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Abstract—The capacity region of a compound multiple-antenna
broadcast channel is characterized when the users exhibit a cer-
tain degradedness order. The channel under consideration has two
users, each user has a finite set of possible realizations. The trans-
mitter transmits two messages, one for each user, in such a manner
that regardless of the actual realizations, both users will be able to
decode their messages correctly. An alternative view of this channel
is that of a broadcast channel with two common messages, each
common message is intended to a different set of users. The degrad-
edness order between the two sets of realizations/users is defined
through an additional, fictitious, user whose channel is degraded
with respect to all realizations/users from one set while all realiza-
tions/users from the other set are degraded with respect to him.

Index Terms—Broadcast channel, capacity region, compound
channel, enhancement, extremal inequalities, multiple-antenna.

I. INTRODUCTION

I N this paper we find the capacity region of a degraded com-
pound multiple-antenna Gaussian broadcast channel (BC)

with two users and two private messages. In a compound BC,
each user has several possible realizations. In our case, users 1
and 2 have and possible realizations, respectively. At the
receiver, each user has perfect knowledge of the actual realiza-
tion but the transmitter does not. We require that regardless of
the actual realizations of users 1 and 2, the messages should be
received successfully. We shall also assume an order of degrad-
edness between the users which we define later on.

An alternative view of this channel is that of a broadcast
channel with common messages. The different realizations of
the channel can be considered as different users to whom a
common message is being transmitted. This is actually quite a
realistic model as third-generation cellular systems transmit TV
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broadcasts over the downlink channel [13]. In our scenario, we
have two sets of users. One set is close to the transmitter while
the other set is degraded with respect to (w.r.t.) the first set and
is further away from the transmitter. We wish to transmit a dif-
ferent message to each set where each message is common to all
users in the set. Interestingly, it is also possible to use the results
we present here to give bounds on the sum-rate, with focus on
the multiplexing gain, for the non-degraded compound BC [14].

We first consider a canonic version of the channel (which we
also refer to as an aligned channel) such that

(1)

where is a real input vector (size ), ,
and , are real output vectors , and

and are real Gaussian noise vectors with zero mean and
covariance matrices and .

We also assume a degradedness order such that there exists a
covariance matrix such that

(2)

where we use to denote an order between two semi-definite
matrices such that means that is a nonnegative
semi-definite matrix.

Note that we do not require that there will be any degraded-
ness order within the groups of the first or second re-
alizations. Furthermore, note that the requirement in (2) is not
equivalent to the more general requirement defined by

. A simple example that illustrates this appears in Ap-
pendix I. Nevertheless, our results here are limited to the case
defined by (2).

Finally, we shall assume a matrix constraint on the input,
. This will allow us to give results on the ca-

pacity region of this channel under various power constraints,
including the total power constraint.

Next, we broaden the scope of the discussion to the multiple-
antenna channel where for each realization, the input vector is
multiplied by a different linear channel matrix such that the
channel is defined by

(3)

where
• and are the received vectors of sizes and ,

respectively.

0018-9448/$26.00 © 2009 IEEE

Authorized licensed use limited to: University of Illinois. Downloaded on March 12,2010 at 10:34:38 EST from IEEE Xplore.  Restrictions apply. 



5012 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 11, NOVEMBER 2009

• and are the linear channel matrices of sizes
and , respectively.

• and are random
real Gaussian vectors.

In the above notation, we specifically mentioned the di-
mensions of the identity matrix. We shall omit this notation
throughout the rest of the paper and the exact dimensions of the
identity matrix will be clear from the context.

Note that the dimensions of matrices may vary between
group 1 and group 2 and within each group (i.e., we may have

, , and ). Though the case of realizations
with different number of receive antennas might not be realistic
for the compound case mentioned above, it is a possibility in the
broadcast channel with common messages.

In the aligned channel (1) we determined that one channel
output is degraded w.r.t. another by examining whether their
noise covariances can be ordered correctly. However, in (3), all
noise covariances are identity matrices and the receive vectors
differ only in their linear channel matrices. Therefore, we shall
use the following definition to determine a degradedness order.

Definition 1: A receive vector of size
is said to be degraded w.r.t. of size if
there exists a matrix (of size ) such that
and such that . Alternatively, we say that is
degraded w.r.t. .

By examining this definition, it is not difficult to see that
can be emulated from by multiplying . The emulated
channel only differs from the original channel by its additive
noise which is now given by . However, as
this approximated channel has less noise it is
clear that any message that can be decoded by a receiver that gets

, can be deciphered by a receiver which has the approximated
channel, or alternatively, .

We can now state an equivalent degradedness requirement to
that of the aligned channel: the second group of users is said to
be degraded w.r.t. the first group of users if there exists a matrix

such that the receive vector is degraded
w.r.t. for all and such that are degraded w.r.t. for all

Indeed, in recent years, many theoretical aspects of the down-
link channel (alternatively, BC) have been resolved [4], while
the capacity region of the general discrete memoryless BC is
still open. One important example, the capacity region of the
multiple-antenna BC with a single realization for each user, has
been settled [12], [16]. As we shall show, once a degradedness
order is introduced we are also able to find the capacity region
of the multiple-antenna compound BC by incorporating the en-
hancement technique from [16] and variations on the entropy
extremal inequalities introduced in [12].

A related problem is that of a broadcast channel where on top
of all of the individual messages there is one message which is
common to all users. In prior art, this was considered part of
the broadcast model (see [5] and references therein). However,
in the multiple-antenna regime this problem was solved only
for the case where there are no common messages. Progress
towards a solution of this problem for the multiple-antenna case
are reported in [11], [17].

In [9], Diggavi and Tse investigate diversity embedded codes.
For that purpose, they characterize the capacity region of the de-
graded message set broadcast channel for the case of a parallel
Gaussian channel. They assume there are two messages. One
common message is transmitted to all users and a private mes-
sage is either transmitted to the first user or to the first
(out of ) users. They further assume that there is either a de-
gradedness order between the first and the last users or
between the first users and the last user. This is, in fact,
not too different from the problem investigated here. Due to the
degradedness order in the case presented here, the first user can
always decode the messages intended for the second user and
therefore, the message of the second user is in fact a common
message. In the following, we generalize the result given in [9]
to the case of degraded vector Gaussian BCs which are not nec-
essarily parallel and to a more general case where there are two
sets of users or realizations such that no group is limited to just
one realization or user.

In Section II, we briefly present the main results of this text.
In Section III, we go over some important results needed for
the proof of the main theorem which is given in Section IV. In
Section V, we generalize the result of Section IV to the case of
arbitrary linear channel matrices, and in Section VI, we give an
illustrative example.

II. MAIN RESULTS

The main result of this paper is presented in the following
theorem, proved in Section IV.

Theorem 1: The capacity region of the channel given by (1)
and (2), , is given by the set of all rate pairs
such that

for some .

Note that typically, the above theorem will give us even lower
rates than those obtained by a two-user BC with the worst pair of
users (one from group 1 and the other from group 2). In fact, this
feature resembles the one that exists in the standard compound
channel where we contrast maxmin with minmax. This duality is
not surprising as we require that no matter the actual realizations
of the users, the messages should be decoded successfully.

As mentioned earlier, the characterization of the capacity re-
gion under a covariance constraint on the input allows us to give
a general result for many types of constraints on the input, in-
cluding the most practical ones such as the total power constraint
and the per-antenna power constraint. The following corollary
extends the result of the above theorem to the case of total power
constraint.

Corollary 2: The capacity region of the channel in (1) under
a total power constraint is given by
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Proof: This is a direct result of [16, Lemma 1].

The extension of Theorem 1 to the multiple-antenna channel
defined by (3) is given in the following theorem and is proved
in Section V.

Theorem 3: Let denote the set of all pairs

such that

for some . If there exists a matrix such that
the receive vector is degraded w.r.t. for
all and such that are degraded w.r.t. for all , then

is the capacity region of the channel in (3).

III. PRELIMINARIES

In this section, we obtain intermediate results which will be
used in the proof of Theorem 1 in Section IV. In that proof, we
shall need an auxiliary lemma (Lemma 2) regarding the differ-
ence between the weighted sum of two sets of entropies.

We shall heavily rely on Fisher information and Fisher infor-
mation inequalities as a tool to prove entropy inequalities. We
shall use to denote the Fisher information of the random
vector and it is defined by the following matrix:

One example is the Fisher Information matrix of a random
Gaussian vector which is given by
([6, the scalar case on p. 330]). We can relate the Fisher in-
formation matrix above to the covariance matrix of through
the Cramer–Rao inequality ([6, Theorem 16.6.1, p. 494], [8,
Theorem 20])

We can also relate the Fisher information matrix to the differen-
tial entropy through the DeBruijn identity ([6, Theorem 16.6.2,
pp. 494–497], [8, Theorem 14])

where is a standard Gaussian vector and
denotes the differential entropy of a random vector.

As Lemma 2 relies on a perturbation approach, as was de-
scribed in [12], we first need the following Fisher information
inequality result.

Lemma 1: Let and be two independent random vectors
of length . Then

for any matrix of size .
Proof: The proof can be found in [12, Appendix II].

We can now state and prove the main result of this section.

Lemma 2: Let be a positive semi-definite matrix such
that and such that

(4)

where , , , and . Then,
for every distribution of such that we have

(5)

Proof: In the following proof we use to denote a random
vector such that . We wish to show that the dis-
tribution that optimizes

under a covariance constraint is . In
order to show this, we consider the following function:

where . Note that is equal to the
left-hand side of (5) and is equal to the right-hand side of
(5). Therefore, it will be sufficient to show that for every dis-
tribution of , is a nondecreasing function in the segment

. That is, we wish to show that .

We calculate in two steps. In the first step, we
shall calculate the derivative of a generic term given by

where and
are random variables (r.v.’s). In

the second step, we shall add up all the appropriate deriva-
tives as to correspond with the derivative of . As is
a Gaussian r.v., we can rewrite an equivalent r.v. given by

where . Therefore
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(8)

(6)

where is a standard Gaussian vector. Steps and
are due to the differential entropy scaling law. Step is

due to DeBruijn’s identity ([8, Theorem 14]). Step is due
to the Fisher information scaling law and the equivalence of

and .
We now use (6) to obtain (see also [12, Appendix C]):

(7)

For the following steps to be well defined, we shall require that
the inequalities shall be strict for all and
. If this is not the case, we can force it to be so by subtracting

and adding where is chosen to be arbitrarily
small (and where the dimension of the identity matrix depends
on the dimensions of the respective matrices and ). For
all , the above inequalities will remain strict and the rest
of the proof will hold. By taking and relying on the
contiguity of the differential entropy function with respect to
variance of the added Gaussian noise, we prove the theorem also
for the case where the inequality is not strict. Therefore, for the
sake of brevity we shall assume that the above inequality is strict
in the remainder of this proof.

We now lower-bound the summands of the first sum in the
above equation. By assigning
in Lemma 1 we may write

where , , and we used the
fact that , , are symmetric and the identity

. Thus, the summands in the first sum in (7) may
be lower-bounded by

Next, we use Lemma 1 to upper-bound the summands
in the second sum in (7). Again, by assigning

we may write

where this time . Thus, the summands in
the second sum may be upper-bounded by

Finally, by assigning the above bounds into (7) we obtain (8)
at the top of the page, where is due to the Cramer–Rao
([8, Theorem 20]) inequality and the covariance constraint on

. and the last equality are due to the conditions
stated in (4). Therefore, is nonnegative and the proof is
complete.

The above lemma can be extended to the case of conditional
entropies as stated in the following corollary.

Corollary 4: Let be a positive semi-definite matrix such
that and such that (4) holds and let be a random
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variable independent of and . Then, for every distribution
of such that we have

(9)

Proof: The proof here is similar to that of Lemma 2. We
first write the left-hand side of (9) as

where the expectation is taken with respect to . We then
rewrite (7) as

where is the fisher information w.r.t. the distribu-
tion .

Using the same arguments as in Lemma 2, we may write the
average form of the second equality in (8) as shown in the equa-
tion at the bottom of the page.

We now note that

where the first inequality is due to the Cramer–Rao inequality
and the last inequality is due to the concavity of the matrix
inverse function over positive semi-definite matrices (i.e.,

where and ; see
[10, pp. 554–555]).

Again, using the same arguments as in the proof of Lemma 2,
we obtain that and thus prove the corollary.

IV. PROOF OF THEOREM 1

We can now turn to prove Theorem 1. The rates stated
in Theorem 1 can be obtained using standard arguments of

Gaussian coding and successive decoding as is done in the
degraded Gaussian broadcast channel [5]. In the following, we
give just an outline of the direct part of the proof. The bulk
of the proof deals with the converse. The interested reader is
referred to[6, Sec. 14.6, pp. 418–428] and references therein,
which discuss in detail the methods considered in the following
proof outline of the direct part.

To transmit over this channel we begin by constructing two
codebooks. Assuming each codeword contains symbols (each
symbol is now a vector as we are considering the multiple-
input multiple-output case), the codebooks for user 1 and 2 will
contain and codewords, respectively. Each
vector in each codeword is drawn independently using a random
vector generator with a Gaussian distribution given by
for the first user and for the second user.
To transmit a message , the appropriate codewords are
chosen from the codebook and their sum is transmitted over the
channel. As , we meet the covariance constraint on
the input with probability arbitrarily close to for arbitrarily
small .

The further away user receives the combination of the two
codewords. The interference due to the message sent to user 1
acts as an additional Gaussian noise. Therefore, from the point
of view of user 2, it is a standard Gaussian compound channel
with additive Gaussian noise given by . Therefore, we
can achieve a rate

with arbitrarily small probability of decoding error for suf-
ficiently large and arbitrarily small . As the first user suffers
from a smaller additive Gaussian noise (i.e., a degraded com-
pound channel), it can always decode the messages transmitted
to the second user and remove their effect. Therefore, the second
user only suffers from the channel noise when attempting to de-
code its own messages (i.e., additive Gaussian noise given by

). The rate achievable in this compound channel, following
the removal of the interference from the second user, is given
by

with arbitrarily small probability of decoding error for suffi-
ciently large and arbitrarily small .

As and can be made arbitrarily small, we obtain the
rate region defined in Theorem 1. Therefore, we only need to
prove that all rates outside the Gaussian coding region are not
achievable.

We now turn to prove the converse part. Assume that
is an achievable rate pair that lies outside the rate
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region, . It is well known that for the single-user com-
pound channel [7, p. 173] we can bound by

Therefore, if ,1 we can find a point on the
boundary of such that for some .
Furthermore, is the solution of the following program:

...

(10)

where

We can use the following lemma to obtain the set of condi-
tions which must hold at the solution points.

Lemma 3: Let be the optimizing solution of the optimiza-
tion problem in (10). The following conditions must hold:

(11)
where

1. and are positive semi-definite matrices such that
and .

2. and for all , with

equality if .

3. and for all , with

equality if .

4. .
Proof: We can rewrite the above optimization problem (10)

as follows:

(12)

1The case of � � � is trivial, as then � � � is achievable.

The above maximization problem may be rewritten as a min-
imization problem as follows:

s.t.

The above optimization problem contains both real in-
equalities and semi-definite inequalities. Furthermore, the
optimization problem has one semi-definite variable, ,
which is constrained by and and one scalar variable
which is not directly constrained. This is in fact an optimization
problem with generalized inequalities in the form of semi-def-
inite inequalities (see [3, Subsec. 5.9.2, p. 267]). Therefore,
the Karush–Kuhn–Tucker (KKT) conditions state that the
derivative with respect to both variables of the Lagrangian

must vanish at the optimal solution (see also [16, Sec. 3 and
Appendix D]). Furthermore, and are positive semi-def-
inite matrices such that and
and , , with equality if

or , respectively.

Therefore, if and solve the above optimization
problem, the KKT conditions of this program can be written
as follows:2 see (13) at the bottom of the page, and (14) at the
bottom of the following page.

By writing (13) explicitly we obtain

2As the program in (12) is not convex, a set of constraint qualifications (CQs)
should be checked to make sure that the KKT conditions indeed hold. The CQs
stated in [16, Appendix D] hold in a trivial manner for this program. See also
[1, Ch. 4]

(13)
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Furthermore, if , we can find a vector
such that . By multiplying both sides of the equation
above by on the left and on the right and by noting that

for all and , we obtain that
.

If and there is no vector such that
(i.e., ), then and can be reassigned such that
the above equation holds and such that .
More specifically, when in the above equation we
can multiply all by the same factor, larger than (regardless
of any previous equations), and at the same time we modify

such that the above equation still holds. The scaling factor
is chosen such that the resulting is nonnegative but has at
least one zero eigenvalue. With the new choice of , we obtain

as before.
Thus, we need only to scale , , , and (with the

same scale factor for all) such that . Then, by

substituting by their normalized version and multiplying

the sum by we complete the proof.
We shall now show that any point which observes the above

KKT conditions must be a point on the boundary of the capacity
region. We shall initially assume that and prove by
contradiction that the point cannot be achievable. In
the last part of the section, we shall extend this proof to the case
where .

In addition, we shall assume, without loss of generality, that
and are strictly positive for all and . If that is not the

case, we may consider the channel which only contains those
outputs which correspond to those ’s which are strictly pos-
itive. Clearly, the KKT conditions in (11) hold for this new
channel for the same choice of . Further, note that the ca-
pacity region of this new channel contains that of the original
channel. Showing that and are outside the capacity re-
gion of this new channel will also ensure that they are outside
the region of the original channel.

Next, we make use of a single-letter result on the capacity re-
gion of a discrete memoryless and degraded compound BC. In
Appendix III, we give an alternative proof based on Lemma 2,
Corollary 4, and multiletter Fano bounds instead of the fol-
lowing lemma.

Lemma 4: Consider a memoryless compound broadcast
channel with input and outputs , for the first
user, for the second user, and an auxiliary
output . All outputs are defined by their conditional prob-
ability functions: , , and . Furthermore,
assume that these outputs are stochastically degraded such that
there exists some distribution with
marginal distributions , , and such that

form a Markov chain for every choice
of and . The capacity region of this channel is given by

(15)

for some auxiliary random variable such that
form a Markov chain.

Proof: The proof is deferred to Appendix II.

We shall show that are not achievable by showing
that any rate pair that satisfy (15) must also obey

where is defined in (11). By (15), there
exists some distribution such that

(16)

where and are defined in (11). Inequality fol-
lows from the non-negativity of and and the fact that

. Inequality is due to the optimality of
the Gaussian distribution under a covariance constraint and the
Markov chain .

We can now use Lemma 2, Corollary 4, and (11) (under the
assumption that ) to upper-bound the last two summands
in the last inequality of (16) and write

(14)
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where is due to the definition of and is due to our
original assumption that for some .

To complete the proof and extend it to the case where ,
we borrow the idea of enhancement from [16]. Instead of inves-
tigating the original channel, we consider the enhanced channel
where are replaced by such that and are de-

fined such that . In [16]
it is shown that with , the exact same rates
are obtained in the enhanced channel as in the original channel.
In addition, the KKT conditions in (11) hold for the enhanced
channel as well. Therefore, we can follow all the previous steps
to show that is not achievable in the enhanced channel.

However, as , it is clear that the capacity region of the
enhanced channel contains that of the original channel. There-
fore, must lie outside the capacity region of the orig-
inal channel as well.

V. PROOF OF THE CAPACITY REGION OF THE DEGRADED

MIMO COMPOUND BROADCAST CHANNEL WITH ARBITRARY

LINEAR CHANNEL MATRICES

We can now extend the proof of Theorem 1 to the multiple-
antenna case and prove Theorem 3.

Proof: In the following, we borrow the main ideas from
[16, Sec. 5]. Due to the degradedness order, it is quite clear
that is indeed achievable using Gaussian coding and suc-
cessive decoding. We therefore concentrate on the proof of the
converse. The proof relies on Theorem 1. The case where all
linear channel matrices are square and nonsingular can be easily
transformed into the channel presented in (1) and thus, The-
orem 1 completes the proof. Our goal will be to approximate a
channel with singular linear channel matrices, by a channel with
invertible linear channel matrices that maintains the degraded-
ness order.

We may assume without loss of generality that all linear
channel matrices , , and are square matrices.3

If that is not the case, we can use singular value decomposition
(SVD) and follow the same steps that were carried out in [16,
Sec. 5] to show that there is an equivalent channel which does
have square linear channel matrices. That is, we may
find a new channel with square linear channel matrices which
are derived from the original channel matrices via a matrix
multiplication. The new channel is equivalent to the original
one in the sense that for any receiver working on one channel
with any given codebook, we may find a modified receiver
which will work equally well on the other channel for the same

3��� ,��� , and��� may be singular.

codebook. The linear channel matrices of the new channel still
observe the degradedness order. For more details, the reader is
referred to [16, Sec. 5].

We now define a new degraded compound channel which has
invertible linear channel matrices. Furthermore, each of the re-
ceived vectors in our original channel will be degraded w.r.t. a
corresponding receive vector in the new channel. We first use
SVD to rewrite the linear channel matrices as follows:

and

where and are unitary matrices and is diagonal. We
define the linear channel matrices of the new channel as follows:

and

where .
Note that we can write where

As , we conclude that is degraded w.r.t.

. Similarly, and

are degraded w.r.t. and

. Therefore, the capacity region of the new channel contains
that of the original channel.

Next, we write

where

and where is the matrix for which and
was defined above.

As is degraded w.r.t. , the eigenvalues of are
less than or equal to . Furthermore, as the eigenvalues of
are strictly smaller than , we conclude that the eigenvalues of

are also strictly smaller than . Therefore, for every
choice of , we can set to be small enough such that

. Therefore, we conclude that can be set small

enough such that is degraded w.r.t. for all . Similarly,

for every choice of , can be set small enough such that

is degraded w.r.t. for all . Thus, we can construct a new
channel which preserves the degradedness order but for which
linear channel matrices are invertible.

As , , and are all invertible, we can apply Theorem

1 in order to show that
is the capacity region of this new channel. Finally, we note that
as

and thus, complete the proof.
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VI. AN ILLUSTRATIVE EXAMPLE

In this section, we give an example that illustrates the capacity
region of the compound broadcast channel. We consider a mul-
tiple-antenna channel of the type discussed in Section V with
two transmit antennas. In the following example, there are two
users, the stronger user has only one realization with two re-
ceive antennas while the weaker user has two possible realiza-
tions, each with one receive antenna, as defined by the following
linear channel matrices:

(17)

We shall assume that there is a total power constraint
. As in (3), the additive noise in our example is also

normalized to unity at each receive antenna.
We can associate this channel with a realistic scenario where

there is one user who is close to the transmitter and enjoys full
diversity, while there are two far away users who suffer from a
keyhole effect and who receive a common message. A keyhole
effect [2] is a situation where all multipath components from the
transmitter merge before they split up into received multipath
components. Hence, the far away users observe a channel with
a reduced degree of freedom. One can easily verify that and

are degraded with respect to as defined in Section V.
Furthermore, as there is only one realization for user 1, we may
associate with . Therefore, we can use Theorem 3 to
calculate the capacity region of this channel.

By applying Theorem 3 to our scenario with a total power
constraint (i.e., ) we can now find the capacity region
of this problem. As we now have a total power constraint and not
a covariance matrix constraint, the covariance matrix allocated
for transmission to the second user is no longer trivially reduced
from that of the first user (that is, we no longer have

). Therefore, the second user covariance matrix is now
an additional optimization parameter. By solving the boundary
point of for every given and by acknowledging that
are vectors and not matrices, we can show that every point on
the boundary of the capacity region is a solution of the following
optimization problem:

s.t.

As the object of the above optimization problem is convex (the
function is convex w.r.t. semi-definite matrices) and as

the constraints are linear, the above semi-definite optimization
program is a convex one and can be numerically solved using
standard optimization tools (see [3, Ch. 11, pp. 561–622]).

Fig. 1. The capacity region of the compound BC in (17).

In Fig. 1, we plotted the capacity region of the compound BC
in (17) as well as the two capacity regions of the ”normal” BCs
that are created when we transmit the second message just to
one of the realizations of the second user. As can be seen, the
capacity region of the compound channel is contained within the
other two regions. One could wonder whether the compound BC
region may be obtained by switching between the two ”normal”
BC schemes and hence, ”halving” rate . However, Fig. 1 il-
lustrates that simultaneously transmitting to both realizations is
still far superior.

VII. SUMMARY

In this paper, we give an expression for the capacity region of
a compound multiple-antenna BC with two users where one user
is degraded with respect to the other. In this compound channel,
each of the two users has several possible realizations and at
the receiver, each user has perfect knowledge of the actual re-
alization. We require that regardless of the actual channel real-
izations, the messages should be received successfully. Alterna-
tively, this channel may be viewed as a broadcast channel with
common messages. The different realizations of the channel can
be considered as different users to whom a common message is
being transmitted.

The degradedness order between the two users was defined
through a third, fictitious, user which is degraded with respect
to all realizations of one user while all realizations of the second
user are degraded with respect to him.

In this work, we brought to bare two, relatively, new tools.
The first is an extremal inequality as it appears in Lemma 2 and
Corollary 4. This extremal inequality is an extension of a result
which appeared in [12] and was useful in the non-compound
Gaussian BC. The second tool is the enhancement technique
which was first used in [15], [16] to characterize the capacity
region of the multiple-antenna Gaussian broadcast channel with
private messages. Later on [12], it was also shown that the ex-
tremal inequality could also be used to characterize the capacity
region of the multiple-antenna Gaussian broadcast channel in
the two-user case.
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APPENDIX I
A DEGRADED BC WITH COMMON MESSAGES THAT DOES NOT

MEET THE REQUIREMENTS IN (2)

In the following, we give a simple example in which we
have a compound BC with common messages such that

but for which we cannot find a matrix such
that . Consider an aligned compound BC
with two transmit antennas where

and

One can verify that indeed for . In addition,
due to the choice of and , if (i.e., (2)
holds) neither inequalities hold with equality. We now note that

. That is, the difference is a matrix
of rank one. Therefore, if then

(18)

for some . This is the only possibility as the difference
is a rank one matrix. Adding any other positive semi-

definite matrix (with different or additional eigenvectors) would
immediately contradict . On the other hand

Therefore

for some . However, as the added matrix here is a
different rank one matrix, this contradicts (18). A simple way
to observe this is to multiply (18) by on the left and

on the right. This would yield . Yet,
performing the same multiplication on
would yield , proving that the two options are
necessarily different.

APPENDIX II
PROOF OF LEMMA 4

The proof of this lemma is very similar to the proof of the
capacity region of a degraded broadcast channel in [6, Sec. 14.6,
pp. 418–428]. As the converse of the proof is more relevant to
our case, we only detail this part here. The proof of the direct
part relies on successive decoding at the stronger user and is
practically identical to that found in [6].

Let denote a sequence of channel outputs of the th real-
ization of user 1 and let and be the message indices. Fur-
thermore, let be the th sample of and
be the set of all samples up to (and including). We use
similar notations for , , and . As the capacity region

depends only on the marginals and , we may as-
sume without loss of generality that indeed the mutual distribu-
tion is such that

form a Markov chain for every choice of
and . Using Fano’s inequality and the fact that and
are independent we can write for every , ex-
pressions (19) at the top of the following page, where

and where as . The
equality in is due to the chain rule of mutual information.

is due to the Markov chain
and the memoryless nature of the channel, i.e.,

as can be seen in the following identity, also given at the top of
the following page. As explicitly determine step

follows. and follow, again, from the Markov chain
and the memoryless nature of

the channel, i.e.,

Step follows from the fact that conditioning decreases
entropy.

In a similar manner we use Fano’s inequality to bound the
rate of the second user

(20)

The equality in is due to the chain rule of mutual informa-
tion. The inequality in is due to the fact that conditioning re-
duces entropy, and the inequality in is a result of the channel
being memoryless and the Markov chain:

.
Next, we replace the index with a random variable which

is uniformly distributed over the integers and define
, , , and .

As the channel is memoryless, we get

for all and where and
. Note that as the channel is memoryless we indeed
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(19)

have . Finally, as the above
inequalities hold for every and ,
we complete the proof by taking to infinity.

APPENDIX III
PROOF OF THEOREM 1 USING MULTIPLE-LETTER

FANO BOUNDS

As we assume that are achievable, we can find a
sequence of codebooks, increasing in length , that map the set
of messages and
onto a sequence of channel inputs denoted by and4

obtain a probability of decoding error such that
as .

4������ �� � is a matrix of size ���. Throughout the rest of this Appendix,
we shall omit �� �� � and remember that ���� is a function of � and � .

As we assume a power limitation on the input, we shall be
interested in the second moments of . We define the covariance
of as where is
the concatenation of all the columns in into one big vector of
size and is a matrix of size .

Due to the power constraint requirements in Lemma 2, it will
be important for us to show that we are able not only to find one
codebook for each length , but also can find an entire equiprob-
able ensemble of such codebooks such that when we average
over the entire ensemble, where is of size

and is the Kronecker product.
In order to construct such an ensemble, we first note that as

the Gaussian noise is symmetric w.r.t. its average, we can easily
create new codesbooks with the same length which obtain the
same error probabilities by multiplying any of the column vec-
tors in by . Thus, we can create codebooks, numbered

, by multiplying column by
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where is the binary representation of . If we denote
by the covariance of codebook , this collection of code-
books has the interesting property that is block
diagonal with n blocks of size on its diagonal.

We can also use the fact that the channel is memoryless
to construct from every codebook we found till now ad-
ditional codebooks by cyclically shifting the codebooks
by time samples. Thus, we can create

codebooks of length and the same
performance. Furthermore, the average of the covariances of
these codebooks is given by , where

is of size and is the Kronecker product. Finally,
as we assume an average covariance constraint, we must have

.
We now apply Fano’s inequality to show that cannot

be achieved. We denote by , , and ,
, time samples of the channel outputs. As the mes-

sages and are independent, we may write Fano’s in-
equality as follows:

where as . These inequalities hold for all
the codebooks in the ensemble obtained above. Assume that the
codebooks are chosen randomly5 and let be a random variable
which uniformly takes values between and according
to the codebook being chosen. As the codebooks have the same
performance, Fano’s inequality holds also when we condition
the mutual information on

(21)

(22)

As we assume that for all ,6 we can use

(21) to write

Therefore, as , we can
write

(23)
We now use Lemma 2 and Corollary 4. We can use these

results for the following reasons.
• Equations (11) holds also when we pre-multiply (using

Kronecker’s product) each of the matrices by .

5The codebook is known both to the transmitter and the receiver.
6Recall that earlier in the paper in Section IV we assume that � � � � � and

therefore the rate for each � is obtained with equality.

• We assume (for now) that .
• The Gaussian codes meet the covariance constraint on the

ensemble of codes (i.e., ).
Therefore, we may write

Thus, using the above equation and (23) we obtain

(24)

We can now use the assumption that for

all 7 to write

(25)

where is due to (22) and is due to (24).
On the other hand, using the upper bound on the entropy of a

random vector with a covariance constraint we may write

7Recall that earlier in the paper in Section IV we assume that � � � � � and
therefore the rate for each � is obtained with equality.
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where denotes the covariance matrix of given codebook

in the same way is defined. holds due to the concavity
of the function and holds due to the covariance con-
straint on the ensemble of codes.

However, the above equation contradicts (25) as we can make
arbitrarily smaller than by taking to be large enough.

Thus, we conclude that if , lie on the boundary
of the capacity region and therefore cannot be achiev-
able. The extension of this result to the case of follows
as detailed in Section IV.
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