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Optimal Sequences and Sum Capacity
of Synchronous CDMA Systems
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Abstract—The sum capacity of a multiuser synchronous CDMA and an appropriate power constraint on its input( sum
system is completely characterized in the general case of asym-of power constraints of the users) awmd is the variance
metric_ user power constraints—this solves the open problem f the aqgitive white Gaussian noise. This result assumed

posed in [7] which had solved the equal power constraint case. .
We identify the signature sequences with real components that that the signature sequences had real components (as opposed

achieve sum capacity and indicate a simple recursive algorithm t0 components in{+1,—1}; the problem of characterizing

to construct them. sum capacity with this constraint remains open) and we
Index Terms—Capacity region, CDMA, optimal signature se- retain this assumption in th.IS paper. It t.urns out that this
quences, sum capacity. upper bound on sum capacity is not achievable for all val-

ues of the average input power constraints of the users. In
this paper, we completely characterize sum capacity of the
S-CDMA channel. We identify the sequences (as a function

N important multiple-access technique in wireless netf the average input power constraints of the users) that

works and other common channel communication syacehieve sum capacity (callegptimal sequences), and discuss
tems is Code-Division Multiple Access (CDMA). Each usesome algorithmic ways to construct them. Our main result,
shares the entire bandwidth with all the other users affte complete characterization of sum capacity, allows us to
is distinguished from the others by isignature sequence conclude.

or code Each user spreads its information on the common . . . . .
. . . : 1) A useris said to beversizedf its input power constraint
channel through modulation using its signature sequence.” . ; . .
; ; is large relative to the input power constraints of the
Then, the receiver demodulates the transmitted messages upon ; : .
: . : : other users. The optimal signature sequence allocation
observing the sum of the transmitted signals embedded in . .
. is to allocate orthogonal sequences (hence independent
noise. We focus on symbol-synchronous CDMA (S-CDMA) .
. ) . : . channels) to oversized users.
systems where in each symbol interval the received signal is .
; . . . 2) Nonoversized users are allocated sequences that
the sum of the transmitted signals in that symbol interval alone : .
. o ) . , we denote generalized Welch-Bound-Equality (WBE)
embedded in additive white Gaussian noise.

Of fundamental interest in this system is the capacity region sequences
defined as the set of information rates at which users can3) Sum Cap"’?"”y 1S equ_al té log (1 * %) (the upper
. . - . . . bound derived in [7]) if and only if no user is oversized.

transmit while retaining reliable transmission. This problem
was addressed in [8] and the capacity region was characterize@his paper is organized as follows: We discuss the model
as a function of the signature sequences and average inpiuthe S-CDMA system briefly and recall the characterization
power constraints of the users. However, the choice of tbéthe capacity region for fixed choice of signature sequences
signature sequences of the users is left open to the designeBection Il. Section Il also develops some notation we will
of the CDMA system and it was suggested in [8] that theequire in the derivation of our main result. Our main result,
signature sequences could be optimized given the constraihis characterization of sum capacity, is in Section Ill. In
of the problem. We address this issue and focus on finding t&ection IV, we outline an algorithm to construct the optimal
“sum capacity” (maximum sum of the achievable rates of aignature sequences (namely, generalized WBE sequences).
users per unit processing gain; maximum over all choices his algorithmic procedure is exemplified by a system with
signature sequences). three users and processing gairThe results are summarized

This problem has been attempted in [7] where the authdarsSection V which also contains some concluding remarks.
derive an upper bound on the sum capacity. This upper
bound is § log (1 + 2st), the capacity of the system with ll. S-CDMA MODEL AND NOTATION
“no spreading,” i.e., of the system with processing gain

A. S-CDMA Channel and Capacity Region
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model the information transmitted (symbol) by each user asDefinition 2.1: For anyz = (x1,---,x,) € R, let
independent random variablgs,, - - -, X . We assume that
there is an average input power constraint on the transmit T = 2 Ty

symbols given by

E[Xf] < p;, Vi=1---K. denote the components af in decreasing order, called the

) order statisticsof x.
Let D = diag{p1,---,px } and the maximum total average o ) )
input power bep,.; = S | p;. Let the signature sequence of Majorization makes precise the vague notion that the com-

users be represented by;, a vector inRY. Each signature Ponents of a vector: are “less spread out” or “more nearly
sequence has power equal 16, i.e., for each usei, we €dual”than are the components of a veqidy the statement
havests; = N. We assume an ambient white Gaussian noisg, 'S majorized byy.

denoted byW ~ N(O,a?[) independent of the transmitted  pefinition 2.2: For z,y € R", say thatz is majorized by
symbols. Then the received signal, represented’bgan be , (or y majorizesz) if

written as
K k k
Y:ZSiXi+W ZxMSZyM, k=1---n-1
i=1 =1 =1
Let us represent th&y x K matrix [s; - - - si| by S. The S- zn:a: L z”:y
CDMA channel above is a special case of fieuser Gaussian ~ g ~ [l

multiple access channel and the capacity region (set of rates

at which reliable communication is possible) is well known

(see [2, Sec. VII]) as the closure of the convex hull of the A comprehensive reference on majorization and its appli-
union over all product probability densitigs- on the inputs cations is [4]. A simple (trivial, but important) example of

X1, -+, Xx of the rate regions majorization between two vectors is the following:
Example 2.1:For everya € R" such thaty;” ; a; =1
cSre)= ) (Ry,+,Rx): 0< Y Ri<1T
JC{1,---, K} i€J o 1 1 1
(ar, -, an) majorlzes<—, —,---,—).
n n n

(Y X i€ X, i€ JC)}. 1)

Continuing as in [7], the union region over the product It is well known that the sum of diagonal elements of a

e : . . matrix is equal to the sum of its eigenvalues. When the matrix
distributions, as a function of, can be simply written as . ) ) . : .
is symmetric theprecise relationship between the diagonal

1 elements and the eigenvalues is that of majorization:
cs)y= ) {(Rl,---,RK): 0 Ri< o
IO, K} Pt Lemma 2.1 ([4, Theorem 9.B.1 and 9.B.2])et H be a
1 symmetric matrix with diagonal elements;,---,A, and
- log {det <I+ ;SJDJS?]):|} (2) eigenvalues\y,---,\, we have
whereJ is a nonnull set and; is the rate in bits per chip of (A1, -+, A\,) majorizes(hy, - - -, hy).

useri. Here, Sy is N x |J| matrix {s;: ¢ € J} and Dy is the
0306 i o S3ch US6EX, SIS AV (0.p) TP/ = (b= ) AN = (b - ) cannot e
b &Ll D %‘ompared by an ordering stronger than majorization is the

makes the region in (1) equal to that in (2). Sum Capac'(yﬂnsequence of the following converse:fif > -+ > h,,

represents the maximum sum of rates of all users per ugnd)\l > ...\, are2n numbers such that majorizesh, then

processing gain at which users can transmit reliably. FoIIowinH . . o
29 I ) tRere exists a real symmetric matik with diagonal elements
the notation in [7], the sum capacity is defined formally as

hi,---,h, and eigenvaluesy,---,\,.
K We will also need the following definition:
Coum = Max max R; 3) o ) ] .
S€S ReC(8) i Definition 2.3: A real-valued functiony: R* — R is said

to be Schur-concave if for alt, y € R™ such thaty majorizes
x we haveg(z) > ¢(y). Say thate is strictly Schur-concave
if ¥ majorizesz andy # x implies thatg(x) > ¢(y).

wheresS is the set of allV x K real matrices with all columns
having > norm equal tov V.

B. Majorization: Definition and Some Key Results An important class of Schur-concave functions is the fol-

We introduce the notion of majorization and recall some ke!())/W'ng (14, Theorem 3.C.1]).

results that we require in the derivation@f,,,, in Section llIl. Example 2.2:1f g: R — R is concave then the symmetric
We begin with some definitions. concave functionp(z) = £, g(x;) is Schur-concave.
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I1l. CHARACTERIZATION OF SUM CAPACITY constraints of the other users. More precisely, usemdefined
This section contains our main result, the characterizatiéh P& oversized if

of Cgum- In [7], an upper bound was derived f6t,,,, this K
upper bound being the sum capacity of the “unrestricted” J;pjl{?ﬂpj}
S-CDMA channel, i.e., the situation of no spreading when pi> 5)
N = 1 with the appropriate power constraint on its input (sum N = 1p5py
j=1

of the power constraints of the users givengy ). The latter
channel is just theK-user Gaussian multiple-access channel pDenote the set of oversized userskasA key observation

and its sum capacity is is the following: K is the uniquesubset of users satisfying
1 . .
C = -log (1 + pt;) (4) (N — |K|) minp; > E p; 2 (N — |K|)maxp;. (6)
2 o 1EX T 1ZK

(see [2, Ch. 7]) in bits per chip. When the input power gyma simple observations can now be made.
constraints are equal, it was shown in [7] that WBE signature

sequences (so called because they meet the Welch-Boundk) No user is oversized if and only & S| p; > p; for
Equality (see [11] and [5])) achieve sum capacity, and sum  €very userj.
capacity then equals the upper bou@id However, we will  2) When all the input power constraints are equal, no user
show that this bound is not tight for arbitrary values of the is oversized.
average input power constraints of the users and that there i§) There can be at mos¥ — 1 oversized users.
a strict loss in sum capacity when the power constraints are . , o

4) If a user: is oversized then every user with input power

“far apart;” we make this notion precise. . | ‘< al ized
When K < N, it is easy to verify that the sum capacity constraint at leasp; Is also oversized.

is achieved by signature sequences chosen orthogonal to eadh A simple algorithm to findC is the following:

other and we have Step 1 Start with K = &.
K Step 2 If E Py > (N — |IC|)man€;C Pj, then
1 Np; JEK
Coum = 5 Zlog 1+—5 ) terminate.
i=1 Step 3 Else, updateC = K U {arg Inélié(pj}.
Note that whenK = N and all the power constraings Step 4 Return to Step 2. !

are the sameCyy, = 1 log (14 Z5) the same as the sum
capacity of the system with no spreading; this is the well-
known fact that for equal-power users, orthogonal multiple Theorem 3.1:

We are now ready to state our main result.

access incurs no loss in capacity relative to unconstrained NY p;
multiple access. Whe&” = N and there is an asymmetry in N—IK|., jac’
the power constraints of the users, a simple argument shows Conm = IN log | 1+ (N — |K])o?

that Coum < C. When K < N the claim is thatC,,, < C.

To see this: observe thdp,,---,px) majorizes the vector 1 loe (1 Np; ;
(Beet,... Pt} (see Example 2.1). It can be verified that the TN Z og \1+—5 ) (7)
map i€k
K Proof. By definition, from (3)
1 z‘: 1 1 Np; P
e e S (1 22) (
ZN i=1 a? Coum = mMax max R;
SES ReC(S)
is Schur-concave (see Definition 2.3 and Example 2.2). Hence 1 ’ 1
= —log |det [ I + =SDS’
| N = pax gy log |det (14 55
Coum = 577 2108‘ <1 t 2 ) from (2), also see [7]
=1 N
1 N
K Npyo — max — o iy
<awos (14557 2oy 2 1+ 52) ®
<%10g (1+pt‘;) where \(S) = (NA((S),---,NAn(S)) € RY denotes the
g

vector of eigenvalues of the matrikD.St. Define the convex
where in the last step we used the inequality-=)® < 1+ax  SetA in the positive orthant oR™ by
for z >0 anda € (0,1). N
’ : : ={(M,---,Anv) €RY: (Ag,---, AN, 0,---,0
Henceforth we assum& > N. Say that a user isversized N ={ b ) ERps (Moo Ans 0,0, 0)
if its input power constraint is large relative to the input power majorizes(py, - -+, px)}-

1we would like to thank Prof. Sergio Veudor simplifying our presentation We first 'dent'fy th('_:' region of e|genvalues of the matrix
by suggesting this terminology. %SDSt as S varies inS to be exactlyA’. Formally, we
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claim that relation is true among the elements xf
* Ptot
1 Ay = max {T,pm}
TS SeSE=N. (9)
Prot — Z)\ k
First considerS € S. Let 5\(5) € RI‘ be the vector of )\[k-l-l] max N4/€7p[k+11 +Z (pm AE) ,
eigenvalues of the matri®)z S*S D> and observe thak(s5) i=1
is just the vectorA(S) with K — N appended zeros. The
observation that the diagonal elements Dz S'SD? are V=1 N—1 (12)

p1,- -+, pr coupled with an appeal to Lemma 2.1, allows us

to conclude that+A(S) € A. To see the other direction, Hencevk =1.--N —1 we can write
considerh = (A, -+, Ay) € M. Then, by definition, the vec-  #41 k41 N 1k
tor (A1,---, AN, 0,--+,0) majorizes the vectofp,, - -+, px). Z)\[ = max {E:p[Z p*"* N Z)‘E‘J}'
Appealing to Lemma 2.1, there exists a symmetric makfix - i=1

with eigenvalues\y,---,An,0,---,0 and diagonal elements (13)
pL, -, pi. Let vy, --- vy € RE be the normalized eigen- . N
vectors of H corresponding to the eigenvalugs, ---, \y.  NOW. sincer € A" we have} ;_, A; = pi. and hence

Let V' = {viv2---un}. If we let A to be the diagonal My 2 Bt Furthermore Ay > py. Hence
matrix with entries\,,---, Ay, thenH = V*AV. Now define Ao > mnax {p_o } -\
S = NA:VD~%. Then, since the square of tig norms (1) = WX ATy Ly = g

of the columns ofS are the diagonal elements 6FS, we  \we complete the proof of the claim thatmajorizes\* by
verify that $*'S = ND~2HD~z has diagonal entries equalinquction. Suppose

to NV concluding thatS € S. Th|s completes the proof of the
claim in (9) «
Then the sum capacity can be rewritten as, from (8), Z Al 2 Z Afi

for somel < k< N. Since

1 & N
csum = I)\né}/\); ﬁ Z 108 <1 + ;AZ> - (10) N—k _ k
i=1 Z Alk+i] = Prot Z A
i=1 i=1

The following lemma identifies a “minimal” element iN. 54
Recall that the set of oversized users is denoted’by

, Aor] 2 Aoy = 2 Ay
Lemma 3.1:Let A* = (Af,--,\%) € RY be etl] = Apt2] = 77 = AN]

we have
2D 2D k
o Fr7o iz’ pie K (1) Prot = 2. Al
- ? ? (3] . > —
- |’C| N — |’C| )\[k'f'l} = N —k
Hence
Then k41 k
Prot N 1
1) A e N. ZNMZN_k+< )ZNM
2) If X € N then A majorizes)*. i=1 171
L . N—k-1\ «
Suppose this is true. As observed earlier, the ma > _DProt *
PP P —N—k+< N—k)E:MJ
by induction hypothesis. (14)
(AL, -, AN) = == Z log < N )
SlncezZ 1 ()\[Z pp)) 2 0, from (14), we have

k k

is Schur-concave. Then (7) follows from (10) by an appeal tg: A > max { S5 pr Prot_ N—-Fk— Z A
Lemma 3.1 above and the proof is complete. We only need t6- b= N —k N-—k ]
prove the lemma above. Rl

Proof of Lemma 3.1:It is straightforward from the def- = Z Ay from (13).
inition of A* and properties of oversized users thate N. ‘
Let A = (Ar,---,An) € N and Ay, ---, Ay denote the  This is true for allk = 1--- N — 1. Hence\ majorizesA*
order statistics of\ (see Definition 2.1 for the notation). Byand A* is a Schur-minimal element df". This completes the
the definition ofA* in (11), it can be verified that the following proof of the lemma and hence that of the theorem. O
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As a corollary of Theorem 3.1, we have a necessary aadd hence

sufficient condition for wherts,,;, equals the upper bourd
(in (4)) Ty = (yla s Yk—1, QYK + (1 - a)ylayk-l-la L Yi-1,

ay + (1 - a)ykvyl-l—lv o '7yK)-

Corollary 3.1:
1 Diot The following is a fundamental result from the theory of
Conm = €' = 9 log (1 T2 ) majorization (Lemma 2.B.1 in [4]).
if and only if no user is oversized. Lemma 4.1:If z is majorized byy then there exists a se-
. . uence ofl-transformsiy, - - -, 7;, such thate = 1;, - - - 15T
The proof is obvious from Theorem 3.1. Theorem 3.1 alsgy | "~ ! 21y

shows that Whem“’t < Npi for some us’e’:n, then the USETS™  Eor notational simplicity we shall assume the largest number
power constraints are not “close enough” and the resulting sy

itV of th terd i strictl ler thanc. Thi ' T-transforms are required (this is the worst case) and let
cipam yt_o f FIJI Sys ? S““tlh'sfs rlccthy tsr:;]a erthanc. 1his — — g1 (there is no loss in generality, the arguments below
observation toflows from the tact that the map will only have to be slightly modified to take < K — 1 into

1N N\ account). Lety™ = T;y~1) andy(® = 4. Then the lemma
ALy An) = o > log <1 + O_;) says thatr = 3=, Let T} = ;I + (1 — a;)Q; where
i=1 Q; interchanges thé;th and/;th elements (sayk; <[;). The
is strictly Schur-concave (see Definition 2.3). proof of [4, Lemma 2.B.1] explicitly constructs (recursively)
the values ofw;, k; andl; thereby completely specifyin@;
for eachi = 1--- K — 1. An inspection of the same proof

] . i ) ) o _ (reproduced in the Appendix for completeness) also shows that
In this section we identify and provide an explicit algorithm

to construct signature sequences that achieve sum capacityi—1 < ki <l; <li—y and ki —ki_y+4_1 —1; > 1.

IV. CONSTRUCTION OFOPTIMAL SEQUENCES

given by Theorem 3.1. We first focus on the case considered (15)
in Corollary 3.1. This is the situation whef,,, is equal to
C, the capacity of the system with no spreading. Define U; as

Following the proof of Theorem 3.1, we observe that .
the sequences (indicated by the matfix for which sum U;(m,n) = { v Li(m, n), it m<n
capacity is achieved are precisely those with the property —vLi(m.n), else.
SDS' = pyoi I Where, as beforel) is a diagonal matrix with  Note that U(m,m) = 1 for all m # k;,I;. Also,
diagonal entrieg;, pz, - -+, px. We now outline an algorithm (7, (m n) = 0 for m # k; andn # I; and m <n. Hence
to construct such a matriX € S. Given anyz majorized byy, {; is a unitary matrix. LetH, = diag{y1, --,yx} and

the proof of [4, Theorem 982] (the statement of [4, Theoreqqi — U?-Hz—le Now consider the f0||owing claim for each
9.B.2] is contained in Lemma 2.1) indicates a recursive way— ... K — 1:

of constructing a symmetric matrix with vector of diagonal ‘

entries equal ta: and vector of eigenvalues equaktoBelow, y") is the vector of diagonal entries &f;. (16)

we outline an algorithm (recursive) that achieves the same . . .

goal as above but appears more direct than the classical proo§uppose thgt this is tyue. Then, givermajorized by?.’ we
indicated in [4, Theorem 9.B.2]. Also, this algorithm lead ave a recursive algorithm to construct a symmetric matrix

directly to the construction of optimal signature sequences, i.€,, _ Hyc—1 with vector of diagonal entries and vector of
construction ofS € S such thatSDS* = pyo. /. A somewhat eigenvalueg;. We only need to prove our claim in (16). We

; : : ; Il prove (16) by induction. The statement is trueifet 0
related construction appears in [6]. The following notation arfgr'a -
definitions are from [Z]p [6] g y definition. Let (16) be true for sone< ¢ < K — 1. Now

consider the following claim, for each < i < K

A. Constructing a Symmetric Matrix with Given Hi(kiz1,li41) =0. 17)
Diagonal Entries and Eigenvalues

A permutation matrix@Q € R*** is a matrix with each If this is true, then it is easy to verify that

entry equal to eithed or 1 such that each row and column Hi 1 (k
has exactly one entry equal to A T-transformis a doubly
stochastic matrix of the form

it1, kig1)
= i1 Hi(kig1, kiv1) + (1 — i) Hi(liga, liv1)

‘ : +1
- a7‘,+1yl(;)+1 + (1 - a7;+1)y1(21 = y’(;wrl)

T=oaol 1-—
ol +{1-)Q Hi1(liv1, liv)

for somea € {0,1}.and some permutation matri@_ with = ip1 Hillis1: lig1) + (1 — i1 ) H; (ki1 kig1)
K — 2 diagonal entries equal tb. To see the operation of a @) @) (1)
T-transform, Iety = (y1, s ,y[() € R¥. Let Qu=0un=1 = ai+1yli+l + (1 o ai+l)yki+l = yli+l :

for some indicest <. Then . L .
Hence H;,, has vector of diagonal entriegt). This

QUu="_(Y1, " Yke1- Yl Ykt 1y " s Yie1s ks Yib1s " YK ) completes the proof of the claim in (16) by induction. We show



VISWANATH AND ANANTHARAM: OPTIMAL SEQUENCES AND SUM CAPACITY OF CDMA SYSTEMS 1989

(17), by first showing that the following stronger statement B. Construction of Signature Sequences

true for eachl < i <K — 1 Let K = &, i.e., no user is oversized. Then the vector
Y = (Ptot, Prot> """ » Prot, 0, - - -, 0) with K — N entries equal
Hi(m,n) #0 form<n—m.n € {k. -, ki,li,---Li}.  to0, majorizes the vectar = (Npy,---, Npx). Lety©® =y
(18) and Hy = diag{y,---yx}. Following the algorithm in
the preceding subsection we have the sequence of unitary

An appeal to (15) coupled with the claim in (18) above thefatrices Uy, ---, Uk, such that theK x K symmetric
shows that (17) is true. We show (18) by induction. Expressidfatrix H = Uj._; ---UtHol - - Ux—, has diagonal entries
(18) is easily verified to be true far= 1: only H; (ky,l;) and Vp1, Np2,---, Npr and N eigenvalues (of multiplicity both
Hi(l1,k1) can be nonzero among nondiagonal entrieg{of a!gebra|c and geometric) equal t@.; and K.— N null
Suppose (18) is true for some< ¢ < K — 1. Now consider €igenvalues. Let/ = UU; --- Uk 1 Then the firstV rows
the following cases. of U (say, vi,---vy) are the normalized eigenvectors of

1) m # kip1 andn # L. ThenH(m,n) = Hy(m,n) H corresponding to the eigenvalyg,, and denoteV! =

H _ t
and (18) is true foii + 1 by the induction hypothesis. ﬁ”ll')' i}]\d} Then we can \g“]tfH E ij\tfotvfg' As _be;oT,
2) m = k41 andn # l;11. In this case, observe that et D = diag{ps,---,px}. Define theNV x K matrix S =
Pt VD™2. Since the diagonal entries ¢fS are all equal

. B - e H to N, we haveS € S. Furthermore, N eigenvalues of
it(kizr,n) = Y Uipr(ma, ki) Hi(my, ms) DzS$'SD? = H arepy; and K — N eigenvalues are null
mi,mg (notice that, by constructiol§D.S* = pyI). Thus for this

Uig1(ma,n) (19)  choice of signature sequenc8swe have, from (10), that
1 Dto
Sincen >m = k;;1 andn < [;41, we have Coum = 3 log (1 + ;zt)'

The following example illustrates this construction procedure.
Uiy1(ma,n) =0, if m2 #n. )
Example 4.1: Three users, processing gdin power con-

I . . straintsp; > po > p3 and > 2pq.
Continuing from (19), since thén,n) entry of U is P1 = P2 = P3 dllfProv = 2P

unity Condition p;; > 2p; is the same as the condition that the
sum of any two power constraints is lower-bounded by the
Hipi(kig1,n) = Z Uip1(ma, kiy1)Hi(my,n) third power constraint. We lef = 4 = (piot, prot, 0)" and

x = (2p1,2p2,2p3)t. Following the algorithmic procedure

outlined earlier, we have; = ;f’lt andk, = 1,1, = 3.

Hencey™ = (2p1, prot, Pros — 2p1)". In the second stage,

Ay = Bet=22 and ky = 2, lp = 3. Hencey® = z =

(2p1,2p2, 2p3)" and the unitary matrices

my

=1 Hi(kiy1,n) + /1 — aiqr

-Hi(lig1,mn).

Now if H,ii(k;+1,n) # 0O then at least one of

H;(k;iy1,n) and H;(I;41,n) is nonzero and (18) is VAL 0 (1=X)
true for¢ + 1 by the induction hypothesis. U= 0 1 0
3) n =Il;4+1 andm # k;11. This situation is analogous to —Vv({l=A) 0 VAL
the one above and an identical argument can be used to 1 0 0
show that (18) is true fof + 1. and s = |0 V2 VI=X|.
This completes the proof of (18) and the construction 0 —v(1-2) VX

procedure is validated. In the next subsection we utilize thisHence we have the matrices at the bottom of this page.
general construction procedure to construct optimal signatureThe signature sequence matixthen is as shown in the
sequences. second matrix at the bottom of this page.

VAL VA =2)A - X)) VAl —Ay)
Yy

U=UU,= 0 N 1—X
—VI—R% VM- VAR

VAL =/ =21 =X A2 (1 — X\

and V:{O VI W%( )V 1<_A2 >}

_\/(ptot - 2p1)(ptot - 2]72) \/(ptot - 2p1)(ptot - 2]73)

2p1p2 2p1p3
Prot (Prot — 2P3) Prot (Prot — 2P2)

2p1p2 2p1ps3

S = VD™ =
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It is easily verified that the three signature sequences (theExample 4.2: Three users, processing g&ln power con-
three columns ofS) have norm+y/2 and henceS € S. It straintsp; > p» > ps and p; > pa + ps.

can also be verified that with this choice of we have With these values of the power constraints, by an appeal to

t _
SDS” = puotd. . © Th|eorem 3.1 we have
In the special case when all the power constraints are equal
to sayp), thenp,ots = Kp > Np and hence 1 2 1 2
(to sayp) Prot = Kp > Np Conns = *log <1+i21>+_10g <1+ (szQrpz))
c 1 lox (1 Kp 4 o 4
sum — 5 og + ? M (21)

Furthermore, the sequence matsixonstructed above frol Let e1, e, be an orthonormal basis iR2. Following the
now satisfies the relatiofiS* = KI. This result was observed algorithmic procedure above we let = v/2e¢; and s, =
in [7] and the sequences that meet this constraint were denofed— ,/2¢,. With this choice of signature sequences, i.e.,
WBE sequences (such sequences were also identified in [§lhen § = {V/2e1v/2¢e2v/2¢,}, it is trivially verified that the

Our algorithm specialized to this situation constructs WBRaximum sum rate point in the capacity regiéfs) equals
sequences for arbitrarf( > N. Generalized WBE sequencesc_ . in (21). &

also turn out to be optimal in a completely different context
of maximizing the signal-to-interference ratio of the users in a
single-cell power-controlled synchronous CDMA system with
linear multiuser receivers in [10]. We have completely characterized the sum capacity of a

Now we focus on the general situation whefy, > Np; multiuser synchronous CDMA system. This characterization
for eachi need not be satisfied. Without loss of generalitygllowed us to derive necessary and sufficient conditions on

V. SUMMARY AND CONCLUSION

let p1 > p2 > --- > pg. Let ¢ € RN be the vector the power constraints of the users so that for some choice of
(0,0,---,0,1,0,---,0) with the entry 1 being in theith signature sequences the sum capacity of the system equals that
position. Therey, - - -, ey form an orthonormal basis f@&®”~. of the system with no spreading, namely,

Suppose the power constraints satisfy

k—1 k C= % log (1 + p;;t)
ij + (N =k + Dpr > prot 2 ij + (N = k)pry
j=1 j=1 We also identified the signature sequences that achieved sum
(20) capacity and proposed a simple algorithm to construct them. A
) byproduct of the construction scheme is the following simple
for somek € {1,2,---, N —1}. Observe that (20) is always 5;mmarizing interpretation: Let the power constraints of the
true fo]rvsomz unique (depen_?rl]n?G())n rt1he p(?[\;]vetr co;stra}mgs) K users satisfy; > ps > -+ > pi.
Drot < Np1. A comparison wi shows that usets - -, ) -
are oversized. Thre)n, for=1,---,k let s; = VNe;. We 1) Step 1 It < N the sum capacity is

shall now choose the signature sequenegs,,---,sx for T No:
the remainingK — k users from the subspace spanned by Coum = — Z log <1+ 12%).
{ex41,---»en} Which has dimensionV — k. Since 2N o ¢
K The choice of orthogonal signature sequences for the
Z pi 2 (N = K)pies1 users is optimal and achieves sum capacity. Unless
=kl K =N andp, =p; = --- = px = p, the sum capacity
from (20), we can appeal to the algorithm used previously to  is strictly less than
construct sequences1, - -, sx that have the property 1
K K C=log (1 + ptgt)
" 0 0 2 o
S = (S8 10 .
i=k+1 i=k+1 2) Step 2: LetK > N henceforth. Ifpi.y > Np1, then

where In_y, is the identity matrix of dimensiofN — k) x 1

i . o ) A ) . C — O ="1oe (1 Ptot
(N — k). Itis easily verified that with this choice of signature sum = & = 5 108 + o2 )
sequences the sum capacity (given in (7))

The algorithm we derived in Section IV can be used

Nk N(Ei[ik+1pi) to construct signature sequences which achieve sum
Csum = o log | 1+ TN ko2 capacity.
3) Step 3: Suppos&p; > piot- Then we let user 1 have an

1 o Np; :
+ o Z log [ 1+ 2 to all the other signature sequences) and then reduce the
i=1 problem toK —1 users in a system with processing gain
is achieved. We illustrate this construction with a simple  V — 1. The resulting sum capacity is strictly smaller
example. than C.

) independent channel (we do this by lettisigorthogonal
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The allocation of signature sequences so as to achievdt is easy to verify thatv € (0,1) and that

sum capacity emphasizes the “unfairness” of the performance
criterion Cyyr,. When

N-2

Z Pi + 2PN—1 > Prot

=1

v =ay+(1—-a)(y,- -

Y Yi—1, Yk, Y41 Yk—1,

ijyk-l-lv"'vyl()'

Thusy* = Ty for T = al+(1—«)@Q, where( interchanges

the first N — 1 users (these users have the largest valuesthe jth andkth coordinates. The claim is that majorizesz.
p; and hence the weakest power constraints) are allocatf&s see this, note that
orthogonal signature sequences (independent channels and are

hence allowed to transmit at higher rates) while the other

i

K — N + 1 users share a common channel. In a wireless (N =1--,5-1
system, some users might be far away from the base station s=1 s=1 s=1

and their received powers will be correspondingly lower than Y 25, Y5 = Ys, s=g+1,-- k-1
users which are close to the base station. It is desirable in ¢ l l

a practical system that resource allocation based on some Zy§ = Zys 2 sz, I=k+1,--- K
choice of performance criterion of the system be “fair” to s=1 s=1 s=1

the users. Hence it is important to address fairly the situation X K K

of asymmetric power constraints on the users. One way to Zyi = Zys = sz-

do this is to change the performance criterion to a weighted s=1 s=1 s=1

linear combination of the rates of the users, the weights in

inverse proportion to the path gains of the users to the basdor any two vectorsu,v let d(v,v) be the number of
station. A second way is to consider the “symmetric capacitjtonzero differences; —v;. Sincey; = x; if 6 = y; —2; and
defined in [7]. The symmetric capacity is the sum rate of thg = zx if & = zx —yx, it follows thatd(z, y*) < d(z,y) — 1.
maximum achievable equal-rate point in the union capacitjence,z can be derived fromy by successive applications
region C = UscsC(S). These questions will be answerecf a finite number of T-transformations. Sindéz,y) < K

K K

if the characterization of the entire union capacity regibn and d(z,y) # 1 (otherwise,> ", s # > .., vys) at most

is done. Our current efforts are directed towards solving thig& — 1) T-transformations are required.

important open question.

In this paper we have focussed on symbol-synchronous
CDMA systems. Indeed, most existing capacity results except
[1], [9] pertain to the symbol-synchronous case. The extensioft
of our results to the asynchronous situation is also interesting
and is an important open problem. (2]

(3]
(4]
(5]

APPENDIX
PROOF OF LEMMA 4.1

We reproduce here for completeness the proof that i
majorized byy thenz may be derived fromy by successive
applications of T-transforms (utmo&t — 1 applications) from
the classical text [3].

Let = be majorized by. We assume that is not obtainable
from y by permuting elements of;, else the statement is [7]
trivially true. Without loss of generality, let; > -+ > xx
andy; > --- > yg. Let j be the largest index such that [8]
x; <y;, and letk be the smallest index greater thgrsuch
thatxzy. > . Such a paiy, £ must exist, since the largest index [g]
¢ for which z; # 1; must satisfyz; > y;. By choice ofj and
k, we havey; > z; > x> ys. Let 6 = min (y; — 25, . — yr)

andl — o = —— and let
Yi—Yr

(6]

[10]

y* = (y17 Ly Yi—1,Y5 — 67 Yi+1, 3y Y—1,Yk + 67 (1]

Y41, 7211()-

O
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Bounds on the Information Rate of
Intertransition-Time-Restricted Binary
Signaling Over an AWGN Channel

Naftali Chayat,Associate Member, IEEEand Shlomo Shamai (Shitzfgllow, IEEE

Abstract—Upper and lower bounds on the capacity of a
continuous-time additive white Gaussian noise (AWGN) channel Channel
with bilevel (++/P) input signals subjected to a minimum inter- Filter
transition time (7,.:,) constraint are derived. The channel model h(t)
and input constraints reflect basic features of certain magnetic
recording systems. The upper bounds are based on Duncan’s
relation between the average mutual information in an AWGN n®
regime and the mean-square error (MSE) of an optimal causal
estimator. Evaluation or upper-bounding the MSE of suboptimal
causal estimators yields the desired upper bounds. The lower jnayed more realistic predictions of the ultimate perfor-
bound is found by invoking the extended “Mrs. Gerber's” Lemma . . . .
and asymptotic properties of the entropy of max-entropic bipolar man_ce limits of the rglevam mformat_lon—conveylng systgr_ns.
(d, k) codes. It is known that with no channel filter (that is, an infinite

Asymptotic results indicate that at low SNR= PT..;./No, with bandwidth channel) employing bipolar input (taking on the
No designating the noise one-sided power spectral density, theyalues ++/P) does not reduce the classical average-power
capacity tends toP/N, nats per second (nats/s), i.e., it equals the limited, AWGN infinite bandwidth channel capacit?/N,
capacity in the simplest average power limited case. At high SNR, ’ d | hefe ds for the i
the capacity behaves asymptotically ag .} In (SNR/In (SNR)) nats per second (nats/s) w stands or the input power
(nats/s), demonstrating the degradation relatively to7;; In SNR, ~andNy stands for the power spectral density of the AWGN [2,
which is the asymptotic known behavior of the capacity with and references therein]. In [3] it has been proved that for any
a bilevel average intertransition-time (7., ) restricted channel square integrable channel filter impulse response the bipolar
input. Additional ‘lower bounds are obtained by considering —,nsirained input attains the same capacity as is achieved by an

specific signaling formats such as pulsewidth modulation. The . S . .
effect of mild channel filtering on the lower bounds on capacity is aroitrary peak limited inputs, that ig(t)| < VPVt Lower

also addressed, and novel techniques to lower-bound the capacitybounds on the capacity were derived in [3] and tightened in
in this case are introduced. [4] and [5]. Upper bounds, which are strictly lower than the
Index Terms—Channel capacity, constrained bipolar inputs, 2Verage-power constrained capacity were presented in [6]. The

information rates, intertransition time, magnetic recording, Mrs.  channel introduced in [3] (see Fig. 1) has been suggested as a
Gerber's lemma. simplified model of a certain magnetic recording systems and
capacity calculations for specific parameters were reported in
[7] and [8].

) ] N ) ) ~In [3] and [6] no further constraints were imposed on the

I HE capacity of a filtered additive white Gaussian noisgipolar inputs and the very basic result in [3] on the equiv-

1 (AWGN) channel with bipolar (bilevel binary) inputs, de-glence of the capacities of peak-power-limited and bipolar
picted in Fig. 1 wheres(t), r(t), andn(t) stand, respectively, jnputs, implies an unbounded transition rate bipolar input. This
for the input, output, and the AWGN processes, and whegysically impractical demand fails to capture the “bandwidth-
g(t) is the channel filter impulse response, has been intensivga” |imitation of the input process imposed by practical
studied with increased interest in the last decade. This ingnsiderations and inherent system restrictions. In [9] the
constraint characterizes a variety of communication systenggect of the average transition rate of the bipolar input process
and in particular is relevant to most variants of magnetic arRgh ypper bounds on capacity has been addressed. The random
optical recording systems [1]. The dominant motivation fog|egraph bipolar input with a given transition rate has been
this endeavor is to try and capture the information-theorefignsidered in [2] where its asymptotic (signal to noise ratio
implications of the bipolar input constraint and thus prowd@SNR) — o) optimality is established under an average

_ _ _ (rather than minimal) intertransition duration constraint.

Manuscript received December 23, 1997; revised March 10, 1999. Th|sA tural traint the t | iati f a binol
work was supported by the Fund for the Promotion of Research at the nF:l ura an_s rain On_ € tempora Va”"f‘_lon ora !pO ar
Technion. input is the minimal duration between transitions, that is, the

The authors are with Technion-Israel Institute of TeChnOlOgy, Haifa 32009me between Consecutlve tranSItlonS of the Input Slgnals |S
Israel. . . .

no shorter thanl,,;,, seconds. This is a typical constraint

Communicated by K. Zeger, Associate Editor At Large. : ) ) . ; - o
Publisher Item Identifier S 0018-9448(99)06025-3. in a magnetic recording system which is aimed to prohibit

Intertransition-time
limited binary input
—_—

Fig. 1. Channel model.
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closely spaced transitions as to mitigate heavy deleteridnsunds exhibit an asymptot{SNR — oo) behavior of
intersymbol interference (ISI) effects [1]. Further, the linear 1, . SNR [4e\ [ T
channel model for magnetic recording collapses when closely §Tmin 1 <1n SNR(?) < Tr ))

spaged consecultive transitions take place [3], [10] and nonligrere the facton /2 is attributed to the smoothing effect of
ear mtersymbql mterference emerges. The yvell—andgrpo) the channel filter [2] and}un/T+ represents the normalized
(or runlength-limited) codes [1], [11] constitute the dlscretemtering bandwidth.

time version of the minimum intertransition time-constrained
signals and the capacity of these has been examined for the II. HIGH-SNR ASYMPTOTICS
discrete-time AWGN channel in [12] and [13]. In [14] and

[15], runlength-limited codes were examined in a channel To the end of comparing various bounds on MID-
' 9 constrained capacity to be derived in this paper, we present

the output O_f_Whi_Ch comprises jittered (noisy) observatior}ﬁst the asymptotic high-SNR behavior of this capacity, relying
of the transition instants. A guard-space random telegragf ihe results and methods discussed in 2].

process which satisfies the minimal intertransition duration |, [2], the case ofl,,,-limited bipolar signaling was ad-

(MID) constraint (7},,;u) has been considered in [2], wherjressed. High-SNR treatment revealed that the asymptoti-
asymptotic (high-SNR) results for the capacity were reporteghlly capacity-achieving waveform is a random telegraph
Related results on the capacity and cutoff rates of filteregaveform (RTW). The capacity was shown to behave as
continuous-time and discrete-time AWGN channels with peals ! In (kT /0:) where thes, is the RMS error for esti-
power-limited and/or slope-limited input signals can be founghating the time of transition, and the factbris related to
in [16]-[18] and references therein. the distribution of this error. In the case of unfiltered channel,
In this work we focus on bipolar inputs with the MIDthe distribution is a two-sided exponential, = No/2P =
(Tinin) constraint and investigate the effect’fif;, on Cyvm, Thavg/2SNR andk = 1/2. In the case o(g filtered cha(;mhel,
the achievable information capacity of the AWGN channell€ transition instant estimation error is Gaussian, and hence
We mainly specialize to the infinite bandwidth channel (th& = vV No/2832P o Tavg/vSNR andk = \/c/2w, where
is, no channel filter) leaving thu$%,,;, to reflect the basic 2 "
temporal-variation restriction of the input waveform. In the pm=/p) /_Oo 9(t)g"(t) dt
next section, the asymptotic behavior of the MID-constrained . . .
capacity is addressed in view of the results in [2]. In Sectioahnd g.(.t) is the transmo_n shape. In the case of linear slope
t(rjasnsmons (rectangular impulse response filter) of durdtipn

lll, upper bounds on the capacity are evaluated. The bounan example to be used later yieldd — 4/Ty and

are based on Duncan’s theorem [19] which relates in the
AWGN regime the average mutual information to the mean- 01 = V/TrNo/8P = \/ToysTr /8SNR

square error (MSE) of the optimal causal estimator. Linear, o

suboptimum nonlinear, and improved nonlinear estimators drérther, [2] addressed th,,;,-limited case and showed the

introduced, and the resultant upper bounds on capacity Hgh-SNR behavior to b, In (k(Zavg — Timin)/ot), With

explicitly derived. Lower bounds on capacity are found ifhe 5'9”?"”9 Wa"e,form being .th(_e 'guard-t.lme RTV.V'
Section 1V, where results on maxentropic runlength-limite Capacity IS obtained by maximizing Fhe !nformatlon _transfer
sequences are combined with the extended “Mrs. GerbergT) rate with respect to signal distribution. Assuming that

. : for the givenZ ., and 1y, Z7 is maximized by guard-
Lemma [20]. Comparisons are made to the achievable e RT\QIJV and is. as mentgioned given BL hl(k{ng _
) 1 1 Vg av;

formation rates of binary pulse amplitude modulation (PAMhnn)/at), the 77 for the T -limited case is obtained
and pulsewidth-modulation (PWM) signaling as well as to thgy maximization of Z7 (Zyim, Tavs, SNR) with respect to
random telegraph wave with and without a guard time intervat ~ ~ 7 . ; i

Among other results it is concluded that for asymptot{ijlil’avg = Tin- Let Us define a junctlonF(a) >y
cally high values of SNR= PTiin/No (SNR — o) the F(a) = max 27" In afz —1). 1)
capacity behaves likg ! In (SNR/In SNR) nats/s, while

for asymptotically low SNR value§SNR — 0) the expected
P/Ny (nats/s) behavior is evidenced. In Section IV, the IT (Tmin, SNR) = T, i1 F (KT in/ ). 2)

effect of a mild lowpass channel filter on the capacity Iowe]|:he asymptotic behavior af () is studied in Appendix B
bounds is considered. This result is found by embeddingq is shown to beF (o) ~ In(a/In ). From here we

the basic bounding technique employed in Section IV whichy, immediately deduce that the high-SNR behavior of the
is based on the extended “Mrs. Gerber's” Lemma into thgp capacity in the unfiltered case &7 (L, SNR) ~

Shamai—Ozarow-Wyner (SOW) lower bound [4] on the cg ! 1n(SNR/In SNR), and in the mildly filtered case the
pacity of a discrete time AWGN channel with ISI. For a milchehavior is

window-integrator channel filter of integration timEr <
Tmin, lower bounds on capacity are found using the Fano
inequality along with upper bounds on the error probabilitin the following these asymptotics will be used as a baseline
of a set of carefully selected equi-energy signals. The latier which the various bounds will be compared.

oo

It follows then that

TT (Toin, SNR) =~ T_1 (1/2) In (SNR/In SNR).

min



