n

matrix over . Codes for which d = n� k+1 meet the singleton bound (see
Chapter 3.2 in [21]) and are called MDS codes. These codes are well-studied in
coding theory and explicit codes like the Reed-Solomon codes are MDS codes.

Next, we focus on the situation of practical and theoretical
interest: constructing UDM’s with a field size not growing with

. With , we have already seen an example: ,
where is the identity matrix and is the
cross-diagonal matrix with all unit entries on the cross diagonal;
here the field size .

4) : Universally Decodable Matrices: Consider the
following collection of binary matrices (i.e., the field size

): , where and are, as before, the
identity and cross-diagonal matrix with unit cross diagonal

entries, respectively. is defined using the recursive definition

(33)

with . Equivalently, , where denotes
the tensor or Kronecker product operation between two matrices
(cf. [22, Ch 4.2]). For , we define to be
the principal submatrix of . We omit our original proof of
this result (it is still available in an earlier version of this paper
[23]), in light of a crisper proof that follows from a more general
result in [20]; this generalization was motivated by the present
construction for .

For computer simulations are used in [24] to
justify the conjecture that the following collection of matrices is
universally decodable: where the first two
matrices are, as before, the identity and cross-diagonal
matrix with unit cross diagonal entries, respectively. With

, define

and (34)

For a power of , we define, recursively,
and , with the multiplication operations in
the context of the field . For , we define

and to be the principal submatrices of and ,
respectively. This conjecture has now been verified as a special
case of the general result in [20].

5) A Complete Characterization of UDMs: Motivated by the
results in the previous two subsections, the authors in [20], have
recently completely solved the problem of constructing UDMs.
They show for any the condition is both nec-
essary and sufficient. They construct UDMs based on Pascal’s
triangle. We state their construction (see Proposition 9, [20]),
for completeness:

Theorem: Let be a prime power and let . Suppose
is a primitive element over . Then the following matrices

are UDMs:

for and

where is defined as the natural mapping to prime subfield of
of the natural number
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VI. THE MISO CHANNEL

The parallel channel allowed us to study approximately uni-
versal codes on channels with solely multiplexing gain. We now
turn to study channels that offer solely diversity gain: the MISO
and SIMO channels, with multiple transmit (receive) and single
receive (transmit) antennas, respectively. The SIMO channel
can be reduced to a scalar channel by considering a scalar suf-
ficient statistic: receive beamformed vector. Therefore, any ap-
proximately universal scheme for the scalar channel, such as the
QAM scheme (see Section IV), will also be approximately uni-
versal for the SIMO channel. In this section, we focus on the
MISO channel and understand properties of approximately uni-
versal codes over this channel.

The scalar output of a MISO channel with transmit an-
tennas at time can be written as

where is an dimensional vector input and is the -di-
mensional vector of fading gains s.

A. Characterization of Approximately Universal Codes

The approximate universality criterion for the MISO channel
can be stated as (see Theorem 3.1), for every codeword differ-
ence matrix

(35)

where is the minimum singular value of the normalized code-
word difference matrix.

There is an intuitive explanation for this result: a universal
code has to protect itself against the worst channel that is not
in outage. The condition of no-outage only puts a constraint
on the norm of the channel vector but not on its direction.
So, the worst channel aligns itself to the “weakest direction” of
the codeword difference matrix. The corresponding worst-case
pairwise error probability is governed by the smallest singular
value of the codeword difference matrix.

On the other hand, the i.i.d. Rayleigh channel does not prefer
any specific direction: thus the design criterion tailored to its
statistics requires that the average direction be well protected
and this translates to the determinant criterion. While the two
criteria are different, codes with large determinant tend to also
have a large value for the smallest singular value; the two criteria
(based on worst-case and average-case) are related in this aspect.

For the case when , the Alamouti scheme [25] converts
the MISO channel to a scalar channel with gain and the
total SNR reduced by a factor of . Hence, the outage behavior
is exactly the same as in the original MISO channel, and the
Alamouti scheme provides a universal conversion of the
MISO channel to a scalar channel. Any approximately universal
scheme for the scalar channel, such as a QAM, when used in
conjunction with the Alamouti scheme will be approximately
universal for the MISO channel.

In the general case when the number of transmit antennas is
greater than , there is no equivalent to the Alamouti scheme.

Here we explore one approach to construct approximately uni-
versal schemes for the general MISO channel: we consider a
simple scheme that converts the MISO channel into a parallel
channel and show that the scheme is approximately universal
over a restricted class of MISO channel statistics.

B. MISO Channel Viewed as a Parallel Channel

Consider the simple scheme of using one antenna at a time to
communicate at a rate of bits/symbol on the MISO channel.
By using one transmit antenna at a time, we arrive at a parallel
channel with subchannels and the data rate of communication
is bits/symbol per subchannel. We code over the antennas
using a parallel channel code, e.g., a permutation code. Our first
result is that this simple scheme is tradeoff optimal for the i.i.d.
Rayleigh-fading MISO channel.

Can this conversion be approximately universal? To see that
this could not be the case, consider the following (worst-case)
MISO channel model: the channels from all but the first transmit
antenna are very poor. To make this example concrete, set

. The tradeoff curve depends on the outage prob-
ability (which depends only on the statistics of the first channel).
Using one transmit antenna at a time is a waste of degrees of
freedom: since the channels from the all but the first antenna
are zero, there is no point in transmitting any signal on them.
Thus the scheme could not have been tradeoff optimal over a
MISO channel with such statistics.

Essentially, using one antenna at a time equates temporal de-
grees of freedom with spatial ones. All temporal degrees of
freedom are the same, but the spatial ones need not be the same:
in the extreme example above, the spatial channels from all but
the first transmit antenna are zero. Thus, it seems reasonable
that when all the spatial channels are symmetric then the par-
allel channel conversion of the MISO channel is tradeoff-op-
timal. This intuitive argument is formalized in the proposition
below; the proof is provided in Appendix V.

Proposition 6.1: An approximately universal parallel
channel code sequence used over the antennas of a MISO
channel, one antenna at a time, is tradeoff-optimal for the class
of MISO channels with i.i.d. fading coefficients. Further, the
optimal tradeoff curve of the MISO channel is given by

(36)

where

(37)

We have seen that the conversion of the MISO channel into a
parallel channel is tradeoff-optimal for the i.i.d. Rayleigh fading
channel. To get a practical feel for how much loss the conversion
of the MISO channel into a parallel channel entails with respect
to the optimal outage performance, we plot the error probabili-
ties of two schemes with the same rate ( bits/symbol):
uncoded QAMs over the Alamouti scheme and the permuta-
tion code in Fig. 3. This performance is plotted in Fig. 6 where
we see that the conversion of the MISO channel into a parallel
channel entails a loss of about 1.5 dB in SNR for the same error
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Fig. 6. The error probability of uncoded QAM with the Alamouti scheme and that of a permutation code over one antenna at a time for the Rayleigh fading MISO
channel with two transmit antennas: the permutation code is only about 1.5 dB worse than the Alamouti scheme over the plotted error probability range.

probability performance. This is a fairly small loss and suggests
the practical utility of the conversion of the MISO channel with
larger number of receive antennas to a parallel channel.

VII. THE MIMO CHANNEL

Having studied the construction of approximately universal
codes over the parallel and the MISO channel, we are now ready
to move over the general MIMO channel: we first conclude
the approximate universality of some recently proposed codes
and then explore the approximate universality properties of
two classical space time coding architectures: D-BLAST and
V-BLAST.

A. Approximate Universality of Number-Theoretic Codes

Some of the recent space time code constructions in the lit-
erature have a number-theoretic flavor. In particular, a rotated
QAM constellation was used to construct a two transmit an-
tenna space time code in [7], [9], [26]. For arbitrary , [10] pro-
poses codes derived from cyclic division algebras that have the
shortest block-length possible .4 Some constructions
based on cyclic division algebras are also presented in [11][12].
All these two codes satisfy the nonvanishing determinant crite-
rion. The authors in [7][9] used this property to conclude the
tradeoff optimality over the i.i.d. Rayleigh-fading channel. In
the light of our characterization of approximate universality (cf.

4Thus, it follows from the results in [10] that the optimal diversity-multi-
plexing tradeoff for arbitrary fading MIMO channels can be achieved for any
block-length T � n .

Theorem 3.1), we can conclude that all these codes are approx-
imately universal; further more, in the light of the discussion
in Section III-A, we can conclude that these codes are approxi-
mately universal simultaneously for every MIMO channel with

transmit antennas ( for the code in [7][9]) and arbi-
trary . To see this formally, we discuss the two transmit an-
tenna code in [7] in some detail.

The rotated code QAM code in [7] spans two symbols and
is designed to work over the two transmit MIMO channel. The
entries of the transmit codeword matrix are

(38)

Here are independent QAMs of size each
(so the data rate of this scheme is bits/symbol). The rotation
matrix is

With the choice of the angles equal to and
radians respectively, Theorem 2 of [7] shows

that the determinant of every normalized codeword difference
matrix satisfies
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Our discussion so far is summarized in the following formal
statement characterizing of the performance of this code.

Proposition 7.1: The code described in (38), with
and , is approxi-

mately universal for every MIMO channel with two transmit
antennas.

A) Discussion: While the two codes discussed above are ex-
plicit and easy to encode, they lack a computationally simple de-
coding algorithm. In general, it appears hard to design explicit
approximately universal codes for the MIMO channel with a
computationally simple decoding algorithm; it still remains an
open problem. For the parallel channel we have been able to
answer this question to a reasonable extent. The difference in
the two models arises due to the rotation matrix in the SVD
decomposition (6): a parallel channel code has to be optimal
for a fixed rotation matrix (the identity matrix) while a MIMO
channel code has to be optimal for every rotation matrix. This
difference seems to naturally lead to codes with a number-theo-
retic flavor: they are delicately designed so as to cope with every
possible rotation. Such a code with a computationally simple de-
coding algorithm has not yet been found.

An alternate view point is proposed in [27] where a lattice
based space–time code is constructed. The authors show that the
structure of these codes resembles random Gaussian codes and
then conclude the tradeoff optimality of an ensemble of lattice
codes for a decoder based on a generalized MMSE estimator
for the i.i.d. Rayleigh-fading channel. A typical code in this en-
semble is very unlikely to be approximately universal. In fact,
one of the important conclusions of the the authors of [27] is that
their construction shows that maximizing the determinant crite-
rion is not a necessary requirement for achieving the tradeoff
for specific fading distributions. However, as we see here, max-
imizing the determinant criterion is a necessary and sufficient
condition to design robust codes that are tradeoff-optimal for
every fading distribution.

B. The V-BLAST Architecture

The V-BLAST architecture was proposed for high rate
communication over the MIMO channel [13]. It splits the data
stream into independent streams that are sent over the different
transmit antennas. It is very clear that V-BLAST is not tradeoff
optimal at low rates: the largest diversity of any data stream
is limited by the number of receive antennas. However, it is
also clear that the V-BLAST scheme cannot be approximately
universal even at high rates: over the MIMO channel
suppose the channel from one of the transmit antennas is zero
and the other channel is . Then the diversity obtained
by the data stream sent over the first transmit antenna for any
multiplexing gain is zero whereas the overall channel has a
nonzero diversity-multiplexing tradeoff. Since the V-BLAST
scheme does not code across the transmit antennas it takes a hit
when the transmit antennas have asymmetric fading statistics.
When all transmit antennas are statistically similar to one
another, V-BLAST indeed turns out to be tradeoff optimal at
high rates; we explore this aspect in detail in Section VIII.

C. The D-BLAST Architecture

The D-BLAST architecture has been proposed to attain high
diversity gains over the MIMO channel [14]. The data is split
into independent streams that are sent over the MIMO channel
in a diagonal fashion. The coding scheme can be written as

...
... (39)

where are the independent data streams.
It is well known that the D-BLAST architecture with

MMSE-SIC receiver preserves mutual information over any
deterministic MIMO channel with Gaussian inputs; thus it
converts a MIMO channel into an equivalent parallel channel
(a tutorial description of this conversion is described in Ch.
8.5 of [6]). Therefore, an approximately universal code over
the parallel channel, such as the permutation code, when used
as the streams of the D-BLAST architecture for the MIMO
channel will be approximately universal for the MIMO channel.
This approach of converting the MIMO channel into a parallel
channel has also been used by Matache and Wesel in [4].

Alternatively, one can see its approximate universality by ex-
plicitly verifying that it satisfies the condition in (4) for .
The product of singular values of the codeword difference ma-
trix for (39) turns out to be lower bounded by the product dis-
tance of the permutation code. Thus, if is a permutation
code that is approximately universal for the parallel channel,
then the D-BLAST scheme (39) is approximately universal for
the MIMO channel (see and compare (24) and (4)).

A potential drawback is the initialization loss due to the zero
padding in (39) which reduces the effective rate. For a
channel with block-length three, a rate of bits/stream corre-
sponds to a rate of bits/symbol on the MIMO channel. In
general, the actual tradeoff curve achieved by this scheme is

(40)

where is the multiplexing gain per symbol. For the block
length large, D-BLAST approaches approximate universality.
For finite block-length, this scheme is strictly suboptimal. The
precise characterization for approximate universality also im-
plies that this performance cannot be universally improved upon
using a better decoding strategy (than MMSE and successive
interference cancelation). In Section IX, we see that the perfor-
mance can indeed be improved upon for a certain restricted class
of fading distributions using a better decoding strategy.

VIII. THE V-BLAST ARCHITECTURE

The V-BLAST architecture transmits independent data
streams over the transmit antennas. This is closely related
to how a multiple access channel is operated, the tradeoff
performance of which under i.i.d., Rayleigh fading is studied
(using random Gaussian codes) in [28][29]. In this section,
we study the performance of simple modulation schemes over
the V-BLAST architecture: in particular, QAM constellations.
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Fig. 7. The i.i.d. Rayleigh-fading channel with n = n = n.

While we have seen that the V-BLAST architecture can never
be approximately universal, it still performs very well for an
interesting restricted class of channels.

A. Tradeoff Optimality Over Rayleigh Fading Channels

Consider operating the V-BLAST architecture over an
i.i.d. Rayleigh-fading channel: we transmit indepen-

dent data streams over each of the antennas; each data
stream is transmitted uncoded using a QAM constellation (with

points at each time symbol). This scheme corresponds
to a total data rate of bits/symbol over the MIMO
channel. Our main result is the precise characterization of the
tradeoff performance; the proof is available in Appendix VII.

Proposition 8.1: Uncoded independent QAMs of size
points over the antennas of an i.i.d. Rayleigh

fading MIMO channel are protected by a diversity gain, ,
where

if (41)

if (42)

Several interesting observations follow from this result.
1) Apart from the fact that the channel can be in outage,

there is an additional error event in the V-BLAST architec-
ture: the presence of the other simultaneously transmitted
streams impacts the reliable reception of any particular
data stream. However, the reliability performance repre-
sented in (41) is as if the other streams did not exist at all.
This suggests that the typical way error occurs is not due
to the interstream interference but because of the channel
being in outage.

2) With , the diversity gain of uncoded QAMs
is equal to ; this matches the optimal diversity gain
characterized in [1] for large enough . This
observation is graphically illustrated in Fig. 7.

3) In a multiple access setting with
• users with one transmit antenna each;
• a symmetric multiplexing gain of per user;
• receive antennas;

the diversity-multiplexing tradeoff is given by [28]:

(43)

Therefore this simple scheme is tradeoff-optimal.
4) With , the performance of uncoded QAM’s is

never equal to the optimal diversity gain of the channel.
Rayleigh fading is a physically relevant fading model and we
have seen the tradeoff optimality at high rates of plain uncoded
QAMs using the V-BLAST architecture. We can conclude the
robustness of this performance if it continues to hold for a wider
class of fading distributions; this is the focus of the next section.

B. Tradeoff Optimality Over Isotropic Fading Channels

The key property of a fading distribution determining the di-
versity performance is the near zero behavior of its singular
values. In particular, denoting to be the increas-
ingly ordered squared singular values of , suppose

(44)

for . Here our notation
is in the sense of

(45)

We also assume that all the singular values have an exponential
tail, i.e., for there exists an such that for large enough ,

(46)

For a given near zero behavior of singular values, the tradeoff
curve can be explicitly determined. We compute it for the
case when s are increasingly ordered (as is the case for i.i.d.
Rayleigh fading).

Theorem 8.1: If , then the tradeoff
curve is piecewise linear with segments and the th segment
(i.e., ) is given by:

Furthermore, random Gaussian codes with block-length
will achieve this performance.

Proof: See Appendix VIII-A for the outage curve calcula-
tion. The proof of achievability for random Gaussian codes is a
simple generalization of achievability proof in [1] and we omit
it here.

The key property of the i.i.d. Rayleigh-fading channel used in
the calculation of the performance of uncoded V-BLAST trans-
mission is the rotational symmetry of its statistics. We can thus
generalize this calculation and characterize the performance of
uncoded V-BLAST transmission over isotropic distributions on
the MIMO channel

has the same distribution as

for every unitary matrix (47)
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Fig. 8. The tradeoff behavior for the n � 2 i.i.d. Rayleigh-fading channel.

If the ordered singular values of the MIMO channel
decay slower than the corresponding decay rate of ordered sin-
gular values of with i.i.d. Rayleigh fading, then we can extend
our earlier observation of tradeoff optimality of the transmission
of uncoded QAM’s over the V-BLAST architecture at multi-
plexing gains on the i.i.d. Rayleigh-fading channel.
We make this precise in the following proposition, delegating
the proof to Appendix VIII.

Proposition 8.2: Consider isotropic MIMO channels
with the polynomial decay rates of its squared singular values
as defined in (44). The uncoded QAM transmission over the
V-BLAST architecture at multiplexing rates is
tradeoff optimal for every isotropic MIMO channel satisfying

IX. THE D-BLAST ARCHITECTURE

We have seen (cf. Section VII.C) that the D-BLAST architec-
ture with approximately universal parallel channel codes over its
independent constituent data streams approaches approximately
universality for large block length (cf. (40)). For any finite block
length, the architecture is strictly not approximately universal.
However, we will see in this section that by restricting the class
of MIMO channels over which we demand universality, the per-
formance of the D-BLAST architecture can be significantly im-
proved. In particular, our focus throughout this section is with
isotropic MIMO channels. We characterize the diversity per-
formance of the D-BLAST architecture with exactly two data
streams; our main result is the observation of a restricted uni-
versality result for channels with two receive antennas.

The i.i.d. Rayleigh-fading MIMO channel is also isotropic
and we state our results first in this context; the calculations
are relatively simple and shed insight as to why we can ex-
pect robustness when generalized to arbitrary isotropic channel
distributions.

A. Tradeoff Optimality Over Rayleigh Fading Channels

Consider the i.i.d. Rayleigh-fading MIMO channel: the
tradeoff curve is composed of two linear segments, as illustrated
in Fig. 8.

Fig. 9. Diversity performance of the D-BLAST architecture.

A) D-BLAST and the First Segment: Consider the D-BLAST
architecture with only two independent data streams

...
...

(48)

here and are unit block-length ap-
proximately universal codes for a parallel channel with sub-
channels. Suppose both these codes have a data rate of

bits per symbol (49)

Since the overall architecture is composed of two data streams
and the transmission lasts time symbols long, the overall
data rate of the architecture is bits/symbol. Our main
result is a precise characterization of the diversity performance
under joint ML decoding of the streams; the proof is available
in Appendix VI.

Proposition 8.1: The D-BLAST architecture in (48) with ap-
proximately universal parallel channel codes as its two data
streams operated at a total multiplexing gain of over the i.i.d.
Rayleigh-fading MIMO channel with sees a
diversity gain equal to

(50)

A couple of observations follow.
1) If we set , the diversity performance in (50) is equal

to ; this overlaps with the optimal tradeoff
curve of the channel for small enough multiplexing gains,
i.e., , thus achieving the first segment for the
i.i.d. Rayleigh fading channel (see Fig. 9).

2) From the perspective of one of the streams in the D-BLAST
architecture, the best diversity performance is obtained if
the other stream did not exist at all (or was decoded cor-
rectly and thus canceled exactly). Suppose this is the case:
then each data stream sees a parallel channel with scalar
sub-channels, each of whose squared amplitudes are i.i.d.



3248 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 7, JULY 2006

with distribution . The optimal tradeoff curve for this
parallel channel with a data rate of bits/symbol
(cf. (49)) is

(51)

The diversity performance of any data stream with the
other stream being perfectly canceled cannot be any more
than the gain in (51). However, from the claim in Propo-
sition 9.1 (cf. (50)), we observe that this upper bound is
exactly equal to the diversity gain achieved even when
there is inter-stream interference. There we conclude the
following:

Under the joint ML decoder, interstream
interference is not the typical error event.

We study the joint ML decoder in some detail in the next
section.

3) Finally, we observe that we crucially used the symmetry
between the two streams in the above argument. With more
than two streams, the middle streams see more interference
than the outer two streams and an extension to this situation
is not natural.

B) D-BLAST and ML Decoding: In this section, we discuss
the ML decoding of the two data streams in the D-BLAST ar-
chitecture in some detail. To make our discussions simple and
concrete we focus on the simple case of ; the received
signal spans three time symbols and can be written as

The two data streams and are unit block-length
approximately universal codes for a parallel channel with 2 sub-
channels and independent of each other. For concreteness, sup-
pose and are points from a QAM constellation
and correspond to bit reversal with alternative bits flipped of
each other (cf. Section V.C.5). The ML decoder makes a joint
decision on both these codes using the three received vectors

. However, due to the specific structure of the zeros in
the D-BLAST architecture, the joint ML decoder can be broken
down algorithmically into three separate steps.

1) We observe that the received vector at the first time symbol
gives information only about the the QAM symbol :

(52)

In particular, specifies exactly the most significant bits
of the bit representation of the QAM point (cf. Sec-
tion V-C). More specifically, the number of MSB’s of
that can be deduced from is with high probability equal
to ; further more, the information about
the remaining bits of depends on the noise that is
independent of the received signals at the other two time
symbols. Since the QAM points and correspond to bit
reversals (with alternate bits flipped) of each other, we have
also deduced the least significant bits of
of .

2) The scenario at the third time symbol is identical to that at
the first time symbol except that is replaced by and

by . In particular, we can deduce
MSB’s of (and the LSBs of ) from

; further more, the information about the remaining bits
of (and hence ) depends on the noise vector that
is independent of the received vector at the first two time
symbols.

3) We are now ready to focus on the received vector at the
second time symbol:

(53)

Here we know some of the LSB’s of both and (due
to processing of the received vector at the first and third
time symbols, respectively); this reduces the randomnes
s in and to another sparser QAM which is a subset
of the original QAM from which they were drawn. We
see from (53) is exactly the output of a MIMO
channel with uncoded QAMs transmitted over the two
transmit antennas, i.e., uncoded QAM transmission over
the V-BLAST architecture. Thus, the ML decoding of
the two streams of the D-BLAST architecture reduces to
that of a decoding uncoded QAM transmission over the
V-BLAST architecture.

C) A Time–Space Code and the Second Segment: While we
have seen the tradeoff optimality of the D-BLAST architecture
in achieving the first segment of the i.i.d. Rayleigh-fading
channel, there is a simple transformation of this architecture that
achieves the second segment of the same channel. The key is
to consider a time–space version of the space–time D-BLAST
architecture: replace the transmit symbol at time symbol over
the transmit antenna by the transmit symbol at time symbol
and transmit antenna . In particular, the time–space version of
the space–time code in (48) is

...

...

(54)

It is meant to be used over a channel with transmit an-
tennas and spans time symbols long; observe that the original
code in (48) is meant to be used over a channel with transmit
antennas and spans time symbols long. Suppose that

and independent unit block-length
approximately universal codes for the parallel channel at rate

bits per symbol; this corresponds to the overall
code in (54) to have a total multiplexing gain on . Our main
result is a precise characterization of the diversity performance
of this space–time code over the i.i.d. Rayleigh-fading channel;
the proof is available in Appendix VI-A.

Proposition 9.2: The diversity gain of joint ML decoding
the data streams of the time-space code in (54) at a total multi-
plexing rate of bits/symbol over the i.i.d. Rayleigh
fading MIMO channel with is equal to

(55)
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Fig. 10. D-BLAST curves versus the optimal tradeoff curve

Setting , we see that the diversity gain in (55) is equal
to which overlaps with the optimal tradeoff curve for
that channel for large enough multiplexing gains, i.e., ;
in particular, this achieves the second segment of the tradeoff
curve (see Fig. 10).

D) Tradeoff Optimality Over Isotropic Channels: We
demonstrate the robustness of the performance results a time–
space code for the i.i.d. Rayleigh-fading channel by gener-
alizing them to the class of isotropic fading distributions: in
particular, we are interested in MIMO channel distributions
which satisfy the property in (47). Further recall the definition
of the polynomial decay rates of the squared singular values of
the MIMO channel in (44). The proofs of the results in
this section are available in Appendix VIII.

Our result is the restricted approximate universality of the
time–space version of the D-BLAST architecture with two data
streams in achieving the second segment of the tradeoff curve;
this generalizes the result in Proposition 9.2. The proof of this
result is available in Appendix VIII.

Theorem 9.1: The diversity gain of joint ML decoding the
data streams of the time-space code in (54) at a total multi-
plexing rate of bits/symbol over any isotropic
MIMO channel achieves the second segment of its tradeoff
curve, provided

X. CONCLUSION

We have presented a precise characterization of universally
tradeoff optimal codes for the MIMO channel. We also pre-
sented explicit codes for the parallel channel that are simple to
encode and decode. These codes, along with the general con-
struction in [20], completely solves the code design problem for
the parallel channel. For the MIMO channel, we suggest using
the D-BLAST architecture to reduce it to a parallel channel and
using codes designed for the parallel channel. This approach is
reasonable when the block-length is large, since in this case the

initialization overhead in D-BLAST is insignificant. While, fi-
nite block length approximately universal codes for the MIMO
channel have been constructed, they are not known to be simple
to decode; construction of simple codes for the MIMO channel
remains an open problem.

Alternative to approximately universal codes for MIMO
channel, we have seen the existence of simple codes for the
MIMO channel that are approximately universal for a re-
stricted class of fading distributions. Our construction has been
restricted for specific number of antenna elements; a general-
ization of this construction is also an interesting future research
direction.

APPENDIX I
CONVERSE FOR APPROXIMATE UNIVERSALITY

We want to show that if a coding scheme does not satisfy the
universal code design criterion, then there exists a fading distri-
bution such that the coding scheme is not tradeoff optimal. In
the high SNR scaling of [1], a coding scheme is defined by a
discrete sequence of codes with rate . If this
sequence does not satisfy the approximate universality criterion,
then there exists a subsequence of such that for every
code in the sub-sequence there exists a codeword pair such that
it does not satisfy the universal criterion. For proving the exis-
tence of a fading distribution such that the original sequence is
not tradeoff optimal, it is enough to find a fading distribution for
which this subsequence of codes is not tradeoff-optimal. There-
fore we assume that for every code in the sequence we can find
a codeword pair that does not satisfy the universal criterion.

A brief note regarding our notation: we use the symbols
to denote exponential equality (inequality), i.e.,

A) Proof of Theorem 5.1: Here we focus on the necessity
of the condition for approximate universality for the MIMO
channel. If a sequence of codes is not approximately universal,
we show that there exists an i.i.d. distribution on s such that
this sequence of codes is not tradeoff optimal.

For codewords and , the pairwise error conditioned
on a channel realization, , can be written as (cf. (5))

The approximate universality condition can then be written as

Thus, if a sequence of codes does not satisfy the universal crite-
rion then there exists a sequence of codeword pair differences,

, and a corresponding realization such that

(56)
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for some positive , where satisfies

(57)

Now define as

Then using (56) and (57), satisfies

and (58)

(59)

Now, consider the i.i.d. fading distribution on such that:

(60)

The diversity for the code-sequence can then be upper bounded
using the following sequence of steps:

i) The pairwise error for the codeword difference
can be lower bounded by a constant, , for a range
of channels such that (see (58))

Furthermore, because of the power constraint on the input
we can assume that

(61)

If this is not true, we can increase to
such that (59) and (58) still hold.

ii) Hence the probability of error can be lower bounded by

(62)

Writing

the probability of error expression (62) can be written as
(also see (60)):

(63)

where s satisfy (see (59) and (61)):

Therefore

Then the probability of error for is lower
bounded by (see (60) and (63)):

Thus, the diversity of the sequence of codes is upper bounded
by

(64)

The outage curve on the other hand is given by5

Thus, comparing with (64), this sequence of codes is not tradeoff
optimal and hence not approximately universal.

APPENDIX II
PROOF OF THEOREM 5.2

Consider a parallel slow fading channel with sub-channels.
A permutation code over this channel can be rewritten as

where

(65)

is the integer-QAM with points, and are per-
mutations of . We define the normalized product distance
between two codewords as

(66)

The condition for approximate universality, (24), on the other
hand, can be written as

(67)

5A proof for this result can be seen from Appendix V, (80), with n replaced
by n and n r replaced by r and a replaced by .
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The number of permutation codes with points is given
by

We now prove existence of a permutation code in this ensemble
such that (67) is satisfied. We average of the inverse of product
distance over all such codes under the uniform measure (all
codes have the same probability). The intuition behind aver-
aging the inverse of product distance is to capture the codeword
differences that have small product distance, which is the event
of interest.

(68)

(69)

The second equality is obtained by considering all permutations
’s that map to and to ; the number of such permu-

tations is . Therefore,

Because of the symmetry of the QAM, the average inverse
product distance can be further upper bounded as

(70)

The summation inside the parantheses in (70) can be upper
bounded by . This implies that the expectation can
be upper bounded by

We conclude that there exists at least one permutation code
with the average inverse product distance less than 1 . We now
use this code with good average behavior to construct a code
that has a good worst-case behavior. For

Therefore,

where

Thus, at least half of the ’s have . By expurgating
at most half the codewords, we can construct a code such that

(71)

This implies that for every

this is precisely the criterion for approximate universality (67).
Finally, expurgating at most of half of the codeword reduces
the rate of the code by at most one and hence does no change
the multiplexing gain. Thus, there exist approximately universal
permutation codes.

A. Product Distance Distribution

A statement much more stronger that that made about the
code constructed in Section II. The result below character-
izes the behavior of the product distance , cf. (66), (rather than
just a lower bound, which is what was required for approximate
universality), and hence can be thought of as a weight distribu-
tion result for the product distance.

Theorem 2.1: Consider a parallel slow fading channel with
subchannels. There exists a permutation code with points
over this channel such that the number of codeword pairs that
have a product distance less than is , for
in .

Proof: We start with the code constructed above that
satisfies (71): then for each , the number of codewords which
are at a product distance less than is , for in

(otherwise such a code will not satisfy (71)). Considering
all possible values of , the number of codeword difference that
have product distance less than is , for
in .

APPENDIX III
PROOF OF THEOREM 5.3

Let the binary representation of integers and be
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Let be the largest integer such that . Then without any
loss of generality we can assume that and . We
also write

for notational convenience as well as to emphasize that the
largest bits are the same. Now, let be the smallest
integer such that . Note that this implies that

which is similar to the codeword pair that was the counter ex-
ample given for the fact that simple bit-reversal is not universal
(see Section V-C3). Here we essentially prove that such pairs
are the only reason that the simple bit reversal is not approxi-
mately universal and bit reversal with alternated bit flipping can
tackle this problem. We consider the following subcases.

• If no such exists, Then s can be written as

and s can be written as

Thus is lower bounded by , hence
(31) is satisfied.

• : Then s can be written as

then, the difference can be lower bounded by
and s can be written as

Then the difference is lower bounded
by (here we have assumed that is not
flipped, i.e., is even; if is odd, then same argument
hold with and reversed). Thus, the product distance
is lower bounded by (which is the one in (31)).

• If : then s can be written as

then the difference can be lower bounded by
(since ). The s can be written as

and the difference is lower bounded by
(here we have assumed that is flipped, i.e.,

is even; same is true if is odd). Thus, the product distance
is lower bounded by .

APPENDIX IV
PROOF OF THEOREM 5.4

We again consider the I and Q channels separately. Then we
want to define permutations of the PAM such that the
corresponding permutation code is approximately universal. We
consider the -digit representation of the PAM. For a PAM with

points and number it from left to right by 0 to (in term
of the rate behaves like ). For showing that a univer-
sally decodable system satisfies the product distance criterion,
we have to resort to irregularly spaced PAM’s. For every th
least significant q-bit change, we put a gap of . Similar
to the two subchannel case, using this construction we prove
that any universally decodable scheme satisfies the condition
for approximate universality: consider any two codewords; sup-
pose for the th subchannel their MSB’s are the same and

th MSB is different. By construction of the irregularly
spaced QAM, the normalized (by ) separation in the th co-
ordinate is lower bounded by

The universal decodability condition implies that if ,
then there exists a unique codeword corresponding to the MSBs.
Therefore, the s must satisfy

Thus, the product distance can be lower bounded by

(72)

implying that the code satisfies the approximate universality
condition (24). For a PAM of size , the (normalized) increase
in size is given by

number of th LS -bit changes

(73)

In the high SNR scaling

Thus the extra spacing does not affect the multiplexing gain.
We also note the Theorem 5.4 is true even if the field size is

growing like . Note that if grew like a polynomial in
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, i.e., like , then we can no longer ignore in (72) and
such a code then will not be approximately universal. We also
have to show that the power gain because of the gaps still in-
creases slowly enough so as to not affect the multiplexing gain.
For a PAM of size , the increase in size is, cf. (73)

Therefore, the extra spacing does not affect the diversity-multi-
plex tradeoff.

APPENDIX V
PROOF OF PROPOSITIONS 6.1

We use an approximately universal parallel channel code,
(e.g., a permutation code with total rate ) over
the MISO channel in a diagonal fashion

. . . (74)

We prove that scheme (74) is tradeoff optimal for MISO channel
with i.i.d. fading coefficients. Since it operationally converts the
MISO channel into a parallel channel, we only need to match the
outage probabilities of the MISO channel and the corresponding
parallel channel. The outage probability of the MISO channel is
given by

(75)

For the equivalent parallel channel, the outage probability is
given by

(76)

The near zero behavior of sum of s can be upper and lower
bounded as

Since the upper and lower bound have the same decay rate, the
probability of outage of the MISO channel, (75), has a decay
rate of

(77)

Thus, the outage curve of the MISO channel with i.i.d. fading
coefficients with the denoting the decay rate of near zero
is

The second outage probability, (76), is somewhat more in-
volved. Define by

In this notation, the outage condition for the parallel channel can
be written as

(78)

Since the subchannels are independent, the outage probability
(cf. (76)) has the decay rate

(79)

where the maximization is under the constraint in (78). Thus,
the decay rate of the outage probability expression in (79) is

(80)

the same as that in (77); this completes the proof.

APPENDIX VI
PROOF OF PROPOSITION 9.1

We prove that the diversity obtained by the code in (48) is
, where is the rate of codes

and .
The pairwise probability of error, averaged over the Rayleigh

fading channel with receive antennas is given by [8]

The difference codeword pair can be written as

...
...

(81)

where and are the code-
word difference for a permutation code.

Expanding in terms of the streams,
we get

The probability of error can be upper bounded using the union
bound:
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This upper bound can be broken into two summations: one cor-
responding to where both the streams are different and the other
summation where one of the streams is the same. Suppose the
same code is used for both the streams; now the upper bound
can be simplified

The arithmetic mean-geometric mean inequality for the term
inside the first summation yields

Now, we use the product distance distribution result in Ap-
pendix II.A to separately bound the two summations on the
RHS. The result says that the number of codeword differences
pairs with less than is

for in . Using this result, the first term can be upper
bounded as

for . The second term corresponds to the error when one
of the streams is decoded correctly and can be directly verified
to be of the correct order. Alternatively,

Thus, combining the two upper bounds, for there exists
a code such that the diversity gain is

Taking proves Proposition 9.1.

A. Proof of Proposition 9.2

For the channel, we transposed the code in (48)
which was used for achieving the first segment channel.
The probability of error can be calculated using a union bound
calculation. The pairwise probability of error is given by

Since

the union bound calculation for calculating the probability of
error is exactly the same as same as (48) case. Therefore the
diversity obtained by this scheme is given by . But
in this case we are coding over a block-length of , thus the
actual tradeoff curve is , where is the
per symbol rate of the channel.

APPENDIX VII
PROOF OF PROPOSITION 8.1

The scheme of sending QAM constellations can be written
as

where is the integer PAM constellation with points.
For a Rayleigh fading channel, the probability of pairwise error
averaged over the fading statistics is given by [8]

Using the union bound the probability of error is bounded by

where is the dimensional vector of zeros. The second step
follows from the symmetry of the QAM. To compute the sum-
mation in on RHS, we split into a summation over vectors such
that all its components are nonzero and then use the arithmetic
mean-geometric mean (am/gm) inequality. We denote a subset
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of the index set, , by . Then the summation can
be simplified as

using A.M./G.M. inequality

Since the range of summation is growing with , the
inner summation has different behavior for depending on
whether is larger/smaller than

if

otherwise.

But because of the definition of , is naturally upper
bounded by . Thus, for , the probability of error can
be upper bounded by

(82)

On the other hand, if , then the probability of error can
be upper bounded as

APPENDIX VIII
ISOTROPIC MIMO CHANNELS

We concentrate on the rotationally invariant distributions. For
this class, the singular value distribution determines the channel
statistics completely. Let be the density function of the
ordered squared singular values, , of the channel gain matrix.
In terms of notation of Section VII, we have

for

where s are the singular values of . In the high SNR regime,
we are only interested in the near zero behavior of . Therefore,
in the scaling of interest, can be assumed to be of the form

(83)

This is same as the earlier definition of distribution of the
squared singular values

for .
For Rayleigh fading distribution, has the Wishart distribu-

tion which can be reduced to this polynomial form by ignoring
the exponential terms in the Wishart distribution (for the exact
expression, see [1])

(84)

where .
In this appendix, first we characterize the outage curve in

terms of s for general . Then, we use this characterization
to characterize restricted universality for codes based on the
V-BLAST and D-BLAST architecture proposed in Section VIII
and Section IX respectively.

A. The Outage Curve for General Fading Distributions

For a general fading distribution, , we want to calculate the
probability of outage. The outage event can be written as

If we write

(85)

then the induced distribution (from (83)) on the ordered vector
is

(86)

which can obtained by change of variables (85). The outage
probability will be dominated by the that is on the boundary
of outage and has smallest exponent. More precisely, using
Laplace’s method as in [1], the outage curve is the solution to
the optimization problem

(87)
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where

and

The fact that s are positive uses our assumption that the sin-
gular values have an exponential tail. Let’s assume for some in-
teger . Then, if

for

for (88)

then the optimizing in (87) is given by

for

for

The corresponding outage curve is given by

(89)

In particular, we would like to stress that if all the s are
increasingly ordered then the that dominates the outage prob-
ability for fading density is the same one that dominates the
outage probability for for i.i.d. Rayleigh fading.

B. Restricted Universality of V-BLAST and D-BLAST

We want to prove that the simple QAM code for the
V-BLAST architecture and codes based on using permutation
codes over the D-BLAST architecture are universal over a
class of isotropic fading distributions. We know that all these
codes are tradeoff optimal for the i.i.d. Rayleigh fading channel
under the union bound calculation. We exploit this fact to prove
optimality over isotropic distributions that fade slower than
i.i.d. Rayleigh fading.

We denote the diagonal matrices with entries , the singular
values of the the channel gain matrix, and , the singular values
of the codeword difference matrix, as and . Then the prob-
ability of pairwise error averaged over the channel statistics can
be written as (see (5))

(90)

where the last two steps use the independence of and
and rotational invariance of , respectively. The integral with
respect to is taken with respect to the Haar measure and does
not depend on the distribution of and is only a function of the
realization and the code.

Now, the probability of error can be upper bounded using a
union bound

where the summation is over all possible codeword difference
pairs. Since all the terms are positive, interchanging the order of
the summation and integration the union bound can be written
as

The term inside the outer integral only depends on the code
and the channel realization and not on the fading distribution.
We denote it by . Then the smart union bound can be written
as

where is the density function of . Similarly the upper bound
corresponding to the smart union bound is given by

where is the set of all channel realizations in outage. If we
assume that the union bound is tight for Rayleigh fading, then
it implies

(91)

where is the is density for the i.i.d. Rayleigh-fading
channel and is the corresponding outage curve. We use

to denote the optimal curve for a generic density .
Then, for any the second term in (91) can be upper bounded

as

(92)

The expression to be maximized can be written as (see (83) and
(84))

(93)
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where Now, we consider the codes from Sec-
stions VIII and IX and explicitly compute the maximization
(93).

A) V-BLAST: For the last segment of an channel, none
of the singular values can die completely (i.e., become less than

), therefore the no-outage condition can be written as

(94)

Therefore the minimization (93) can be written as

(95)

with an additional constraint that the s are bounded by one
(using the exponential tail assumption). If we assume that is
larger than for every , then

If we assume that and for every ,
then the optimizing solution is given by

for

This optimal point is same as the point (in terms of ), that
optimized the outage probability calculation in (87). Then, at
the optimal point we can write

Therefore, using (92) and (91) the probability of error can be
upper bounded by

Thus, the code is also tradeoff optimal for the channel with
fading density , where satisfies the following conditions

for

Combining these two conditions, we get

for

B) D-BLAST: For the last segment of an channel, none
of the singular values can fade completely (i.e., become less than

), and hence the no-outage condition can be written as

(96)

This means that the minimization (93) can be written as

(97)

Now, this optimization problem is the same as the V-BLAST
optimization problem in (95), with . Hence, the optimality
condition on and turns out to be
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