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Abstract—In a point-to-point wireless fading channel, mul-
tiple transmit and receive antennas can be used to improve the
reliability of reception (diversity gain) or increase the rate of
communication for a fixed reliability level (multiplexing gain).
In a multiple-access situation, multiple receive antennas can
also be used to spatially separate signals from different users
(multiple-access gain). Recent work has characterized the fun-
damental tradeoff between diversity and multiplexing gains in
the point-to-point scenario. In this paper, we extend the results
to a multiple-access fading channel. Our results characterize the
fundamental tradeoff between the three types of gain and provide
insights on the capabilities of multiple antennas in a network
context.

Index Terms—Diversity, multiple input/multiple output
(MIMO), multiple access, multiple antennas, space–time codes,
spatial multiplexing.

I. INTRODUCTION

THE role of multiple antennas in communication over a
wireless channel has been well studied in the point-to-

point scenario. The antennas can be used to boost the reliability
of reception for a given data rate (providing diversity gain) or
boost the data rate for a given reliability of reception (providing
multiplexing or degrees of freedom gain). In a scenario with sev-
eral users communicating to a common receiver, multiple re-
ceive antennas also allow the spatial separation of the signals
of different users, thus providing a multiple-access gain. This
use of multiple antennas is also called space-division multiple
access (SDMA). Recent work [12] has characterized the fun-
damental tradeoff between the diversity and multiplexing gain
in the point-to-point context. The objective of this paper is to
extend the results to the many-to-one context, thus providing a
complete picture on the tradeoff between the three type of gains.
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This leads to insights on the capabilities of multiple antennas in
a network context.

Consider point-to-point wireless communication over a
block length of symbols during which the channel from the
transmit to the receive antennas is random but not changing
over the duration of communication (slow fading scenario).
We focus our interest on the high signal-to noise ratio (SNR)
scenario and assume that the receiver has full and accurate
knowledge of the fading channel. Recognizing that
is the capacity of an additive white Gaussian noise (AWGN)
channel at high SNR, we define as the multi-
plexing gain of a code with data rate . Consider the behavior
of its maximum-likelihood (ML) error probability: if decays
as for large SNR, then we say that this code has a
diversity gain of . The best decay rate for a given multiplexing
gain is denoted by . A complete characterization of
this function for independent and identically distributed (i.i.d.)
Rayleigh fading is done in [12]: provided that the block length

for every integer , and the entire curve is piece-
wise linear joining these points. The inverse of this function,

, is the largest achievable multiplexing gain for a given
diversity gain . The maximal diversity gain is , attained
when . The maximal multiplexing gain is ,
the number of degrees of freedom in the channel, attained when

. While the maximal diversity gain is simply the number
of independent channel gains between antenna pairs and the
maximal multiplexing gain is the dimension of the signal space,
the derivation of the entire tradeoff curve requires a more elab-
orate analysis of channel outage events.

Now consider the i.i.d. Rayleigh-fading multiple access
channel with users, with each user having transmit
antennas and the single receiver having receive antennas.
Each user has a multiplexing gain , i.e., its data rate

. The optimal decoder that minimizes the error
probability for each user is the (individual) ML decoder. We
require this minimal error probability to decay at least as fast as

, i.e., each user has a diversity gain of . In this paper,
we characterize exactly the set of multiplexing gain tuples

that still allow each user to have a diversity gain
of .

In the symmetric situation, i.e., the multiplexing gains of
all the users are equal (to say ), our characterization takes
on a particularly simple form. First, the maximal multiplexing
gain achievable by each user is , which can be
interpreted as the degrees of freedom per user. This is not
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too surprising as, just like in the point-to-point scenario, this
follows from a simple dimension counting argument. More
interestingly, we show that within this range of achievable
multiplexing gains, the tradeoff performance can be divided
into two regimes: the lightly loaded regime and the heavily
loaded regime; the corresponding highest achievable diversity
gains are, respectively:

• , the diversity gain attained as if only one user is
in the system, for

• , the diversity gain as if the users pool up
their transmit antennas together, for

Thus, there are two fundamental parameters characterizing the
performance of each user:

• : the degrees of freedom per user, limiting
its maximum possible multiplexing gain;

• : the threshold on the multiplexing
gain below which the error probability of the user is as
though it were the only user in the system.

In particular, we note that when the number of transmit an-
tennas is no more than , the two parameters coincide.
The lightly loaded regime then extends over the entire range of
achievable multiplexing gains and the error probability perfor-
mance of each user is the same as if the other users were not
transmitting at all, i.e., single-user performance. In this case,
the multiple-access gain is obtained for free.

These results are rather surprising: in [11], the authors have
shown that under a linear decorrelating receiver, with each ad-
ditional receive antenna we can either increase the diversity of
each user by one, or add an extra user at the same diversity level,
but not both. Our results show that this tradeoff is not funda-
mental and is due to the limitation of a suboptimal receiver struc-
ture. Indeed, if we use the ML receiver and we are in the regime

, one can add an extra user and simultaneously in-
crease the diversity of each user if there is an additional receive
antenna. We will also see that other strategies, such as succes-
sive cancellation and rate splitting, do not significantly close this
performance gap between the linear and ML receivers.

Our result also sheds insight into the typical way error occurs
in the multiple-access fading channel under optimal decoding.
We show the following.

• For , the typical way for error to occur
is that just one of the users’ message is decoded incor-
rectly.

• For , the typical way for error to occur
is that all the user messages are decoded incorrectly.

This result sheds insight into designing packet retransmit proto-
cols for the fading uplink channel in a cellular wireless system.

The paper is organized as follows. We begin in Section II with
notations and the formal statement of the model and the problem
studied. Our main result, a characterization of the multiplexing

rate tuples of the users as a function of the common diversity
gain for each user is in Section III. In Section IV, we go through
a few examples to infer the network level impact of multiple
antennas in some simple settings. Section V discusses the typ-
ical ways in which errors can occur. Section VI deals with the
performance of various suboptimal decoders: successive can-
cellation, time sharing, and rate splitting. Sections VII and VIII
contain the proofs of the main results. In this paper, we focus on
the equal diversity requirement case: the characterization of the
multiplexing–diversity tradeoff when users have different diver-
sity requirements is more difficult and remains an open problem.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Channel Model

Consider the multiple access channel in Fig. 1. nonco-
operating transmitters communicate independent messages to
a single receiver. Each of the transmitters has an array of
transmit antennas and the receiver has an array of receive an-
tennas. Over a block length of time equal to symbols, the re-
ceived signal (an element of ) is

(1)

Here represents additive noise at the receiver. The
noise at each of the receive antennas at each time is i.i.d.

; denotes a complex Gaussian random
variable with i.i.d. zero mean, variance , Gaussian random
variables as its real and imaginary parts.

The channel between transmitter and the receiver is repre-
sented by the matrix . We assume that the channel stays
constant over the entire block length of time and is known by
the receiver, i.e., the slow fading scenario. The transmitter only
has a statistical characterization of the channels and is unaware
of the actual realizations. We statistically model to
be i.i.d. with entries, the richly scattered Rayleigh-
fading environment.

Our focus is on communication by the users over the fixed
block of symbols. A codebook of user (denoted by ) com-
prises of codewords, with denoting its rate of commu-
nication. We denote the codewords, each an element of as

. There is a constraint on the average
unit energy per transmit antenna per symbol per codeword

(2)

Here is the Frobenius norm on matrices

B. Diversity and Multiplexing Tradeoff

The receiver makes a decision for each of the users based
jointly on the received matrix and knowledge of the channel
realization. The performance is given by average error proba-
bilities , , averaged over the equally likely
messages and the channel realizations.
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Fig. 1. A multiple-ccess system with K users each withm transmit antennas and a single receiver with n antennas.

Multiple antennas provide two different types of benefits in
a fading channel: diversity gain and multiplexing gain. These
gains are well studied in the context of point-to-point commu-
nication, i.e., when there is only one transmitting user, and we
briefly describe this.

For a fixed rate of transmission , the error probability can
decay with SNR as fast as

The factor is called the maximal diversity gain, obtained
by averaging over the independent channels gains between
all the antenna pairs. In this context, multiple antennas provide
additional reliability over single-antenna systems to compensate
for the randomness due to fading.

On the other hand, the randomness due to fading can be taken
advantage of by creating parallel spatial channels. This concept
is best motivated by a capacity result: [9], [2] showed that the
ergodic capacity of the multiple-antenna channel scales like

(bps/Hz)

at high SNR. The parameter is the number of degrees
of freedom in the channel and yields the maximum amount of
spatial multiplexing gain possible.

The ergodic capacity is achieved by averaging over the vari-
ation of the channel over time. In the slow fading scenario, no
such averaging is possible and one cannot communicate at the
capacity reliably. On the other hand, to achieve the
maximal diversity gain , one needs to communicate at a fixed
rate , which becomes very small compared to the capacity
at high SNR. This suggests a more interesting formulation of

asking what is the largest diversity gain that can be achieved if
one wants to communicate at a fixed fraction of the capacity.
It leads to a formulation of the tradeoff between diversity and
multiplexing gains, which we formalize below.

We think of a scheme as a family of codes, coding
over one single coherence block, one at each SNR level. Let

and denote their data rate (in bits per symbol
period) and the ML probability of detection error, respectively.

Definition 1: A scheme is said to achieve spatial
multiplexing gain and diversity gain if the data rate

(3)

and the average error probability

(4)

For each , define to be the supremum of the diversity
gain achieved over all schemes. Equivalently, for each , define

to be the supremum of the multiplexing gain achieved
over all schemes.

For notational simplicity, we shorten (4) as
; similarly, we say that if equality

holds in the limit.

The fundamental tradeoff between these two types of gains
is the subject of [12], where a simple characterization of the
diversity–multiplexing tradeoff curve is obtained.

Theorem 1: [12] For block length , the
diversity–multiplexing tradeoff curve for the i.i.d. Rayleigh
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point-to-point channel is piecewise linear joining the integer
points .

The diversity gain decreases from the maximal value to
zero as the multiplexing gain increases from to the degrees of
freedom . Note that the degrees of freedom available
in the channel puts a limit on the maximum multiplexing gain
achievable.

This formulation naturally generalizes to the multiple-access
channel. Given a common diversity requirement for the users,
i.e.,

we want to characterize the set of the -tuple multiplexing
gains , i.e.,

that can be achieved. This set of multiplexing gains is denoted
by .

In this paper, we focus on the role of antenna arrays in
delivering improved diversity and multiplexing gains in mul-
tiple-access fading channels. One way to think about a coding
scheme for the multiple-access channel is as a point-to-point
coding scheme for transmit antennas but the signals on
the groups of antennas each cannot be jointly coded
together; independent messages are communicated from the
these groups of transmit antennas. Seen this way, our study
here brings to sharp focus the role of joint coding across the
transmit antennas in a point-to-point channel. Some related
work can be found in [13].

III. OPTIMAL TRADEOFF

A. Basic Result

Our first result is an explicit characterization of when
the block length is large enough.

Theorem 2: If the block length

(5)
where is the multiplexing–diversity tradeoff curve for
a point-to-point channel with transmit and receive
antennas.

The proof of this result sheds light on the typical way error
occurs . We show that for block length , the
typical way the error occurs is not by the additive noise being
too large but by the channel being bad, i.e., in outage, when
the target rate tuple does not lie in the multiple-access region
defined by the realized channel matrices . This is a nat-
ural generalization of the concept of outage in point-to-point
channel [6], [9]. Our proof technique crucially uses the outage
formulation: we calculate the probability of this outage event
and conditioned on no-outage show that the error probability is
no worse than the probability of outage. Thus, the characteriza-
tion of boils down to calculating the probability of outage
for a given rate vector. This is easy: there are constraints

in the multiple-access capacity region for a given realization of
the channel and for each constraint there is a probability of not
meeting it. At the scale of interest, the probability of outage is
the worst among all these probabilities. This ensures that we
meet the diversity requirements in the constraints in (5).
Details of the proof of Theorem 2 are in Section VII.

B. Symmetric Tradeoff

It turns out that due to the special structure of the functions
, the tradeoff region can be further simplified. Let us first

focus on the largest symmetric multiplexing gain that
can be achieved for a given diversity gain . From Theorem 2,
this symmetric rate is constrained by

(6)

and, hence, the largest symmetric multiplexing gain is given by

(7)

Equivalently, the largest achievable symmetric diversity gain for
fixed symmetric multiplexing gains is given by

We have the following result.

Theorem 3:

(8)

Proof: See Section VIII.

In the multiple-access channel, it is clear that the tradeoff
curve cannot be better than the point-to-point single-user
tradeoff curve with all but one user absent, namely, .
The above result says that if the load of the system is sufficiently
“light” ( small), the single-user tradeoff can be achieved for
every user simultaneously. In particular, if the receiver has
enough receive antennas such that , then

and single-user performance is achieved for all : the system is
always lightly loaded; see Fig. 2.

On the other hand, if , then single-user perfor-
mance is achieved as long as the users are all transmitting a low
enough data rate: ; see Fig. 3. Moreover, as long as the
system operates within the lightly loaded regime, admitting one
more user into the system does not degrade the performance of
other users, a very desirable property. In this regime, the system
provides multiple-access capability without compromising the
performance of individual users.

In the heavily loaded regime, i.e., , the symmetric
diversity gain is . The tradeoff is as though the
users are pooled together into a single user with antennas
and multiplexing gain . In this regime, the performance of
each user is affected by the presence of other users. Note that
the total number of degrees of freedom in the resulting point-to-
point channel is , and hence,
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Fig. 2. Symmetric diversity–multiplexing tradeoff for m � is the same as the single-user curve.

Fig. 3. Symmetric diversity–multiplexing tradeoff for m > . Same as
single-user curve up for r � , and switched to the antenna pooled curve
for r > . For r > min(m; ), zero diversity gain is achieved. When
� = is large, these two thresholds coincide and the multiple-access tradeoff
curve is the same as the single-user curve but truncated at r = �.

This parameter can be thought of as the number of degrees of
freedom per user.

Equation (7) says that the symmetric diversity–multiplexing
curve is the minimum of curves. For values of arbitrarily
close to zero, the curve is clearly the smallest one, since

is smallest for . Hence, the single-user
curve must determine for sufficiently small. What The-
orem 3 says is that no other curve can determine except
for , and this happens when .

In the scenario when the number of users is much larger
than the number of receive antennas , a particularly simple
picture emerges. In this case, and

(9)

is the degrees of freedom per user. When , :
the multiplexing gain cannot exceed the degrees of freedom per
user. When , , the single-user diver-
sity–multiplexing performance. Thus, the presence of multiple
users has the effect of truncating the single-user tradeoff curve
at ; see Fig. 3.

It should be emphasized that, a priori, there is no guarantee
that transmitting at a multiplexing gain less than the degrees
of freedom per user would yield single-user di-
versity–multiplexing performance. This condition only guaran-
tees that the multiplexing gain is achievable with nonzero di-
versity gain: it ensures that the signal space has enough dimen-
sions to linear independently place the spatial signatures of all
the users, so that there is a possibility to distinguish between
the different users. But when we discuss the diversity–multi-
plexing tradeoff, we are concerned with the error probability
performance itself; even when there are enough dimensions, the
random channel-dependent spatial signatures of different users
may be closely aligned with each other with some probability,
resulting in interference between users and degradation of the
single-user error performance. What Theorem 3 says is that,
under the stronger condition that , this
is not a dominating event and single-user error performance is
achieved. Somewhat surprisingly, this condition approaches the
degree of freedom condition, based on pure dimension counting,
when the number of users is much larger than the number of
receive antennas .

C. Optimal Tradeoff Region Revisited

The structure of suggests it is possible to obtain a sim-
pler representation for than the one given in Theorem 2.
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Indeed, we have the following result, and the proof relegated to
Section VIII.

Theorem 4: Suppose and are defined by

(10)

Then for

(11)

and for

(12)

For large enough desired diversity gain , the re-
gion of multiplexing gains is a square, i.e., each user achieves
single-user performance. This is a direct consequence of the ear-
lier result on the symmetric tradeoff. For smaller diversity gain
requirements, other constraints start coming into play. When the
diversity gain requirement is small enough, all con-
straints become relevant.

Furthermore, the tradeoff region has an interesting combina-
torial structure.

A polymatroid with rank function (mapping subsets of
to nonnegative reals) is the following polyhedron:

(13)
The rank function should be nonnegative, mapping the null set
to zero, and

(14)

(15)

An important property of polymatroids is a simple characteriza-
tion of its vertices. In particular, for every permutation on the
set the point

(16)
meets the constraints in (13) and furthermore is a vertex. In fact,
this can also be taken as a definition of a polymatroid. If points
defined in (16) satisfy the constraints in (13) for every permuta-
tion , then the function must have the properties in (14) and
(15) and the polyhedron in (13) is a polyhedron. Since the ver-
tices are fully characterized, maximizing linear functions over a
polymatroid is easy.

Theorem 5: Given a diversity requirement , let satisfy
. The tradeoff region is a polymatroid, with rank

function given by

Proof: See Section VIII.

Fig. 4. Improvement in (symmetric) performance by adding a transmit antenna
when system is lightly loaded. Increase in both degrees of freedom and diversity
is seen.

IV. EXAMPLES

In this section we will go through a few examples to explore
some implications of the results.

A. Example 1: Adding a Transmit Antenna

Consider a system with a receiver having antennas and
users each with a single transmit antenna. What is the perfor-
mance gain from adding an extra transmit antenna for each user?
We focus on the symmetric operating point. Consider the fol-
lowing two cases.

Case 1: .
Here the number of users in the system is relatively small,

the system is lightly loaded, and each user attains single-user
performance even after adding the extra transmit antenna. The
improvement in performance is seen in Fig. 4. In particular, the
number of degrees of freedom per user is increased from one to
two and the maximal diversity gain increases from to .

Case 2: .
The effect of adding a transmit antenna is seen in Fig. 5. In

this case, there is no increase in degrees of freedom per user:
it remains at . The degrees of freedom is already limited by
the number of receive antennas. Nevertheless, the diversity gain

increases for each .
This example shows the importance of viewing the mul-

tiple-access system as a whole rather than a set of separate
point-to-point links. While the latter view is accurate in the
lightly loaded regime where each user attains single-user
performance, it can be very misleading in general.

B. Example 2: Adding a Receive Antenna

What is the system-wide benefit of adding a receive antenna
at the base station?

This question was asked in [11] in a specific context. The au-
thors considered a multiple-access system with users, each
having one transmit antenna, and a receiver equipped with an-
tennas, with . A simple linear receiver is used to demon-
strate the performance improvement due to the use of multiple
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Fig. 5. Improvement in performance by adding a transmit antenna when
system is heavily loaded. No increase in degrees of freedom but the tradeoff
curve improves.

antennas at the receiver. To receive the message from an indi-
vidual user, the receiver treats the signals from all other users as
interference, and uses a decorrelator ([10, Ch. 5]) to null them
out. The authors showed that even with this simple receiver, sig-
nificant performance gain can be obtained by using multiple an-
tennas at the receiver. In particular, for quadrature phase-shift
keying (QPSK) modulation, the error probability is of the order

This means that with antennas at the receivers, one can null out
the interference from users, thus accommodate users,
and provide each of them with interference-free reception with
a diversity order . This can be summarized as the
following.

An additional receive antenna can either increase the di-
versity order of every user by , or accommodate one more
user at the same diversity order.

Notice that the “diversity order” in this statement corresponds
to the maximum diversity gain on the tradeoff curve at .
In fact, it is easy to compute the entire diversity–multiplexing
tradeoff curve under the decorrelator: it is given by

. (See [12, Sec. 7.2] for a derivation of
this, in the context of vertical Bell Labs layered space–time
(V-BLAST) architecture.)

We can compare this performance with the optimal diver-
sity-multiplexing studied in this paper. For this scenario with
users, each having transmit antenna, and receive an-
tennas, Theorem 3 specifies the optimal tradeoff performance.
Provided that , (8) can be rewritten as

This is in the lightly loaded regime: each individual user can
have same tradeoff performance of a point-to-point channel with

transmit antenna and receive antennas: a straight
line connecting the maximum diversity gain point and
the maximum multiplexing gain point . Adding both an

Fig. 6. Comparison of tradeoff curve of the decorrelator with the optimal.

extra receiver and an extra user still maintains the lightly loaded
regime. Thus, we can conclude the following.

An additional receive antenna can increase the diversity
order for each user by , and simultaneously accommodate
one more user maintaining the tradeoff performance of the
existing users.

Under the decorrelator, the additional receive antenna can ei-
ther provide extra diversity or accommodate one more user, but
not both. However, our results show that this tradeoff is not fun-
damental and is due to the limitation of the decorrelator; with
the optimal receiver, you can, in fact, have the cake and eat it
too.

More generally, we can compare the diversity-multiplexing
tradeoff curve of the decorrelator with the optimal curve; this is
shown in Fig. 6

Performance of receiver structures other than the decorrelator
will be described in Section VI.

C. Example 3: Implications On Point-to-Point Optimal Codes

We have been analyzing the multiple-access diversity–mul-
tiplexing tradeoff in terms of the point-to-point tradeoff curve.
But we can turn the table around and use our multiple-access
results to shed some light on the point-to-point problem. Con-
sider the point-to-point channel with transmit and receive
antennas. We ask the question: what part of the tradeoff curve

can be achieved without coding across the transmit an-
tennas? This is an interesting question as it potentially simplifies
the point-to-point code design problem.

To this end, consider a multiple-access channel with users
and one transmit antenna each. The diversity gain achievable
when each user transmits at a multiplexing gain is given
by the symmetric diversity–multiplexing tradeoff in Theorem 3

(17)

From this, we observe that if then
. Since there is no coding across

the users in the multiple-access channel, this means that for
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Fig. 7. The n � n point-to-point tradeoff curve coincides with the
multiple-access curve in the high-rate region.

, the tradeoff curve in the point-to-point
channel can, in fact, be achieved by separate coding at
the transmit antennas. On the other hand, if ,
then the symmetric tradeoff is determined by , which
is smaller than or equal to . If it is strictly smaller, this
implies that coding across the antennas is necessary to achieve
the point-to-point channel tradeoff curve at those rates.

More specifically, we can consider three cases.

1) . In this case, is larger than and
further for all values of ,
the number of degrees of freedom in the channel. Hence,
in this case, without coding across the transmit antennas,
one will never achieve the point-to-point tradeoff curve.

2) . In this case, the point-to-point tradeoff curve
for can be achieved without coding

across the antennas. Further, since
for all multiplexing gains , schemes that do
not code across transmit antennas for the point-to-point
channel are strictly suboptimal for these rates.

3) . In this case, for
and since the symmetric

diversity–multiplexing tradeoff in (17) can be simplified
to

(18)

for to .
This means, that in the point-to-point channel with

multiplexing gain larger than the maximal diversity
gain can be obtained by coding separately at each of the
transmit antennas; see Fig. 7.

V. TYPICAL ERROR EVENTS

For a multiple-access channel with users, the detection
error event can be decomposed into a collection of disjoint error
events, , where is the event that the mes-
sage from users are erroneously decoded, and is referred as a

“type- ” error event. An analysis of these error events for the
AWGN multiple-access channel is presented in [4].

Now let us turn to the fading multiple-access channel with
symmetric multiplexing and diversity gains for each user. We
can lower-bound the probability of the type- error by the prob-
ability of outage of the users considered. From our calculation
in Section VII-B, we know that the probability of this outage
event is of the order

(19)

On the other hand, we know from our discussion in Sec-
tion VII-C that with a random Gaussian code the average
probability of a type- error event is no more than the same
order in (19). We can hence conclude that (19) is the exact
order of decay of the probability of type- error event.

Since the overall error event is the union of the type- error
events, we can write

From Theorem 3, we know that for all rates
, the type- error event dominates all

the others and for larger rates, the type- error event is
dominant. Thus, depending on the rates of the users, the typical
way errors occur is either one of the users is in error or all the
users are in error.

In practical multiple-access systems (such as the uplink of
cellular wireless systems), the receiver (base station) uses re-
dundancy in the packet format to check whether it has been
correctly decoded (versions of cyclic redundancy check (CRC)
codes are commonly used). Then, the base station feeds back
to the users whether their packet was successfully received or
was in error. This feedback is called automatic repeat request
(ARQ) and allows the users to retransmit an erroneously re-
ceived packet.

Our analysis of the typical way error occurs in the fading up-
link channel provides insight into the ARQ protocol design. In
particular, one important issue in ARQ protocol design is how
much bandwidth has to be allocated to transmit the repeat re-
quest. A conservative approach is to reserve enough bandwidth
with every packet transmission, to be able to transmit to all the
users whether their packet has been correctly received or not;
since this resource reservation is continuous (i.e., done with
every packet transmission and not just one time), this design
costs quite a bit of the downlink bandwidth. On the other hand,
when lesser bandwidth is allocated for the repeat request then
exceptions (when the number of errors is more than what can be
transmitted) will have to be handled separately; if the exceptions
happen rarely, then this design is preferable to the conservative
one.

For large enough rates, we have identified the dominant error
event to be the one where all the users’ packets are in error.
This suggests that we should allocate just enough resources with
every packet transmission to be able to broadcast whether every
user has to retransmit (all user packets are received erroneously)
or not. On the other hand, for smaller rates, we know that it is
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most likely that only one of the users’ packets is in error. In
this case, it makes sense to reserve just enough bandwidth to
be able to transmit which of the users’ packet is in error (and
handle the exceptions separately). In both cases, the insight in
the identification of typical error events suggests that we can de-
sign the ARQ protocol with minimum reservation of resources
to feed back packet errors, thus improving over the conservative
resource reservation scheme.

VI. PERFORMANCE OF SOME NON-ML SCHEMES

In Example 2 of Section IV, we have studied the diver-
sity–multiplexing tradeoff performance of suboptimal linear
receivers. In this section, we will look at the performance of
other receiver structures. The comparison will be restricted
to the symmetric scenario where each user attains the same
multiplexing gain.

A. Successive Cancellation

The successive cancellation technique is used in multiple-ac-
cess channels to reduce the joint demodulation of the data from
all the users into a sequence of single-user demodulations.

In a system with users equipped with transmit antennas
each, and receive antennas, a successive cancellation receiver
demodulates the data in stages. At each stage, the receiver
demodulates the data from one user, treating the signals from
the uncanceled users as interference. Here, we consider the re-
ceiver that nulls out the interference with a decorrelator. After
the data symbols from this user are decoded, its contribution
is subtracted from the received signals before continuing to the
next stage.

We start by studying the case , i.e., each user has only
one transmit antenna. The successive cancellation process re-
duces the multiple-access channel into the following single-user
subchannels:

where is the signal transmitted by user ,
are the received signal and noise for user , respectively.

is the effective channel gain, which is the component
of , the fading coefficients for user , that is perpendicular to
the signal space that needs to be nulled out.

In general, the performance of the successive cancellation re-
ceiver depends on the order in which the users are demodulated.
We will start with the simple case that the demodulation takes a
prescribed order, regardless of the realization of ’s. Without
loss of generality, assume that the data from user 1 is decoded
first, and user 2 second, etc. It is clear that the performance of
this receiver will be limited by that for the first user, and hence
does not provide any improvement over a linear decorrelator
without cancellation. The performance of this receiver has al-
ready been analyzed in [12]; for ease of generalization to other
scenarios, we rederive it here.

Under the decorrelator, is the component of that is
perpendicular to the subspace spanned by . Now
without loss of optimality, the receiver can project each column

Fig. 8. Tradeoff for successive cancellation schemes withm = 1.

vector of into the direction of and we can rewrite the
subchannels as

where . Moreover, for each
, is chi-square distributed with dimen-

sions: . Clearly, this successive cancellation
scheme only works for the case that . It is obvious that
the first subchannel, is the bottleneck
and hence dominates the error probability

Now we observe that the first subchannel is equivalent to a
point-to-point link with one transmit and receive
antennas, and applying Theorem 1 we have

This tradeoff performance is plotted in Fig. 8 in comparison
with the optimal tradeoff curve given in (8). We ob-
serve that the tradeoff performance is strictly below the optimal.
Moreover, with the optimal scheme, each user can achieve a
single-user performance as long as the system is not heavily
loaded. In the case , this means the performance of a
particular user is not affected by the total number of users
in the network, as long as . In contrast, with successive
cancellation, adding one user to the network always degrades
the performance of all other users.

Now if we allow the receiver to decode for the users in an
order that depends on the realization of the channel, the tradeoff
performance can be improved. It is shown in [3] that the optimal
ordering is to choose the user to decode in each stage such that
the effective channel gain is maximized. The tradeoff per-
formance of this scheme is studied in [12, Sec. 7.2], and it is
shown that

It is seen that this scheme is still suboptimal.
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For the case that each user has transmit antennas, we
can similarly write the single-user subchannels as

for

where is the signal transmitted by user .
are the received signal and noise for user , respectively.

is equivalent channel gain for user . Again, as-
suming that the users are decoded sequentially, each column
vector of is thus the component of the corresponding column
vector of that is perpendicular to the subspace spanned by
the column vectors of . That is, the component
of each column vector of in dimensions is nulled
out. Consequently, the subchannel for user is equivalent to a
point-to-point channel with transmit and receive
antennas, for . Similar to the case that , in
order to use successive cancellation, we need an extra constraint
that .1

Under these assumptions, in decoding the th user, the signals
from user that spans a -dimensional
subspace, has to be nulled out. Effectively, the subchannel for
the th user is a point-to-point link with transmit and

receive antennas, and the detection error probability is

(20)

The performance of the system is thus limited by that of the
subchannel for user 1, hence,

(21)

Similar to the case with , choosing the ordering in
which the users are decoded according to the channel realiza-
tion helps to improve the performance. The exact tradeoff per-
formance with the optimal ordering is hard to compute. How-
ever, we can show that the optimal tradeoff performance is still
not achieved.

To see that, we give a simple upper bound of the diversity gain
at , and show it is strictly below the optimal. Consider the
case that there are only two users (or assume that a genie reveals
the data of user to the receiver). Let be the subspace
spanned by the column vectors of , for . ’s are in-
dependently uniformly distributed in the Grassmann manifold

, which is the set of all -dimensional subspaces in .
The dimensionality of is [8]. Observe that
with a high probability, the successive cancellation receiver will
make a detection error, if and lie in a small neighborhood
of each other, whose size is of the same order as the noise. The
probability for that to happen is . Consequently,
the probability of detection error with a successive cancella-
tion receiver is no less than . In contrast, as dis-
cussed in the previous sections, with the optimal ML receiver,
the single-user performance of is achieved at

1One can actually use fewer receive antennas. For example, if we have n =
1+ (K � 1)m receive antennas, after nulling out the otherK � 1 users, user
1 still needs one dimension to communicate. However, the performance of such
systems will be severely degraded, since user 1 is the bottleneck of the system.
Therefore, we do not consider such cases.

Fig. 9. Tradeoff for successive cancellation schemes with m > 1. (a) m �

case; (b) m > case.

multiplexing gain . Therefore, the successive cancellation
technique is strictly suboptimal. Some examples are plotted in
Fig. 9.

To summarize, we have shown in this section that successive
cancellation, although simplifies the problem into single-user
subchannels and can achieve the maximum sum rate, is strictly
suboptimal in terms of the error probability behavior. This is
particularly true at low data rates where joint ML detection is
significantly better. The successive cancellation technique is bi-
ased among the users. For example, the first user that is decoded
has the worst channel. In the next two subsections, we study
schemes that are symmetric with respect to the users and still
achieve the maximal sum rate.

B. Time Sharing

One simple strategy is to time-share and average out the bias.
By switching between a set of schemes, we can allow each user
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to go through the worst channel only for a fraction of time, there-
fore, potentially improving the average performance.

Suppose we time-share among different schemes. Let the
data rate and error probability for user in the th scheme be

respectively, for and . Now by time
sharing, we use scheme with fraction of the time,
where . For a fixed choice of ,
the average data rate and error probability for user are

(22)

That is, by time sharing, we can achieve the average data rate,
but still retain the worst case diversity gain.

Example: Rate Allocation: We consider successive
cancellation schemes, one for each of the ordering of the
users. Suppose we want to provide symmetric rate and diversity
requirements to the users; without loss of generality, we can
compute the performance of user 1. Let be the probability
that user 1 is the th decoded user. By symmetry, we have

for . Now using (20), the data rate and error
probability can be computed as

Here

If we want to send a data rate of and set for
all , then the performance is still limited by the fraction of time
that user 1 goes through the worst (first) subchannel. The prob-
ability of error is . In order to maximize
the data rate at a given diversity requirement , the
multiplexing gain that should be used when user 1 is the th de-
coded user is . Intuitively, a lower data
rate should be transmitted when the user is assigned to a worse
channel such that the corresponding diversity is improved.

In Fig. 10, we give an example of the optimal rate alloca-
tion and the resulting tradeoff performance for time-sharing
schemes. We observe that the tradeoff performance is improved
using the optimal rate allocation, but is still strictly below the
optimal tradeoff curve with joint ML decoding. This again
emphasizes the advantage of using optimal ML decoding in
the multiple-access system: when the system is lightly loaded,

, the effect of the interference between different users
is completely eliminated by the ML receiver. In comparison,
the schemes using a decorrelator to null out interference, as
well as the successive cancellation and time-sharing schemes
based on that, are strictly suboptimal.

Fig. 10. An example of the rate allocation for the time-sharing scheme:
m = 3; K = 3; n = 12. (a) The optimal rate allocation r for a given
required diversity gain d can be read from the tradeoff curves. (b) The
resulting performance with the optimal rate allocation. Notice that some
transmit antennas need to be shut off (r = 0) to obtain the optimal diversity
gain in the low-rate region.

C. Rate Splitting

Another commonly used multiple-access technique is rate
splitting [7]. Here, each user is split into virtual users that
transmit at different power levels and are decoded in an appro-
priate order to achieve desired data rates within the capacity
region.

In studying rate splitting in multiple-antenna fading channels,
we start by treating all the virtual users as independent users,
and focus on the power allocation among these users. In our
scale of interests, the diversity and multiplexing gains are not
changed when scaling the transmitted power of a user by a con-
stant factor that does not depend on SNR. It is only interesting
to assign a power of the order to the users. (Notice that
in our setup, the transmitted power available for each user is
of the order .) Unlike the successive cancellation schemes
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discussed previously (rate splitting with equal power allocation
for all users), now we can support users.

Example: Single-User Rate Splitting: Consider the simple
case with and users. Let their multiplexing
gain be , respectively. Let user 1 transmit at a power of

, and user 2 transmit a power . The receiver can
first decode user 1 treating user 2 as noise, and then cancel its
contribution before decoding user 2. Now the effective SNR for
user 1 is ; and the data
rate , hence, the effective
multiplexing gain is . The error probability it achieves is

Similarly, the effective SNR for user 2 is , and the
probability of error is

Now we can optimize over to minimize the maximum of
two error probabilities, and the resulting overall error proba-
bility is

(23)

Suppose now that these two users are virtual users created by
splitting one user with multiplexing gain . From
(23), the error performance is . Notice that
this is strictly below the single-user performance .
Intuitively, since a part of the data rate is transmitted at a lower
power level , the error probability is increased.

In general, assume that the users transmit at different power
levels

for , . Effectively, we have multiple-
access subchannels, with effective SNR

For a user communicating in a subchannels with effective
SNR as , the diversity–multiplexing tradeoff can be
computed as in (21), with both the diversity gain and multi-
plexing gain scaled by , that is, assuming user transmitting
a rate , the error probability is

where is the number of users sharing the same subchannel.
When a user is split into a number of virtual users, the overall

error probability is still dominated by the worst case among
the virtual users. The optimal rate splitting and power alloca-
tion can be solved as a linear optimization problem. Before
this calculation, we can claim that this approach cannot achieve
the optimal tradeoff performance. To see this, observe that at a
low data rate, Theorem 2 says that single-user tradeoff perfor-
mance can be achieved. However, as discussed at the end of Sec-
tion VI-A, with the successive cancellation receiver, whenever
there is another user sharing the same subchannel or transmit-
ting at a power that is higher than the noise level, the single-user

performance can not achieved. Furthermore, as demonstrated in
the example of single-user rate splitting, the rate splitting ap-
proach is, in general, not optimal in terms of error exponent.

VII. PROOF OF THEOREM 2

We first prove the lower bound using an outage formulation.
Then we prove achievability using a random coding argument.

A. Individual Versus Joint ML Receiver

The receiver that minimizes the error probability for each user
is the individual ML receiver. The individual ML receiver for

user treats the other users as discrete noise with known struc-
ture (codebooks), and makes an ML detection of the message of
user . This is, in general, different from the joint ML receiver
that jointly detects the messages of all the users ([10, Sec. 4.1.1]
has some more discussion on this). But it is easy to relate the
error probabilities of the two receivers. Clearly, the joint ML
error probability (probability that any user is detected incor-
rectly) is an upper bound to each of the individual ML error
probabilities . On the other hand, we can consider a joint
receiver which uses the individual ML receivers to make a deci-
sion on each user’s codeword; the performance of this receiver
must be an upper bound to . Furthermore, by the union of
events bound, the probability of error of this joint receiver is
less than the sum of the individual ML probabilities of error.
Hence, we conclude that

for all

Thus, requiring that each of the to decay like
is equivalent to requiring the joint ML error probability to
decay like . Thus, it suffices to work with only the joint
ML receiver for the proof below.

B. The Lower Bound: Outage Formulation

In point-to-point channels, the outage is defined as the event
that the mutual information of the channel, as a function of the
realization of the channel state, does not support the target data
rate , i.e.,

where is the mutual information of a point-to-point link
with transmit and receive antennas.

With the input having i.i.d. entries

It can be shown ([12, Sec. 3.B]) that one can restrict to i.i.d.
inputs and the resulting outage probability is characterized in
[12, Theorem 4]: at a data rate (bps/Hz)

(24)

with defined as in Theorem 1 : for integer , the di-
versity gain is and a piecewise-linear function
between these integer points. It is shown in [12, Lemma 5] that
this outage probability provides a lower bound of the optimal
error probability, up to the SNR exponent, i.e., for any coding
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scheme with a data rate (bps/Hz), the proba-
bility of detection error is lower-bounded by

Intuitively, when an outage occurs, there is a high probability of
making a detection error, no matter what coding and decoding
techniques are used; therefore, the probability of detection error
is lower-bounded by that of outage.

In the multiple-access channel, we can define a corresponding
outage event, by which we wish to indicate that the channel is so
poor such that the target data rate is not supported, at least for a
subset of the users. The definition of outage is given as follows.

Definition 6: Outage Event: For a multiple-access channel
with users, each equipped with transmit antennas, and a
receiver with receive antennas, the outage event is

(25)

The union is taken over all subsets , and

where contains the input signals from the users in . The
significance of this definition is the following: the probability
of outage yields a lower bound to the error probability of any
scheme. To see that, suppose occurs for a subset . Let a
genie provide the receiver with the side information of all the
correct data symbols transmitted by users in . But still
the sum target rate of the users in is not supported. Conse-
quently, a detection error (of the users in set ) occurs with a
high probability when occurs.

In the above argument, upon receiving the genie information
of the data , the receiver can without loss of optimality,
cancel its contribution from the received signals, after which the
channel can be written as

where contains the fading coefficients corre-
sponding to the users in . By allowing the users in to coop-
erate, the problem is reduced to a point-to-point problem with

transmit antennas and receive antennas, and a fading co-
efficient matrix . Now we can choose the input to have the
i.i.d. Gaussian distribution, such that the is minimized
for all simultaneously. Let the target data rate of user be

(bps/Hz) for , from (24), we
have

and

where be the subset of with the slowest decay
rate of , i.e.,

Combining with the fact that , we have

as summarized below.

Lemma 7: For a multiple-access system with users, each
equipped with transmit antennas and a receiver with receive
antennas, let the data rate of user be (bps/Hz),
for . The detection error probability of any coding
scheme is lower-bounded

where

with as given in Theorem 1.

Consequently, to meet a diversity requirement of for every
user, the transmitted data rates must satisfy

or equivalently

(26)

for all .

C. The Upper Bound: Random Coding

Lemma 7 gives a lower bound of the optimal error proba-
bility. In this subsection, we complete the proof of Theorem 2
by showing that this bound is actually tight, up to the scale of the
SNR exponent, provided that the block length .
We show that for any satisfying (26), there exists
a coding scheme that achieves the common diversity .

To do this, we consider the ensemble of i.i.d. random
codes. Specifically, each user generates a codebook
containing codewords, denoted as

. Each codeword is an matrix with i.i.d.
entries. Once picked, the codebooks are revealed to the receiver.
In each block period, the transmitted signals of user is simply
chosen from the corresponding codebook equiprobably
according to the message to be transmitted.

Consider the detection error probability of the joint ML re-
ceiver. We first define for each nonempty set
an error event (referred to as a “type error”)

and

where is the decoded message for user . Thus, is the
event that the receiver makes wrong decisions on the messages
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of all the users in set , and makes correct decisions for the rest.
Clearly, we have

In the following, we study , assuming without loss of
generality that . Let

be transmitted, where is the codeword transmitted
by user . Denote to be another codeword which differs from

on the symbols transmitted by all the users in but coincides
on those transmitted by the other users, that is,

where .
Now a type- error occurs if the receiver makes a (wrong)

decision in favor of one of such codewords . This occurs
exactly when

(27)

Here , the first columns of

and for .

Now the computation of is reduced to finding the
probability, averaged over and , that there exists a code-
word such that (27) is satisfied.

Since the codewords are all i.i.d. , this computa-
tion is the same as that for the error probability of a point-to-
point link with transmit and receive antennas, with i.i.d.

random code as the input, and an overall data rate
of . In [12, Sec. 3.3], it is shown that for the
point-to-point channel described above, provided that the block
length , the error probability, averaged over
the random code ensemble, has diversity

(28)

Now the error probability coincides with the lower bound from
the outage formulation

for defined in Theorem 1.
The proof of this statement is based on the computation of the

conditional pairwise error probability
as in [12, eq. (19)], averaged over the ensemble of the codes.
In other words, we only used the pairwise independent prop-
erty of the codebook, i.e., for any pair of distinct codewords
and , all the entries are generated independently from the
Gaussian ensemble.

In computing for the multiple-access channel, we
make the key observation that and in (27) are pairwise

independent. Consequently, the proof in [12] can be used to
show

(29)

where is the sum multiplexing gain of the users
in .

The overall error probability is

where maximizes the SNR exponent of , i.e.,

This completes the proof of our main result.

VIII. PROOFS OF THEOREMS 3, 4, AND 5

A. Proof of Theorem 3

Recall that

To prove the result we have to show that for

is the smallest and, otherwise, is the
smallest.

Fix and consider the following key
observation:

(30)

Suppose this is true. It can be directly seen from the definition
of that

In the case , we complete the proof by observing
from (30) that is below every other curve. If this is not
the case, then is still below every other curve up to

at which point the curve intersects it. Since
the curve must have intersected all the other curves
by , it is now below all the other curves for

. This completes the proof of the proposition.
We now show (30). Fix . Consider the following

parabola:

This parabola is below the corresponding single-user tradeoff
curve for all values of (since this tradeoff curve is
piecewise linear) and equal only when is such that is an in-
teger. It follows that the two tradeoff curves
cross over if and only if the corresponding parabolas

intersect. A simple calculation shows that the two parabolas
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intersect at a point exactly when satisfies the quadratic equa-
tion

There are two solutions: and . The inter-
esting range of intersection of the parabolas is restricted to

; at least one of the tradeoff
curves is identically zero for above this value. Thus, we
have now shown (30) for the case and will
henceforth assume otherwise. In this regime, we conclude
that the tradeoff curves cross over exactly once in the range

and only need to determine the
crossover point of the tradeoff curves.

While the intersection of the two parabolas occurs at
, this might not be the same as the crossover point

between the tradeoff curves. In general, the parabolas are below
the corresponding tradeoff curves, but if is an
integer (observe that in this case it must be that
is also an integer) then we have found the crossover point
of the tradeoff curves as well to be . We are
hence only left with the case when and

are not integers. We show that even
in this case, somewhat surprisingly, the crossover point of
the tradeoff curves is still the same as the intersection point
between the parabolas.

Since the tradeoff curve is piecewise linear, the crossover
point can be found as the intersection of the line segments of

passing through the two points

and

for . Here we have written

Hence, the intersection point satisfies the linear equation
where

Observe that since are not integers we
must have

(31)

Using (31) it can be easily verifiedy that

It now follows that the intersection point between the line
segments, and hence that between the tradeoff curves, is

. This completes the proof.

B. Proof of Theorem 4

From the proof of Theorem 3 (in particular from (30)), it fol-
lows that the single-user tradeoff curve is below all the

other curves for for .
Recall that

(32)

and is the multiplexing–tradeoff curve (inverse of
). Since the tradeoff curves are monotonically de-

creasing, (30) means that

From the characterization of in Theorem 2, it now follows
that, for

i.e., the optimal tradeoff region is a cube.
Toward generalizing this observation, define (analogous to

(32))

(33)

From (30) it follows that for

(34)

(35)

It follows that the constraint

implies the constraints

for any subset with . This proves the sim-
plification of from (5) to (12).

C. Proof of Theorem 5

Observe that the characterization of (12) for
can be rewritten as

(36)
Here we have written the rank function

.

Fix an ordering of the users , a permutation of .
Using (34), it follows that the multiplexing gain vector

with

is contained in the region in (36). Since this is true for
every permutation , and for every , we have shown that
is indeed a polymatroid.
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