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The Gaussian Many-Help-One
Distributed Source Coding Problem
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Abstract—Jointly Gaussian memoryless sources are observed at
� distinct terminals. The goal is to efficiently encode the observa-
tions in a distributed fashion so as to enable reconstruction of any
one of the observations, say the first one, at the decoder subject to a
quadratic fidelity criterion. Our main result is a precise character-
ization of the rate–distortion region when the covariance matrix
of the sources satisfies a “tree-structure” condition. In this situa-
tion, a natural analog–digital separation scheme optimally trades
off the distributed quantization rate tuples and the distortion in the
reconstruction: each encoder consists of a point-to-point Gaussian
vector quantizer followed by a Slepian–Wolf binning encoder. We
also provide a partial converse that suggests that the tree-structure
condition is fundamental.

Index Terms—Entropy power inequality, Gaussian sources,
many-help-one problem, network source coding, rate distortion,
tree sources.

I. INTRODUCTION

T HE focus of this study is the problem of distributed source
coding of memoryless Gaussian sources with quadratic

distortion constraints. The rate–distortion region of this problem
with two terminals has been recently characterized [14]. Our
focus, hence, is on the case when there are at least three ter-
minals. In this paper, we study a special case of this general
problem: the so-called “many-help-one” situation depicted in
Fig. 1. The setup is the following.

• Sources: Each of the encoders observes a memoryless
discrete-time source: encoder observes, over discrete
time instants, the memoryless source . The observations
across the encoders are correlated, however. Specifically,
the joint observations at time are
jointly Gaussian. Further, the joint observations are mem-
oryless over time .

• Encoders: Each encoder maps the vector of analog obser-
vations (over time instants, say) into a vector of bits (of
length , say) that is then communicated without loss to
a single decoder (on a link with rate ).
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Fig. 1. The many-help-one problem.

• Decoder: The decoder is only interested in reconstructing
one of the sources (say, ). The fidelity criterion consid-
ered here is a quadratic one: the average (over the statis-
tics of the sources) distance between the original source
vector and the reconstructed vector is required to be no
more than .

• Problem statement: The problem is to characterize the min-
imum set of rates at which the encoders can communi-
cate with the decoder while still conveying enough infor-
mation to satisfy the quadratic distortion constraint on the
reconstruction.

In this paper, we precisely characterize the rate–distortion re-
gion of a class of many-help-one problems: those for which the
sources can be embedded in a Gauss–Markov tree. A crucial
step towards solving this problem involves the introduction of a
related distributed source coding problem where the source has
a “binary tree” structure; this is done in Section II. We show
that the natural analog–digital separation strategy of point-to-
point Gaussian vector quantization followed by a distributed
Slepian–Wolf binning scheme is optimal for this problem (this
is done in Sections II-C and II-D). Next, we show how this re-
sult can be used to solve various instances of the many-help-one
problem of interest; this is done in Section III. Finally, ancil-
lary aspects of the problem at hand are discussed in Section IV:
specifically, the worst case property of the Gaussian distribu-
tion with respect to the analog–digital separation architecture
is demonstrated and a partial converse for the necessity of the
tree-structure condition is provided.

II. THE BINARY TREE STRUCTURE PROBLEM

In this section, we take a short detour away from the many-
help-one problem of interest (cf. Fig. 1). Specifically, we intro-
duce a related distributed source coding problem that we call
the “binary tree-structure problem.” We show that the natural
analog–digital separation architecture is optimal in terms of the
rate–distortion tradeoff for this problem. The connection be-
tween the original many-help-one problem and this binary tree-
structure problem is made in the next section.
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The outline of this section is as follows:
• we introduce the source variables and their statistical rela-

tionships first (Section II-A);
• next we specify precisely the binary tree-structure problem

(Section II-B);
• we evaluate the performance of the natural analog–digital

architecture in terms of the rate–distortion tradeoff for the
binary tree-structure problem (Section II-C);

• under the assumption that certain variables have positive
variance, we derive a novel outer bound to the rate–dis-
tortion region—this involves a careful use of the entropy-
power inequality (extracting critical ideas from [8], [10])
(Section II-D);

• again under the positive variance assumption, we show
that the outer bound to the rate–distortion region indeed
matches the inner bound derived by evaluating the natural
analog–digital separation architecture—this result and the
previous one are the most important technical contributions
of the paper (Section II-D);

• using a continuity argument, we relax the positive variance
assumption and show that the separation architecture is op-
timal for all binary tree-structure problems (Section II-E);

• finally, we show that Gaussian sources are the worst case in
the sense that a non-Gaussian source has a larger rate–dis-
tortion region than a Gaussian source with the same co-
variance matrix, so long as the Gaussian source satisfies
the tree structure (Section II-F).

A. Binary Gauss–Markov Trees
Consider the Markov binary tree structure of Gaussian

random variables depicted in Fig. 2. Formally, the Gauss–
Markov tree structure represents the following Markov chain
conditions: consider the node denoted by the random variable

. We define the set of left descendants, the set of right
descendants, and the tree of to be

respectively. We define the set of nodes to be

Then, by definition, the Markov chain condition given by Fig. 2
says that conditioned on the random variable , the sets of
random variables and are indepen-
dent; further, this is true for all pairs .

1) A Specific Construction: Now consider the following spe-
cific construction of ’s that satisfies the Markov chain struc-
ture in Fig. 2. Let and denote the time index, the tree
depth index, and the node within the tree depth index, respec-
tively. Then define

(1)

(2)

Fig. 2. The binary tree structure.

where the indices vary as

(3)

(4)

(5)

Here and are real numbers. Also define

The random variables

(6)
are independent Gaussian random variables (with zero mean and
variance for the index pair and any ).

For the special case of , these formulas read

For any , the source variables satisfy the binary tree structure
in Fig. 2 if and only if they can be written in this form.

Proposition 1: For this construction, the satisfy the
Markov chain conditions in Fig. 2. Conversely, any zero-mean,
jointly Gaussian that
satisfy the Markov tree structure in Fig. 2 can be represented
using the above construction (cf. (1) and (2)).

B. Binary-Tree Problem Statement

Denote the vector

(7)
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Fig. 3. The problem setup.

Similar notation will be used for other vectors to be introduced
later. Consider the following distributed source coding problem
depicted in Fig. 3: There are distributed encoders each
having access to a memoryless observation sequence: encoder

observes the memoryless random process . The goal of
each encoder is to map the observation into a discrete set (en-
coder maps its length- observation into a discrete set ). The
encoded observation is then conveyed to the central decoder on
rate-constrained links. The rate of communication from encoder

to the decoder is

The decoder forms an estimate of the root of the binary

tree, , based on the messages . The average
distortion of the reconstruction is

The goal is to characterize the set of achievable rates and dis-
tortions , i.e., those such that there exists an
encoder and decoder such that

and

We denote the closure of this set by .
We note that two special cases of this problem have been re-

solved in the literature:
• is the single-user Gaussian source coding problem

with quadratic distortion;
• is the Gaussian CEO problem solved in [8], [7],

[10].
The recent work in [9] studies a special case of the general tree
structure depicted in Fig. 2.1 While a general outer bound is
derived in [9] for that special case of the tree structure, it is
shown to be tight only for a certain range of the parameters in
the problem (the distortion constraint and the covariance matrix
of the Gaussian sources).

Our main result is that a natural strategy of point-to-point
Gaussian vector quantization followed by Slepian–Wolf binning

1As an aside, we note that the material in [9] along with our own previous
work [14] provided the impetus to the present work.

Fig. 4. The natural separation scheme.

is optimal for any . In the next section, we formally present
the natural achievable strategy and then state our main result. In
the subsequent section, we prove a novel outer bound and use it
to establish the main result.

C. Analog–Digital Separation Strategy

The natural achievable analog–digital separation strategy is
depicted in Fig. 4: each encoder first vector quantizes the ob-
servation as in point-to-point Gaussian rate distortion theory,
and then codes the quantizer outputs using a Slepian–Wolf bin-
ning scheme. The rate tuples needed by this architecture to sat-
isfy the distortion constraint can be calculated by the so-called
Berger–Tung inner bound [1]: let

(8)

denote a vector of jointly Gaussian random variables.
Consider the set of such that

• for each satisfies

(9)

where are constants and are
independent zero-mean Gaussian random variables that are
also independent of the ’s;

• satisfies

(10)

Now, consider

(11)

Denote the set

(12)

Similar notation will be used for other vectors introduced later.
We now have the following.

Lemma 1: [Berger–Tung inner bound [1]] The analog–digital
separation architecture achieves the convex hull of the region

(13)
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In particular, contains , where denotes
the closure of the convex hull.

The region can be explicitly computed for a given co-
variance matrix for the observed Gaussian sources. This com-
putation is aided by the following combinatorial structure of the
set .

1) Combinatorial Structure of : Consider a spe-
cific (this parameterizes a specific choice of the
analog–digital separation architecture) and the rate tuples

that satisfy the conditions

(14)

where the function is defined by

(15)

(16)

where denotes the empty set and satisfies the following
properties [3]:

(17)

(18)

(19)

A polyhedron such as the one in (14) with the rank function
satisfying (17)–(19) is called a contra-polymatroid. A generic
reference to the class of polyhedrons called matroids is [16]
and applications to information theory are in [12] where natural
achievable regions of the multiple-access channel are shown to
be polymatroids and in [3], [15] where natural achievable re-
gions for source-coding problems are shown to be contra-poly-
matroids. An important property of contra-polymatroids is sum-
marized in [12, Lemma 3.3 ]: the characterization of its vertices.
For , a permutation on the set , let

and . Then the points
a permutation are the vertices of (and hence be-

long to) the contra-polymatroid (14). We use this result to
conclude that all of the constraints in (14) are tight for some
rate tuple and there is a computationally simple way to find the
vertex that leads to a minimal linear functional of the rates [12].

D. An Outer Bound for a Special Case

We first focus on the case in which for all and

. We abbreviate this condition by saying that “all of the noise
variances are positive.” To derive our outer bound, we need the
following definitions.

• To each node in the binary tree of Fig. 2 we associate
a nonnegative number . When analyzing a particular
code, we shall set

(20)

(21)

where is the tuple of messages sent to the decoder
(throughout we adopt the convention ). Then
can be physically interpreted as a noise-quantization rate.

• Fix and and define the
function

(22)

This complicated formula admits the following simple in-
terpretation: if each in (21) is the output of an indepen-
dent and identically distributed (i.i.d.) test channel, then we
have

(23)

(see Appendix A). When , there are three such
functions to consider

• For node , we define the set of associated observations
to be

(24)
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For , this reads

• For each node define the set to be the set
of noise-quantization rates (say, ) of the variables (say

) in the tree of whose associated observations are
entirely in or and are such that none of the ancestors
of have this property. Formally

or

with

or

and

Likewise, we let denote the set of noise-quantiza-
tion rates of variables in the tree of whose associated
observations are entirely in and are such that none of the
ancestors have this property. Formally

with

and (25)

• Define the following set of noise-quantization rates
:

(26)

For , this defines the following set:

(27)

(28)

(29)

(30)

(31)

• We next implicitly define a collection of functions of the
noise-quantization rates. Consider a set of noise-quantiza-
tion rates in . Then
for any and , we have

Since is increasing in both arguments, this implies

By repeating this substitution process, we may obtain an
upper bound on in terms of the noise-quantization

rates in . We implicitly define

(32)

to be this upper bound. (By convention, if

then we define this upper bound to be itself.) We then
let

denote the function of obtained by evaluating
the function in (32) with all of the noise quantization rates
in

set equal to zero. The significance of this function will be
apparent in the proof of the outer bound.

• For any set

(33)

we define the ancestors set at level to be

(34)

where denotes the empty set.
Consider the following region, , defined as

(35)

This constitutes an outer bound to the rate–distortion region of
the binary tree-structure problem.
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Lemma 2: For the binary tree-structure problem in which all
of the noise variances are positive

(36)

Proof: See Appendix A.

We next show that the outer bound just derived matches the
inner bound derived from the analog–digital separation archi-
tecture (cf. Lemma 1). Recall that we use to denote the
closure of the convex hull of a given set.

Lemma 3: For the binary tree-structure problem in which all
of the noise variances are positive

(37)

Proof: See Appendix B.

E. Main Result

Using a continuity argument, one can relax the assumption
that all of the noise variables have positive variance. This allows
us to conclude our first main result of this paper: the optimality
of the analog–digital separation architecture in achieving the
rate–distortion region of the binary tree-structure problem.

Theorem 1: For the binary tree-structure problem, the op-
timal rate–distortion region is achieved by the analog–digital
separation architecture

Proof: See Appendix C.

F. Worst Case Property

Up to this point we have assumed that the source variables are
jointly Gaussian. In this subsection, we justify this assumption
by noting that the rate–distortion regions for other distributions
with the same covariance are only larger.

Let be a Gaussian source satisfying the tree structure
as before. Let

be an alternate source with the same covariance of

Note that the alternate source need not be part of a Markov
tree. Let denote the rate–distortion region of the alternate
source.

The separation-based architecture yields an inner bound
on the rate–distortion region of the alternate source. Specif-
ically, let denote the region obtained by replacing

with in the
discussion in Section II-C. Then

Fig. 5. The natural analog–digital separation architecture.

Theorem 2: A Gaussian source satisfying the binary
tree structure has the smallest rate–distortion region for its
covariance

In fact, the separation-based architecture has the most difficulty
compressing a Gaussian source in the sense that

(38)

The proof is similar to Proposition 2 in [14] and is omitted.

III. TREE STRUCTURE AND THE MANY-HELP-ONE PROBLEM

We now turn to the main problem of interest: the
many-help-one distributed source coding problem. As in
the tree-structure problem, there is a natural analog–digital
separation architecture that is a candidate solution. This is
illustrated in Fig. 5.

A. Main Result

Our main result is a sufficient condition under which the
analog–digital separation architecture is optimal. To state it,
we first define a general Gauss–Markov tree: it is made up of
jointly Gaussian random variables and respects the Markov
conditions implied by the tree structure. The only extra feature
compared to the binary Gauss–Markov tree (cf. Fig. 2) is that
each node can have any number of descendants (not just two).

Theorem 3: Consider the many-help-one distributed source
coding problem illustrated in Fig. 1. Suppose the observations

can be embedded in a general Gauss–Markov tree
of size . Then the natural analog–digital separation ar-
chitecture (cf. Fig. 5) achieves the entire rate–distortion region.

Proof: The proof is elementary and builds heavily on The-
orem 1. We outline the steps as follows.

• A general Gauss–Markov tree can be recast as a (poten-
tially larger) binary Gauss–Markov tree with the root being
identified with any specified node in the original tree. To
see this, we only need to observe that the Markov chain re-
lations are the same no matter which node is identified as
the root.

• Next, by potentially increasing the height of the binary tree
(to ) we can ensure that the observations
are a subset of the leaves of the binary Gauss–Markov
tree. If one observation of interest, say , is an interme-
diate node of the binary Gauss–Markov tree we can effec-
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Fig. 6. Four observations are embedded in a (binary) Gauss–Markov tree.

Fig. 7. The tree rewritten with � as the root.

tively make it a leaf by adding descendants that are iden-
tical (almost surely) to .

This allows us to convert the many-help-one problem into a
binary tree-structure problem (with potentially more observa-
tions than we started out with). The analog–digital separation
architecture is optimal for this problem (cf. Theorem 1). By re-
stricting the corresponding rate–distortion region to the instance
when the rates of the encoders corresponding to the observations
that were not part of the original are zero, we still have the op-
timality of the analog–digital separation architecture. This latter
rate–distortion region simply corresponds to the many-help-one
problem studied in Fig. 1. This completes the proof.

We illustrate the two key steps outlined above with an ex-
ample with . Suppose that can be embedded
in the tree depicted in Fig. 6. This tree happens to be binary, but
unfortunately the root is not the source of interest, . Fig. 7
shows how to construct a new Gauss–Markov tree that still pre-
serves the Markov conditions but has as its root. Finally, a
binary Gauss–Markov tree of height is constructed that has the
original four observations as a subset of its 16 leaf nodes; this is
done in Fig. 8—here any node indicated by a dot is simply iden-
tically equal (almost surely) to its parent node. Finally, we can
set to zero the rates of all the encoders except those numbered
1, 9, 13, and 14. This allows us to capture the rate–distortion
region of the original three-help-one problem.

B. Worst Case Property

As with our earlier result for the binary tree-structure
problem, the Gaussian assumption in Theorem 3 can be jus-
tified on the grounds that it is the worst case distribution.
Specifically, as in Section II-F, let denote an al-
ternate source with the same covariances as . Let

denote the rate–distortion region of the source, and let
denote the inner bound obtained by replacing the source

Fig. 8. The many-help-one problem rewritten as a binary tree-structure
problem.

variables in the discussion in Section II-C with the alternate
source .

Theorem 4: A Gaussian source that can be embedded in a
Gauss–Markov tree has the smallest rate–distortion region for
its covariance:

In fact, the separation-based architecture has the most difficulty
compressing a Gaussian source in the sense that

The Proof of Theorem 2 applies verbatim here.

C. Tree Structure Condition and Computational Verification

If , then and can always be placed in the trivial
Gauss–Markov tree consisting of these two variables; no em-
bedding is needed in this case. We note that corresponds
to the “one-help-one” problem, whose rate–distortion region has
been determined by Oohama [6]. With , embedding is not
always possible. We see an example of this next, where we also
see a simple test for when linearly independent variables can
themselves be arranged in a tree, without adding additional vari-
ables. We then derive a condition on the covariance matrix of

that is necessary for these variables to be embedded
as the nodes of a general Gauss–Markov tree. Finally, we show
that this condition is also sufficient when .

1) Trees Without Embedding: We next demonstrate a simple
test for when linearly independent, jointly Gaussian random
variables can themselves be arranged in a tree, without adding
additional variables. Without loss of generality, we may assume
that each has unit variance (this can be ensured by
normalizing each observation). We shall write

Suppose that are linearly independent, and let
denote their (invertible) covariance matrix. We will use the fol-
lowing fact from the literature (Speed and Kiiveri [11]):
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Fig. 9. Tree embedding for � � � � and � .

are Markov with respect to a simple, undi-
rected graph if and only if for all such that
is not an edge in , the entry of is zero.

Now let denote the simple, undirected graph with
as the nodes obtained by interpreting as the adjacency
matrix: there is an edge between and if and only if the
element of is nonzero. It follows that can
be arranged in a Gauss–Markov tree if and only if is a tree, or
more generally, a forest (i.e., a collection of unconnected trees).

This fact can be illustrated with the following example. Sup-
pose that and

(39)

Then

which yields a fully connected graph. Hence and
cannot be arranged in a Gauss–Markov tree.

Nevertheless, it is possible that can be embedded in
a larger Gauss–Markov tree. Indeed, in this case it turns out that
it is possible to embed the variables in a tree of size . We offer
the following specific construction to demonstrate this fact. Let

be a standard Normal random variable and let

where and are i.i.d. Gaussian with variance , and
are independent of . The covariance matrix for this quadruple
of variables is

The inverse of this matrix is

with the resulting being the tree depicted in Fig. 9.

2) Necessary Condition for Tree Embedding: Even allowing
additional variables in the Gauss–Markov tree, it can turn out
that embedding is impossible. Towards understanding the situ-
ation better, we derive a necessary condition for to
be embeddable. It turns out that this condition is also sufficient
when .

Proposition 2: Let . If can be embedded
in a Gauss–Markov tree, then

(40)

and

(41)

for all distinct and . Conversely, if and conditions
(40) and (41) hold for all distinct and , then
can be embedded in a Gauss–Markov tree.

Proof: See Appendix D.

IV. A PARTIAL CONVERSE

We have shown that if the source can be embedded in a
Gauss–Markov tree, then the separation-based scheme achieves
the entire rate–distortion region for the many-help-one problem.
This raises the question of whether the tree-embeddability con-
dition can be relaxed, or whether it is necessary in order for
the separation-based scheme to achieve the entire rate–distor-
tion region. We next show that it is reasonable to conjecture
that tree-embeddability, or a similar condition, is a necessary
and sufficient condition for separation to achieve the entire
rate–distortion region. Our argument consists of two parts.

• First, we provide an example that shows that separation
does not always achieve the entire rate–distortion region
for the many-help-one problem, which establishes that
some added condition is required.

• We then establish a connection between this counterex-
ample and the tree embeddability condition.

A. Suboptimality of Separation

Recall that the separation-based bound achieves exactly the
Berger–Tung inner bound with Gaussian auxiliary random vari-
ables. We next show that this inner bound can be strictly smaller
than the true rate–distortion region for the many-help-one
problem. Consider the special case of three sources ,
where and have covariance matrix

and where . We shall assume that the goal is to
reproduce at the decoder and that , i.e., the helpers
completely shoulder the communication burden.

We shall focus in particular on the asymptotic regime in
which is large and is near one. Specifically, let

and consider the behavior of the rate–distortion region as
tends to infinity. Note that the variance of does not tend to
infinity, and in fact equals one for any positive value of , due
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to our choice of . In this regime, the separation-based scheme
performs quite poorly.

Proposition 3: Let and let denote the
minimum value of such that is in the
rate–distortion region for the separation-based scheme. Then

Proof: Please see Appendix E.

We now exhibit a scheme whose sum rate is bounded as
tends to infinity. This scheme is simple in the sense that it op-
erates on individual samples, not long blocks. Consider two lat-
tices in

Let denote the lattice point in that is closest to ; ties
are broken arbitrarily. Let

Analogous definitions for are also in effect.
Let

For each time , the first encoder communicates

to the decoder. This requires sending bits per sample.
The second encoder operates analogously, yielding a sum rate
of bits per sample.

The decoder uses

as its estimate for .

Proposition 4: For any , if and are sufficiently
large, then

all and all .
Proof: Please see Appendix F.

Since and need not tend to infinity as grows, this
simple scheme beats the separation-based approach by an arbi-
trarily large amount as tends to infinity. The scheme can be
improved by using higher dimensional lattices for and .
This has been explored by Krithivasan and Pradhan [5].

Conceptually, the difference between the two schemes can be
understood as follows. Consider the binary expansion of . The
quantity

can be computed from the sign of and the bits to the left of
the binary point and the bits to the right of the binary point.
Thus, Proposition 4 shows that only these bits are nec-
essary for the purpose of reproducing the difference . In
particular, it is not necessary to send the bits that are more sig-

nificant than the block of to the left of the binary point. As a
result of using a standard vector quantizer, however, the separa-
tion-based scheme effectively sends these most significant bits.
If the variances of and are large, this is inefficient.

B. On the Necessity of the Tree Condition

The previous section shows that the separation-based archi-
tecture does not achieve the complete rate–distortion region
when and are positively correlated and ,
at least when the variances of and are large and their
correlation coefficient is near one. This is also true of the
problem in which and are negatively correlated and

. The defining feature of these two examples is
that if , then

(42)

We next show that for , if the sources cannot be embedded
in a Gauss–Markov tree, then this condition holds, except for a
possible relabeling.

Proposition 5: For , if and cannot be em-
bedded in a Gauss–Markov tree, then (42) holds for some rela-
beling of and .

Proof: Please see Appendix G.

APPENDIX A
PROOF OF LEMMA 2

Consider any encoding–decoding procedure that achieves the
rate–distortion tuple

for the binary tree-structure problem over a block of time of
length . Let the discrete set denote the output of encoder
(for ). We have that

(43)

(44)

Here we have denoted

(45)

the set of all the encoder outputs. Further, the distributed nature
of encoding imposes natural Markov chain conditions on the
encoder outputs with respect to the observations. These Markov
chain conditions are described in Fig. 10.

Recall our earlier definition of the ancestors set (cf.
(34))

(46)

Now define

(47)

Our outer bound will consider arbitrary subsets of
. Denote the set

(48)
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Fig. 10. The tree structure with the encoder outputs over a block of length �.

The sum of any subset of the encoder rates satisfies

(49)

(50)

(51)

Here each of the steps and follow from the Markov
chain conditions described in Fig. 10. We use the chain rule to
expand each of the mutual information terms in the lower bound
of (51)

(52)

(53)

and

(54)

(55)

Fig. 11. The Markov chain conditions.

Here both (53) and (55) follow from the Markov chain condi-
tions described in Fig. 10. Denote by

(56)

the term inside the summation in (53). Then is the number of
bits per sample that the encoders send about the root of the tree
and for can be interpreted as the number of bits per
sample that the encoders use to represent the noise introduced at
node . We will upper-bound the terms inside the summation
in (55) in terms of these quantities. To do this, we start with a
central preliminary lemma.

A. A Preliminary Lemma

Consider four memoryless jointly Gaussian random pro-
cesses . They are
identically jointly distributed in the (time) index . At any
given time index , their joint distribution satisfies the Markov
chain conditions implied in Fig. 11. Then we can write, for all

for some real . Here
, are i.i.d. in time and independent of each other and

independent of the process . Further, the
random variables at any time
index are and ,
respectively.
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Write the vectors

(57)

(58)

(59)

(60)

Consider two random variables that satisfy the following
two Markov chain conditions:

(61)

(62)

Our first inequality concerns this Markov chain condition.
We intentionally use notation similar to that introduced in
Section II-D.

Lemma 4: Define

Then

(63)

(64)

(65)

Proof: This lemma is a conditional version (conditioned
on ) of Lemma 3 in [8]. The proof follows “mutatis mu-
tandis” that of Lemma 3 in [8]; the only extra fact needed is that
conditioned on any realization of are jointly
Gaussian with their original variances and
satisfies the Markov condition

Specifically, suppose first that and are nonzero. For any
realization of , say , Oohama [8, Lemma 3] has shown that

By averaging the left-hand side over , we obtain (63).
The proofs of (64) and (65) are similar. If both and
are zero, then the result is trivial. If, say, only is zero,
then and (63) follows
from (65).

1) Sufficient Conditions for Equality: It is useful to observe
the conditions for equality in (63), (64), and (65): suppose

(66)

Here

where and are Gaussian and independent of each
other and of and are i.i.d. in the time index .
Then it is verified directly that with this choice of (cf.
(66)) the inequalities in (63), (64), and (65) are all simultane-
ously met with equality (this verification is also done in [8],
[10]). This fact will be used later to show that the achievable
region of the separation-based inner bound coincides with the
outer bound.

2) An Important Instance: Of specific interest to us will be
the following association of the random variables in Fig. 11 to
the binary tree structure in Fig. 2: fix and

. Then let

(67)

(68)

(69)

(70)

With this association, denote the function corresponding to
in (63) by

(71)

Indeed, this is the same notation as that introduced in
Section II-D (cf. (22)).

B. An Iteration Lemma

As an immediate application of the preliminary lemma
derived in the previous subsection, consider any subset

. Fix and .

Lemma 5:

(72)

Proof: For any node , recall the set of associated ob-
servations defined as (cf. (24))
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With this definition, we observe that

Then we only need to invoke Lemma 4 with the following
random variables:

This completes the proof.

Observe that the parameters inside the function are
themselves of the type of the term in the left-hand side of (72).
Then, we can repeatedly apply Lemma 5. As an example, we
have for and , the two parameters of

in (72) are upper-bounded by

(73)

(74)

Now the function is monotonically increasing in both
of its parameters (this is true for each and

). So, we can combine (72), (74) and (73) to get

(75)

(76)

The stage is now set to recursively apply Lemma 5. Continuing
this process until the boundary conditions are met, we arrive at

(77)

Here, the set is defined as in (25)

with

and (78)

The function was also defined in Section II-D.

C. Putting Them Together

We are now ready to complete the Proof of Lemma 2. First,
we substitute (77) in (55) to get

(79)

Combining (79) with (53) and (56), we can rewrite the in-
equality in (51) as

(80)

The quantities satisfy other natural inequalities as well.
• Supposing that equals the entire set

and substituting in Lemma 5 we have

(81)

• By direct calculation we also have

(82)

(83)

(84)

(85)

(86)

(87)

(88)

where
— equation (84) follows from the fact that conditioning

only reduces the differential entropy;
— equation (85) is the usual bound on the differential en-

tropy of a vector by the determinant of its covariance
matrix;

Authorized licensed use limited to: University of Illinois. Downloaded on March 12,2010 at 10:32:46 EST from IEEE Xplore.  Restrictions apply. 



576 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 1, JANUARY 2010

— equation (86) follows from the Hadamard inequality on
the determinant of a positive definite matrix in terms of
its trace;

— equation (88) follows from the fact that the encoder out-
puts describe the original root node of the tree with suf-
ficiently small quadratic fidelity (cf. (44)).

Based on (81) and (88) we see that the set of indeed belong
to the set defined in (26). Combining this fact with the
key inequality in (80), we have completed the proof of the outer
bound in Lemma 2.

APPENDIX B
PROOF OF LEMMA 3

Since we know that

(89)

it suffices to prove that for any and any componentwise non-
negative vector

We will assume that . The proof for
the other orderings is similar. We will also use the convention

. Now for any

Thus

Let . Then there exists and such that

and

for all . Let

Then

where the infimum is over all in such that if
. Then there exists such that

1) if ,
2)

and (90)

3) of all the satisfying the first two conditions, the chosen
minimizes

(91)

Now since the are in , they must satisfy the inequali-
ties that define this set in (26)

(92)

(93)

We will show that both of these inequalities must actually be
equalities. Since the left-hand side of (90) is nonincreasing in

and the minimize (91), it follows that the inequality
must be tight.

Next suppose that

(94)

for some non-leaf node . We will show that this is incom-
patible with the assumption that the minimize (91). Without
loss of generality, we may assume that none of the children of

have a strict inequality in (93). In order for (94) to hold,
must be positive for at least one leaf variable under

. Consider the leaf variable under with the largest
index such that is positive

Then consider the descendant of , that leads to the
leaf variable . Note that we must have .

Authorized licensed use limited to: University of Illinois. Downloaded on March 12,2010 at 10:32:46 EST from IEEE Xplore.  Restrictions apply. 



TAVILDAR et al.: THE GAUSSIAN MANY-HELP-ONE DISTRIBUTED SOURCE CODING PROBLEM 577

Suppose that we decrease by a slight amount such that
(94) still holds. Fix a in and consider the sum

(95)

and recall that

Now if , then all of the observations under are in ,

which implies that the sum in (95) does not depend on .
On the other hand, if , then not all of the observations
under are in , and so

for all . It follows that the objective in (90) is not increased
while the sum in (91) is reduced by decreasing , which
is a contradiction. Thus, (94) cannot hold at any non-leaf nodes
in the tree. We have thus shown that equality must hold in (92)
and (93).

We are now in a position to show that

(96)

Specifically, choose the auxiliary random variables in the
Berger–Tung inner bound such that

for each observation . We will first show by induction that

(97)

for all variables in the tree. This is true of the leaf variables
by hypothesis. Next consider a variable

and suppose the condition holds for and . By
the observation in Appendix A

This establishes (97). Then

Thus, is in . If we let

then is in . Since is conditionally independent
of and all of the source variables given , it follows that

if and only if is independent of all of the other
variables. We will show that

by induction. For , this condition holds by the defini-
tion of . Next suppose that the condition holds for . Then by
the tree structure

Thus

By mimicking (49) through (55), one can show that

But by Lemma 5 and the observation in Appendix A

This establishes (96). It follows that

Since was arbitrary, the proof is complete.
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APPENDIX C
PROOF OF THEOREM 1

We must show that . Since both sets are
convex, it suffices to show that for any componentwise nonneg-
ative vector

(98)

We shall assume that ; the other
cases are similar. Let us temporarily use to denote
the rate–distortion region for the binary tree-structure problem
when the source variables have covariance matrix and simi-
larly for . If is such that all of the noise variances
are positive, then (98) follows from Lemma 2.

If some of the noise variances are zero, then let be a
sequence of source covariance matrices converging to such
that for each corresponds to a source satisfying the bi-
nary tree structure for which all of the noise variances are posi-
tive. Then for each , so

We will first show that

(99)

For each , there exists a set of auxiliary random variables
such that [12, Lemma 3.3]

(100)

Here denotes the th variable at depth of the tree corre-
sponding to covariance matrix . Now the auxiliary random
variables can be parametrized by a compact set, so consider
a subsequence of along which converges in distribu-
tion to a limit and the right-hand side of (100) converges to
the . Then

Fig. 12. � is the point at which the two paths split.

This establishes (99). On the other hand, Chen and Wagner
[2] have shown that the rate–distortion region is inner-semi-
continuous

Together with (99), this establishes (98) and hence Theorem 1.

APPENDIX D
PROOF OF PROPOSITION 2

Suppose that can be embedded in a
Gauss–Markov tree and fix distinct indices and . Without
loss of generality, we may assume that all variables in the tree
have mean zero and variance one. Consider two paths (i.e., two
sequences of variables), one from to and one from
to . Evidently both paths contain ; let denote the last
variable in the first path that is contained in the second. This is
the point at which the two paths split, as shown in Fig. 12. Note
that it is possible for to equal or .

Now since is along the path from to , it follows from
the tree condition that . Likewise, .
Since all of the variables are standard Normals, this implies [17,
eq. (5.13)]

(101)

(102)

Next consider the paths from to and from to , and
let denote the last variable in the first path that is contained
in the second. Then both and lie along the path from to

. If , then the path from to to to would form a
loop, which is impossible since the graph is a tree. Thus, must
equal . Thus, and

Combining this equation with (101) and (102) yields conditions
(40) and (41).
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Now suppose that and conditions (40) and (41) hold.
If is nonzero for all , then

for all distinct , and . This implies that and , can
be written

where is the signum function

if
if
if

and where are independent Gaussian random vari-
ables. Here is a standard Normal and the variances of the ’s
are chosen to such that the ’s have unit variance. It is readily
verified that this construction yields the correct correlation co-
efficients among the ’s. It is then clear that and the ’s can
be arranged in the Gauss–Markov tree shown in Fig. 9.

If, say, , then by condition (40), either or
. Suppose that . Then is uncorrelated, and

hence independent, of and . It follows that the ’s can be
written

so that the and the ’s can again be arranged in the Gauss-
Markov tree shown in Fig. 9.

APPENDIX E
PROOF OF PROPOSITION 3

Since we are assuming that , the problem effectively
reduces to a two-encoder setup. By Lemma 1 and (19), the min-
imum equals

subject to

jointly Gaussian

Without loss of generality, we may assume that

where the variables are Gaussian and independent of each
other and . Let have variance and have variance

.

Via straightforward calculations one can show that

and

(103)

Now

It follows that as tends to infinity, in order to continue to
meet the distortion constraint, we require that tend to zero.
But this implies that tends to infinity, by (103).

APPENDIX F
PROOF OF PROPOSITION 4

Since the average distortion is the same for all , let us assume
that and write in place of and likewise for the
other variables. Then by the triangle inequality

Now

and likewise for . Thus

Define the event

Now on

so

But
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Since is a standard Normal random variable,
, and Minkowski’s inequality implies

It only remains to bound . Using a well-known upper
bound on the tail of the Gaussian distribution

Combining these various bounds gives

Proposition 4 follows.

APPENDIX G
PROOF OF PROPOSITION 5

Recall we may assume that all of the variables have unit vari-
ance. By Proposition 2, if and cannot be embedded
in a Gauss–Markov tree, then either

(104)

or

(105)

for some distinct and . Suppose first that (104) holds. Then
we must have for all . Now

Then

(106)

which is negative by (104). This establishes the desired conclu-
sion in this case. We will therefore assume throughout the re-
mainder of the proof that .

Suppose that (105) holds, say, for and .
Then we must have and . Furthermore,
if , then , which would contradict
(105). Thus, we may assume that . First suppose that

. Then

which is negative. We will therefore focus on the case in which
.

Next observe that since we are assuming that (105) holds for
and , the opposite inequality must hold

strictly in the other two cases

This can be seen by contradiction: if, e.g., , then
combining this fact with (105) yields

which is evidently false. From (106) and the three assumed con-
ditions, and ,
it follows that is negative, as desired.
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