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Optimal Sequences and Sum Capacity
of Synchronous CDMA Systems

Pramod Viswanath,Student Member, IEEE, and Venkat Anantharam,Fellow, IEEE

Abstract—The sum capacity of a multiuser synchronous CDMA
system is completely characterized in the general case of asym-
metric user power constraints—this solves the open problem
posed in [7] which had solved the equal power constraint case.
We identify the signature sequences with real components that
achieve sum capacity and indicate a simple recursive algorithm
to construct them.

Index Terms—Capacity region, CDMA, optimal signature se-
quences, sum capacity.

I. INTRODUCTION

A N important multiple-access technique in wireless net-
works and other common channel communication sys-

tems is Code-Division Multiple Access (CDMA). Each user
shares the entire bandwidth with all the other users and
is distinguished from the others by itssignature sequence
or code. Each user spreads its information on the common
channel through modulation using its signature sequence.
Then, the receiver demodulates the transmitted messages upon
observing the sum of the transmitted signals embedded in
noise. We focus on symbol-synchronous CDMA (S-CDMA)
systems where in each symbol interval the received signal is
the sum of the transmitted signals in that symbol interval alone
embedded in additive white Gaussian noise.

Of fundamental interest in this system is the capacity region
defined as the set of information rates at which users can
transmit while retaining reliable transmission. This problem
was addressed in [8] and the capacity region was characterized
as a function of the signature sequences and average input
power constraints of the users. However, the choice of the
signature sequences of the users is left open to the designer
of the CDMA system and it was suggested in [8] that the
signature sequences could be optimized given the constraints
of the problem. We address this issue and focus on finding the
“sum capacity” (maximum sum of the achievable rates of all
users per unit processing gain; maximum over all choices of
signature sequences).

This problem has been attempted in [7] where the authors
derive an upper bound on the sum capacity. This upper
bound is the capacity of the system with
“no spreading,” i.e., of the system with processing gain
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and an appropriate power constraint on its input (, sum
of power constraints of the users) and is the variance
of the additive white Gaussian noise. This result assumed
that the signature sequences had real components (as opposed
to components in ; the problem of characterizing
sum capacity with this constraint remains open) and we
retain this assumption in this paper. It turns out that this
upper bound on sum capacity is not achievable for all val-
ues of the average input power constraints of the users. In
this paper, we completely characterize sum capacity of the
S-CDMA channel. We identify the sequences (as a function
of the average input power constraints of the users) that
achieve sum capacity (calledoptimal sequences), and discuss
some algorithmic ways to construct them. Our main result,
the complete characterization of sum capacity, allows us to
conclude.

1) A user is said to beoversizedif its input power constraint
is large relative to the input power constraints of the
other users. The optimal signature sequence allocation
is to allocate orthogonal sequences (hence independent
channels) to oversized users.

2) Nonoversized users are allocated sequences that
we denote generalized Welch-Bound-Equality (WBE)
sequences.

3) Sum capacity is equal to (the upper
bound derived in [7]) if and only if no user is oversized.

This paper is organized as follows: We discuss the model
of the S-CDMA system briefly and recall the characterization
of the capacity region for fixed choice of signature sequences
in Section II. Section II also develops some notation we will
require in the derivation of our main result. Our main result,
the characterization of sum capacity, is in Section III. In
Section IV, we outline an algorithm to construct the optimal
signature sequences (namely, generalized WBE sequences).
This algorithmic procedure is exemplified by a system with
three users and processing gain. The results are summarized
in Section V which also contains some concluding remarks.

II. S-CDMA MODEL AND NOTATION

A. S-CDMA Channel and Capacity Region

We consider the discrete-time, baseband S-CDMA channel
model. There are users in the system and the processing
gain is Both and will be fixed throughout this paper.
Since we have assumed a synchronous model we can restrict
our attention to one symbol interval. As is traditional, we
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model the information transmitted (symbol) by each user as
independent random variables We assume that
there is an average input power constraint on the transmit
symbols given by

Let and the maximum total average
input power be Let the signature sequence of
user be represented by , a vector in Each signature
sequence has power equal to, i.e., for each user, we
have We assume an ambient white Gaussian noise,
denoted by independent of the transmitted
symbols. Then the received signal, represented by, can be
written as

Let us represent the matrix by The S-
CDMA channel above is a special case of the-user Gaussian
multiple access channel and the capacity region (set of rates
at which reliable communication is possible) is well known
(see [2, Sec. VII]) as the closure of the convex hull of the
union over all product probability densities on the inputs

of the rate regions

(1)

Continuing as in [7], the union region over the product
distributions, as a function of , can be simply written as

(2)

where is a nonnull set and is the rate in bits per chip of
user Here, is matrix and is the

matrix Observe that the choice of
product distribution for each user distributed as
makes the region in (1) equal to that in (2). Sum capacity
represents the maximum sum of rates of all users per unit
processing gain at which users can transmit reliably. Following
the notation in [7], the sum capacity is defined formally as

(3)

where is the set of all real matrices with all columns
having norm equal to

B. Majorization: Definition and Some Key Results

We introduce the notion of majorization and recall some key
results that we require in the derivation of in Section III.
We begin with some definitions.

Definition 2.1: For any , let

denote the components of in decreasing order, called the
order statisticsof

Majorization makes precise the vague notion that the com-
ponents of a vector are “less spread out” or “more nearly
equal” than are the components of a vectorby the statement

is majorized by

Definition 2.2: For , say that is majorized by
(or majorizes ) if

A comprehensive reference on majorization and its appli-
cations is [4]. A simple (trivial, but important) example of
majorization between two vectors is the following:

Example 2.1:For every such that

majorizes

It is well known that the sum of diagonal elements of a
matrix is equal to the sum of its eigenvalues. When the matrix
is symmetric theprecise relationship between the diagonal
elements and the eigenvalues is that of majorization:

Lemma 2.1 ([4, Theorem 9.B.1 and 9.B.2]):Let be a
symmetric matrix with diagonal elements and
eigenvalues we have

majorizes

That and cannot be
compared by an ordering stronger than majorization is the
consequence of the following converse: If
and are numbers such that majorizes , then
there exists a real symmetric matrix with diagonal elements

and eigenvalues
We will also need the following definition:

Definition 2.3: A real-valued function is said
to be Schur-concave if for all such that majorizes

we have Say that is strictly Schur-concave
if majorizes and implies that

An important class of Schur-concave functions is the fol-
lowing ([4, Theorem 3.C.1]).

Example 2.2: If is concave then the symmetric
concave function is Schur-concave.
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III. CHARACTERIZATION OF SUM CAPACITY

This section contains our main result, the characterization
of In [7], an upper bound was derived for , this
upper bound being the sum capacity of the “unrestricted”
S-CDMA channel, i.e., the situation of no spreading when

with the appropriate power constraint on its input (sum
of the power constraints of the users given by The latter
channel is just the -user Gaussian multiple-access channel
and its sum capacity is

(4)

(see [2, Ch. 7]) in bits per chip. When the input power
constraints are equal, it was shown in [7] that WBE signature
sequences (so called because they meet the Welch-Bound-
Equality (see [11] and [5])) achieve sum capacity, and sum
capacity then equals the upper bound However, we will
show that this bound is not tight for arbitrary values of the
average input power constraints of the users and that there is
a strict loss in sum capacity when the power constraints are
“far apart;” we make this notion precise.

When , it is easy to verify that the sum capacity
is achieved by signature sequences chosen orthogonal to each
other and we have

Note that when and all the power constraints
are the same, the same as the sum
capacity of the system with no spreading; this is the well-
known fact that for equal-power users, orthogonal multiple
access incurs no loss in capacity relative to unconstrained
multiple access. When and there is an asymmetry in
the power constraints of the users, a simple argument shows
that When the claim is that
To see this: observe that majorizes the vector

(see Example 2.1). It can be verified that the
map

is Schur-concave (see Definition 2.3 and Example 2.2). Hence

where in the last step we used the inequality
for and

Henceforth we assume Say that a user isoversized1

if its input power constraint is large relative to the input power

1We would like to thank Prof. Sergio Verd´u for simplifying our presentation
by suggesting this terminology.

constraints of the other users. More precisely, useris defined
to be oversized if

(5)

Denote the set of oversized users asA key observation
is the following: is theuniquesubset of users satisfying

(6)

Some simple observations can now be made.

1) No user is oversized if and only if for
every user

2) When all the input power constraints are equal, no user
is oversized.

3) There can be at most oversized users.

4) If a user is oversized then every user with input power
constraint at least is also oversized.

5) A simple algorithm to find is the following:
Step 1 Start with
Step 2 If then

terminate.
Step 3 Else, update

Step 4 Return to Step 2.

We are now ready to state our main result.

Theorem 3.1:

(7)

Proof: By definition, from (3)

from (2), also see [7]

(8)

where denotes the
vector of eigenvalues of the matrix Define the convex
set in the positive orthant of by

majorizes

We first identify the region of eigenvalues of the matrix
as varies in to be exactly Formally, we
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claim that

(9)

First consider Let be the vector of
eigenvalues of the matrix and observe that
is just the vector with appended zeros. The
observation that the diagonal elements of are

coupled with an appeal to Lemma 2.1, allows us
to conclude that To see the other direction,
consider Then, by definition, the vec-
tor majorizes the vector
Appealing to Lemma 2.1, there exists a symmetric matrix
with eigenvalues and diagonal elements

Let be the normalized eigen-
vectors of corresponding to the eigenvalues
Let If we let to be the diagonal
matrix with entries then Now define

Then, since the square of the norms
of the columns of are the diagonal elements of , we
verify that has diagonal entries equal
to concluding that This completes the proof of the
claim in (9).

Then the sum capacity can be rewritten as, from (8),

(10)

The following lemma identifies a “minimal” element in
Recall that the set of oversized users is denoted by

Lemma 3.1:Let be

(11)

Then

1) .
2) If then majorizes .

Suppose this is true. As observed earlier, the map

is Schur-concave. Then (7) follows from (10) by an appeal to
Lemma 3.1 above and the proof is complete. We only need to
prove the lemma above.

Proof of Lemma 3.1:It is straightforward from the def-
inition of and properties of oversized users that
Let and denote the
order statistics of (see Definition 2.1 for the notation). By
the definition of in (11), it can be verified that the following

relation is true among the elements of

(12)

Hence we can write

(13)

Now, since we have and hence
Furthermore, Hence

We complete the proof of the claim thatmajorizes by
induction. Suppose

for some Since

and

we have

Hence

by induction hypothesis. (14)

Since from (14), we have

from (13).

This is true for all Hence majorizes
and is a Schur-minimal element of This completes the
proof of the lemma and hence that of the theorem.
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As a corollary of Theorem 3.1, we have a necessary and
sufficient condition for when equals the upper bound
(in (4)).

Corollary 3.1:

if and only if no user is oversized.

The proof is obvious from Theorem 3.1. Theorem 3.1 also
shows that when for some user, then the users’
power constraints are not “close enough” and the resulting sum
capacity of the system is strictly smaller than This
observation follows from the fact that the map

is strictly Schur-concave (see Definition 2.3).

IV. CONSTRUCTION OFOPTIMAL SEQUENCES

In this section we identify and provide an explicit algorithm
to construct signature sequences that achieve sum capacity
given by Theorem 3.1. We first focus on the case considered
in Corollary 3.1. This is the situation when is equal to

, the capacity of the system with no spreading.
Following the proof of Theorem 3.1, we observe that

the sequences (indicated by the matrix) for which sum
capacity is achieved are precisely those with the property

where, as before, is a diagonal matrix with
diagonal entries We now outline an algorithm
to construct such a matrix Given any majorized by ,
the proof of [4, Theorem 9.B.2] (the statement of [4, Theorem
9.B.2] is contained in Lemma 2.1) indicates a recursive way
of constructing a symmetric matrix with vector of diagonal
entries equal to and vector of eigenvalues equal toBelow,
we outline an algorithm (recursive) that achieves the same
goal as above but appears more direct than the classical proof
indicated in [4, Theorem 9.B.2]. Also, this algorithm leads
directly to the construction of optimal signature sequences, i.e.,
construction of such that A somewhat
related construction appears in [6]. The following notation and
definitions are from [4].

A. Constructing a Symmetric Matrix with Given
Diagonal Entries and Eigenvalues

A permutation matrix is a matrix with each
entry equal to either or such that each row and column
has exactly one entry equal to. A T-transformis a doubly
stochastic matrix of the form

for some and some permutation matrix with
diagonal entries equal to. To see the operation of a

T-transform, let Let
for some indices Then

and hence

The following is a fundamental result from the theory of
majorization (Lemma 2.B.1 in [4]).

Lemma 4.1: If is majorized by then there exists a se-
quence of -transforms such that
and

For notational simplicity we shall assume the largest number
of T-transforms are required (this is the worst case) and let

(there is no loss in generality, the arguments below
will only have to be slightly modified to take into
account). Let and Then the lemma
says that Let where

interchanges the th and th elements (say, ). The
proof of [4, Lemma 2.B.1] explicitly constructs (recursively)
the values of and thereby completely specifying
for each An inspection of the same proof
(reproduced in the Appendix for completeness) also shows that

and

(15)

Define as

if
else.

Note that for all Also,
for and and Hence

is a unitary matrix. Let and
Now consider the following claim for each

:

is the vector of diagonal entries of (16)

Suppose that this is true. Then, givenmajorized by we
have a recursive algorithm to construct a symmetric matrix

with vector of diagonal entries and vector of
eigenvalues We only need to prove our claim in (16). We
shall prove (16) by induction. The statement is true for
by definition. Let (16) be true for some Now
consider the following claim, for each

(17)

If this is true, then it is easy to verify that

Hence has vector of diagonal entries This
completes the proof of the claim in (16) by induction. We show
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(17), by first showing that the following stronger statement is
true for each :

(18)

An appeal to (15) coupled with the claim in (18) above then
shows that (17) is true. We show (18) by induction. Expression
(18) is easily verified to be true for : only and

can be nonzero among nondiagonal entries of
Suppose (18) is true for some Now consider
the following cases.

1) and . Then
and (18) is true for by the induction hypothesis.

2) and . In this case, observe that

(19)

Since and we have

if

Continuing from (19), since the entry of is
unity

Now if then at least one of
and is nonzero and (18) is

true for by the induction hypothesis.
3) and . This situation is analogous to

the one above and an identical argument can be used to
show that (18) is true for

This completes the proof of (18) and the construction
procedure is validated. In the next subsection we utilize this
general construction procedure to construct optimal signature
sequences.

B. Construction of Signature Sequences

Let , i.e., no user is oversized. Then the vector
with entries equal

to , majorizes the vector Let
and Following the algorithm in
the preceding subsection we have the sequence of unitary
matrices such that the symmetric
matrix has diagonal entries

and eigenvalues (of multiplicity both
algebraic and geometric) equal to and null
eigenvalues. Let Then the first rows
of (say, ) are the normalized eigenvectors of

corresponding to the eigenvalue and denote
Then we can write As before,

let Define the matrix
Since the diagonal entries of are all equal

to , we have Furthermore, eigenvalues of
are and eigenvalues are null

(notice that, by construction, Thus for this
choice of signature sequences, we have, from (10), that

The following example illustrates this construction procedure.

Example 4.1:Three users, processing gain, power con-
straints and .

Condition is the same as the condition that the
sum of any two power constraints is lower-bounded by the
third power constraint. We let and

Following the algorithmic procedure
outlined earlier, we have and

Hence In the second stage,
and Hence
and the unitary matrices

and

Hence we have the matrices at the bottom of this page.
The signature sequence matrix then is as shown in the

second matrix at the bottom of this page.

and
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It is easily verified that the three signature sequences (the
three columns of ) have norm and hence It
can also be verified that with this choice of we have

In the special case when all the power constraints are equal
(to say ), then and hence

Furthermore, the sequence matrixconstructed above from
now satisfies the relation This result was observed
in [7] and the sequences that meet this constraint were denoted
WBE sequences (such sequences were also identified in [5]).
Our algorithm specialized to this situation constructs WBE
sequences for arbitrary Generalized WBE sequences
also turn out to be optimal in a completely different context
of maximizing the signal-to-interference ratio of the users in a
single-cell power-controlled synchronous CDMA system with
linear multiuser receivers in [10].

Now we focus on the general situation when
for each need not be satisfied. Without loss of generality,
let Let be the vector

with the entry being in the th
position. Then form an orthonormal basis for
Suppose the power constraints satisfy

(20)

for some Observe that (20) is always
true for some unique (depending on the power constraints)if

A comparison with (6) shows that users
are oversized. Then, for let We
shall now choose the signature sequences for
the remaining users from the subspace spanned by

which has dimension Since

from (20), we can appeal to the algorithm used previously to
construct sequences that have the property

where is the identity matrix of dimension
It is easily verified that with this choice of signature

sequences the sum capacity (given in (7))

is achieved. We illustrate this construction with a simple
example.

Example 4.2:Three users, processing gain, power con-
straints and

With these values of the power constraints, by an appeal to
Theorem 3.1 we have

(21)

Let be an orthonormal basis in Following the
algorithmic procedure above we let and

With this choice of signature sequences, i.e.,
when , it is trivially verified that the
maximum sum rate point in the capacity region equals

in (21).

V. SUMMARY AND CONCLUSION

We have completely characterized the sum capacity of a
multiuser synchronous CDMA system. This characterization
allowed us to derive necessary and sufficient conditions on
the power constraints of the users so that for some choice of
signature sequences the sum capacity of the system equals that
of the system with no spreading, namely,

We also identified the signature sequences that achieved sum
capacity and proposed a simple algorithm to construct them. A
byproduct of the construction scheme is the following simple
summarizing interpretation: Let the power constraints of the

users satisfy

1) Step 1: If the sum capacity is

The choice of orthogonal signature sequences for the
users is optimal and achieves sum capacity. Unless

and , the sum capacity
is strictly less than

2) Step 2: Let henceforth. If then

The algorithm we derived in Section IV can be used
to construct signature sequences which achieve sum
capacity.

3) Step 3: Suppose Then we let user 1 have an
independent channel (we do this by lettingorthogonal
to all the other signature sequences) and then reduce the
problem to users in a system with processing gain

The resulting sum capacity is strictly smaller
than
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The allocation of signature sequences so as to achieve
sum capacity emphasizes the “unfairness” of the performance
criterion When

the first users (these users have the largest values of
and hence the weakest power constraints) are allocated

orthogonal signature sequences (independent channels and are
hence allowed to transmit at higher rates) while the other

users share a common channel. In a wireless
system, some users might be far away from the base station
and their received powers will be correspondingly lower than
users which are close to the base station. It is desirable in
a practical system that resource allocation based on some
choice of performance criterion of the system be “fair” to
the users. Hence it is important to address fairly the situation
of asymmetric power constraints on the users. One way to
do this is to change the performance criterion to a weighted
linear combination of the rates of the users, the weights in
inverse proportion to the path gains of the users to the base
station. A second way is to consider the “symmetric capacity”
defined in [7]. The symmetric capacity is the sum rate of the
maximum achievable equal-rate point in the union capacity
region These questions will be answered
if the characterization of the entire union capacity region
is done. Our current efforts are directed towards solving this
important open question.

In this paper we have focussed on symbol-synchronous
CDMA systems. Indeed, most existing capacity results except
[1], [9] pertain to the symbol-synchronous case. The extension
of our results to the asynchronous situation is also interesting
and is an important open problem.

APPENDIX

PROOF OF LEMMA 4.1

We reproduce here for completeness the proof that ifis
majorized by then may be derived from by successive
applications of T-transforms (utmost applications) from
the classical text [3].

Let be majorized by We assume that is not obtainable
from by permuting elements of , else the statement is
trivially true. Without loss of generality, let
and Let be the largest index such that

, and let be the smallest index greater thansuch
that Such a pair must exist, since the largest index

for which must satisfy By choice of and
, we have Let

and and let

It is easy to verify that and that

Thus for , where interchanges
the th and th coordinates. The claim is that majorizes
To see this, note that

For any two vectors let be the number of
nonzero differences Since if and

if , it follows that
Hence, can be derived from by successive applications
of a finite number of T-transformations. Since
and (otherwise, at most

T-transformations are required.
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Bounds on the Information Rate of
Intertransition-Time-Restricted Binary
Signaling Over an AWGN Channel
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Abstract—Upper and lower bounds on the capacity of a
continuous-time additive white Gaussian noise (AWGN) channel
with bilevel (�

p
P ) input signals subjected to a minimum inter-

transition time (Tmin) constraint are derived. The channel model
and input constraints reflect basic features of certain magnetic
recording systems. The upper bounds are based on Duncan’s
relation between the average mutual information in an AWGN
regime and the mean-square error (MSE) of an optimal causal
estimator. Evaluation or upper-bounding the MSE of suboptimal
causal estimators yields the desired upper bounds. The lower
bound is found by invoking the extended “Mrs. Gerber’s” Lemma
and asymptotic properties of the entropy of max-entropic bipolar
(d; k) codes.

Asymptotic results indicate that at low SNR= PTmin=N0, with
N0 designating the noise one-sided power spectral density, the
capacity tends toP=N0 nats per second (nats/s), i.e., it equals the
capacity in the simplest average power limited case. At high SNR,
the capacity behaves asymptotically asT�1min ln (SNR= ln (SNR))
(nats/s), demonstrating the degradation relatively toT�1avg lnSNR,
which is the asymptotic known behavior of the capacity with
a bilevel average intertransition-time (Tavg) restricted channel
input. Additional lower bounds are obtained by considering
specific signaling formats such as pulsewidth modulation. The
effect of mild channel filtering on the lower bounds on capacity is
also addressed, and novel techniques to lower-bound the capacity
in this case are introduced.

Index Terms—Channel capacity, constrained bipolar inputs,
information rates, intertransition time, magnetic recording, Mrs.
Gerber’s lemma.

I. INTRODUCTION

T HE capacity of a filtered additive white Gaussian noise
(AWGN) channel with bipolar (bilevel binary) inputs, de-

picted in Fig. 1 where and stand, respectively,
for the input, output, and the AWGN processes, and where

is the channel filter impulse response, has been intensively
studied with increased interest in the last decade. This input
constraint characterizes a variety of communication systems,
and in particular is relevant to most variants of magnetic and
optical recording systems [1]. The dominant motivation for
this endeavor is to try and capture the information-theoretic
implications of the bipolar input constraint and thus provide

Manuscript received December 23, 1997; revised March 10, 1999. This
work was supported by the Fund for the Promotion of Research at the
Technion.

The authors are with Technion–Israel Institute of Technology, Haifa 32000,
Israel.
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Fig. 1. Channel model.

improved more realistic predictions of the ultimate perfor-
mance limits of the relevant information-conveying systems.

It is known that with no channel filter (that is, an infinite
bandwidth channel) employing bipolar input (taking on the
values ) does not reduce the classical average-power
limited, AWGN infinite bandwidth channel capacity
nats per second (nats/s) wherestands for the input power
and stands for the power spectral density of the AWGN [2,
and references therein]. In [3] it has been proved that for any
square integrable channel filter impulse response the bipolar
constrained input attains the same capacity as is achieved by an
arbitrary peak limited inputs, that is, . Lower
bounds on the capacity were derived in [3] and tightened in
[4] and [5]. Upper bounds, which are strictly lower than the
average-power constrained capacity were presented in [6]. The
channel introduced in [3] (see Fig. 1) has been suggested as a
simplified model of a certain magnetic recording systems and
capacity calculations for specific parameters were reported in
[7] and [8].

In [3] and [6] no further constraints were imposed on the
bipolar inputs and the very basic result in [3] on the equiv-
alence of the capacities of peak-power-limited and bipolar
inputs, implies an unbounded transition rate bipolar input. This
physically impractical demand fails to capture the “bandwidth-
like” limitation of the input process imposed by practical
considerations and inherent system restrictions. In [9] the
effect of the average transition rate of the bipolar input process
on upper bounds on capacity has been addressed. The random
telegraph bipolar input with a given transition rate has been
considered in [2] where its asymptotic (signal to noise ratio
SNR ) optimality is established under an average

(rather than minimal) intertransition duration constraint.
A natural constraint on the temporal variation of a bipolar

input is the minimal duration between transitions, that is, the
time between consecutive transitions of the input signals is
no shorter than seconds. This is a typical constraint
in a magnetic recording system which is aimed to prohibit
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closely spaced transitions as to mitigate heavy deleterious
intersymbol interference (ISI) effects [1]. Further, the linear
channel model for magnetic recording collapses when closely
spaced consecutive transitions take place [3], [10] and nonlin-
ear intersymbol interference emerges. The well-known
(or runlength-limited) codes [1], [11] constitute the discrete-
time version of the minimum intertransition time-constrained
signals and the capacity of these has been examined for the
discrete-time AWGN channel in [12] and [13]. In [14] and
[15], runlength-limited codes were examined in a channel,
the output of which comprises jittered (noisy) observations
of the transition instants. A guard-space random telegraph
process which satisfies the minimal intertransition duration
(MID) constraint has been considered in [2], where
asymptotic (high-SNR) results for the capacity were reported.
Related results on the capacity and cutoff rates of filtered
continuous-time and discrete-time AWGN channels with peak-
power-limited and/or slope-limited input signals can be found
in [16]–[18] and references therein.

In this work we focus on bipolar inputs with the MID
constraint and investigate the effect of on ,

the achievable information capacity of the AWGN channel.
We mainly specialize to the infinite bandwidth channel (that
is, no channel filter) leaving thus to reflect the basic
temporal-variation restriction of the input waveform. In the
next section, the asymptotic behavior of the MID-constrained
capacity is addressed in view of the results in [2]. In Section
III, upper bounds on the capacity are evaluated. The bounds
are based on Duncan’s theorem [19] which relates in the
AWGN regime the average mutual information to the mean-
square error (MSE) of the optimal causal estimator. Linear,
suboptimum nonlinear, and improved nonlinear estimators are
introduced, and the resultant upper bounds on capacity are
explicitly derived. Lower bounds on capacity are found in
Section IV, where results on maxentropic runlength-limited
sequences are combined with the extended “Mrs. Gerber’s”
Lemma [20]. Comparisons are made to the achievable in-
formation rates of binary pulse amplitude modulation (PAM)
and pulsewidth-modulation (PWM) signaling as well as to the
random telegraph wave with and without a guard time interval.

Among other results it is concluded that for asymptoti-
cally high values of SNR SNR the
capacity behaves like SNR SNR nats/s, while
for asymptotically low SNR valuesSNR the expected

(nats/s) behavior is evidenced. In Section IV, the
effect of a mild lowpass channel filter on the capacity lower
bounds is considered. This result is found by embedding
the basic bounding technique employed in Section IV which
is based on the extended “Mrs. Gerber’s” Lemma into the
Shamai–Ozarow–Wyner (SOW) lower bound [4] on the ca-
pacity of a discrete time AWGN channel with ISI. For a mild
window-integrator channel filter of integration time

, lower bounds on capacity are found using the Fano
inequality along with upper bounds on the error probability
of a set of carefully selected equi-energy signals. The later

bounds exhibit an asymptoticSNR behavior of

SNR
SNR

where the factor is attributed to the smoothing effect of
the channel filter [2] and represents the normalized
filtering bandwidth.

II. HIGH-SNR ASYMPTOTICS

To the end of comparing various bounds on MID-
constrained capacity to be derived in this paper, we present
first the asymptotic high-SNR behavior of this capacity, relying
on the results and methods discussed in [2].

In [2], the case of -limited bipolar signaling was ad-
dressed. High-SNR treatment revealed that the asymptoti-
cally capacity-achieving waveform is a random telegraph
waveform (RTW). The capacity was shown to behave as

where the is the RMS error for esti-
mating the time of transition, and the factoris related to
the distribution of this error. In the case of unfiltered channel,
the distribution is a two-sided exponential,

SNR and . In the case of filtered channel,
the transition instant estimation error is Gaussian, and hence

SNR and , where

and is the transition shape. In the case of linear slope
transitions (rectangular impulse response filter) of duration,
an example to be used later yields and

SNR

Further, [2] addressed the -limited case and showed the
high-SNR behavior to be , with
the signaling waveform being the guard-time RTW.

Capacity is obtained by maximizing the information transfer
rate with respect to signal distribution. Assuming that

for the given and , is maximized by guard-
time RTW, and is, as mentioned, given by

, the for the -limited case is obtained
by maximization of SNR with respect to

. Let us define a function by

(1)

It follows then that

SNR (2)

The asymptotic behavior of is studied in Appendix B
and is shown to be . From here we
can immediately deduce that the high-SNR behavior of the
MID capacity in the unfiltered case is SNR

SNR SNR , and in the mildly filtered case the
behavior is

SNR SNR SNR

In the following these asymptotics will be used as a baseline
to which the various bounds will be compared.


