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Rate Region of the Quadratic Gaussian Two-Encoder
Source-Coding Problem
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Abstract—We determine the rate region of the quadratic
Gaussian two-encoder source-coding problem. This rate region is
achieved by a simple architecture that separates the analog and
digital aspects of the compression. Furthermore, this architecture
requires higher rates to send a Gaussian source than it does to
send any other source with the same covariance. Our techniques
can also be used to determine the sum-rate of some generalizations
of this classical problem. Our approach involves coupling the
problem to a quadratic Gaussian “CEO problem.”

Index Terms—CEO problem, Gaussian sources, multiterminal
source coding, rate region, remote source, vector quantization,
worst case source.

I. INTRODUCTION

THIS paper addresses the quadratic Gaussian two-encoder
source-coding problem, the setup for which is depicted in

Fig. 1. Two encoders observe different components of a mem-
oryless, Gaussian, vector-valued source. The encoders, without
cooperating, compress their observations and send messages to
a single decoder over rate-constrained, noiseless channels. The
decoder attempts to reproduce both observations, subject to sep-
arate constraints on the time-averaged expected squared error of
the two estimates. We seek to determine the set of rate pairs

that allow us to meet a given pair of target distor-
tions. We call this set the rate region. Of course, this problem
can also be formulated for general sources and distortion mea-
sures. Our focus on the quadratic Gaussian case is motivated by
its fundamental nature, its importance in applications, and its
well-known extremal properties.

This problem is naturally viewed as a quadratic Gaussian
version of Slepian and Wolf’s problem [1]. Slepian and Wolf
studied the problem in which the source is discrete and the
decoder must reproduce it with negligible probability of error.
Their celebrated result characterizes the rate region for this
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Fig. 1. The two-encoder source-coding problem.

Fig. 2. A natural architecture that separates the analog and digital aspects of
the compression.

setup. One consequence of this characterization is that permit-
ting the encoders to cooperate or view each other’s observations
does not offer any advantage, at least as far as the sum-rate is
concerned.

There is a natural way to harness Slepian and Wolf’s re-
sult in the Gaussian setting. Each encoder first vector quantizes
(VQs) its observation using a Gaussian test channel as in single-
encoder rate-distortion theory. This results in two correlated dig-
ital messages, which are suitable for compression via Slepian–
Wolf encoding. The decoder decodes the quantized values and
estimates the source by computing a conditional expectation.
This approach separates the analog and digital aspects of the
compression, as shown in Fig. 2.

Our main result is an explicit characterization of the rate region
for this problem. This result has three notable consequences.

(i) The architecture depicted in Fig. 2 is optimal.
(ii) This architecture requires higher rates to send a Gaussian

source than it does to send any other source with the
same covariance. In particular, a Gaussian source has the
smallest rate region for a given covariance.

(iii) Unlike in the Slepian–Wolf problem, here decentralized
encoding requires a strictly higher rate compared to cen-
tralized encoding.

The problem of determining the rate region for this setup has
been open for some time [2]. Early work [2], [3] used the ar-
chitecture described above to prove an inner bound. Zamir and
Berger [4] showed that this inner bound is asymptotically tight
in the low-distortion regime, even if the source is not Gaussian.
Oohama [5] determined the rate region for the problem in which
only one of the two distortion constraints is present. By inter-
preting this problem as a relaxation of the original problem, he
obtained an outer bound for the latter. He showed that this outer
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bound, when combined with the inner bound, determines a por-
tion of the boundary of the rate region. As a result of his work,
showing that the inner bound is tight in the sum-rate suffices to
complete the characterization of the rate region. This is shown
in the present paper.

Our approach is to lower-bound the sum-rate of a given code
in two different ways. The first way amounts to considering the
rate required by a hypothetical centralized encoder that achieves
the same error covariance matrix as the code. The second way is
to establish a connection between this problem and the quadratic
Gaussian “CEO problem,” for which the rate region is already
known. For some codes, the cooperative bound may be tighter.
For others, the CEO bound may be tighter. Taking the maximum
of the two lower bounds yields a composite lower bound that is
sufficiently strong to prove the desired result.

The next section contains a precise formulation of the
problem and a statement of our main result, Theorem 1. In
Section III, we describe the separation-based compression ar-
chitecture. There we also discuss the worst case property of the
Gaussian distribution. We provide the necessary background on
the CEO problem and some other preliminaries to the converse
proof in Section IV. The converse proof itself is contained in
Section V. In Section VI, we show how the converse proof
technique can be used to determine the rate region for a more
general version of the problem in which the decoder aims to
reproduce certain linear combinations of the source compo-
nents. In Section VII, we show how the proof technique can
be extended to handle the case of more than two sources, if a
certain symmetry condition holds. Section VIII contains some
concluding remarks.

We use the following notation. Boldface, lower case letters
( ) denote vectors, while boldface, upper case letters ( ) de-
note matrices. Lightface letters ( , ) denote scalars. Whether
a variable is deterministic or random should be clear from the
context.

II. PROBLEM FORMULATION AND MAIN RESULT

Let be a sequence of independent and
identically distributed (i.i.d.) Gaussian zero-mean random vec-
tors. Let

(1)

denote the covariance matrix of . We use to
denote

to denote

todenote , todenote ,
etc. Analogous notation will be used for other vectors that ap-
pear later.

The first encoder observes , then sends a message to the
decoder using a mapping

The second encoder operates analogously. The decoder uses the
received messages to estimate both and using mappings

Definition 1 (Quadratic Gaussian Two-Encoder Source-
Coding Problem): A rate-distortion vector is
strict-sense achievable if there exists a block length , encoders

and , and a decoder such that1

for all in and

for all in (2)

where

Let denote the set of strict-sense achievable rate-distortion
vectors. We define the set of achievable rate-distortion vectors
to be the closure, , of . Let

We call the rate region for the problem. The (minimum)
sum-rate for a given distortion pair is defined to be

We note that there is no loss of generality in assuming that
, since the observations and the estimates

can be scaled to reduce the general case to this one. By similar
reasoning, we may assume that , i.e., that the observa-
tions of the two encoders are nonnegatively correlated. Since
the two extreme cases and can be handled using
existing techniques, we will assume throughout the remainder
of the paper that .

We now define three sets that will be used to describe the rate
region. Let

where . Likewise, let

Finally, let

where

1All logarithms in this paper are base two.
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Fig. 3. The rate region for � � ��� and � � � � ����.

Later we will see that we can often interpret the logarithm in
the definition of as a mutual information

where is the covariance matrix of the errors
in a sum-rate optimal code. Throughout the paper, we assume
that all distortion constraints ( and in this case) are positive.

Theorem 1: For the Gaussian two-encoder source-coding
problem

(3)

An example of the rate region is shown in Fig. 3. The direct
part of this result was previously known and is discussed in the
next section. It was also previously known that the rate region
was contained in the set . Our contribution is
a proof that the rate region in contained in . This
is provided in Sections IV and V. Sections VI and VII present
some extensions of this result to problems with more general
distortion constraints and more than two sources, respectively.

III. DIRECT PART AND WORST CASE PROPERTY

Translating the architecture in Fig. 2 into an inner bound on
the rate region is a straightforward exercise in network infor-
mation theory. Since proofs of similar bounds are available [2],
[6]–[9], we provide only a high-level view of the proof here.

Let denote the set of real-valued random variables
and such that

(i) meaning that , , , and
form a Markov chain in this order, 2 and

(ii) , for .
Then fix in and a large integer . By the proof of the
point-to-point rate–distortion theorem, the first vector quantizer
can send bits per sample to the first Slepian–Wolf en-
coder that conveys a string that is jointly typical with with
high probability. Likewise, the second vector quantizer can use

2This condition is sometimes called the “long Markov chain” [4].

bits per sample to send to its Slepian–Wolf encoder a
string that is jointly typical with with high probability.

The Slepian–Wolf encoders could view the quantized strings
and as individual symbols from a digital source to be

compressed [9]. They would then accumulate many such sym-
bols to compress. Alternatively, one can apply the arguments
behind the Slepian and Wolf theorem directly to and [2],
[6]–[8]. Either way, the decoder can recover and so long
as

(4)

The decoder can then in principle compute the minimum mean-
squared error (MMSE) estimate of given , and (ii) above
guarantees that this estimate will comply with the distortion
constraints. By a time-sharing argument, one can show that the
rate region is convex. This outlines the proof of the following
inner bound.

Proposition 1 (Berger–Tung Inner Bound [2], [3]): The sep-
aration-based architecture achieves the rates

there exists such that

(5)

In particular, the rate region contains the convex hull of this set.

It is unclear a priori how to compute this inner bound. A
natural approach is to place additional constraints on to create
a potentially smaller inner bound that is amenable to explicit
calculation. Let denote the set of in such
that has zero mean and unit variance for each , and there
exists a random vector such that

(i) for some constants and in
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(ii) is Gaussian and its components are independent;
(iii) is independent of ;
(iv) for all in .

We will refer to a random vector satisfying conditions (i)–(iii)
as a distributed Gaussian test channel or, when there is no am-
biguity, as simply a test channel. Note that the set of distributed
Gaussian test channels is parametrized by and .

Let

there exists such that

(6)

Lemma 1: The separation-based architecture achieves
, which satisfies

(7)

Proposition 1 immediately implies that the separation-based
architecture achieves , so we only need to prove the
equality in (7). Later, we state and prove a more general version
of this equality (Lemma 7 in Section VI). Since one can verify
directly that , , and are convex, it
follows that is also convex. Thus, time sharing does
not enlarge this region. In the remainder of the paper, whenever
we consider the separation-based architecture, we will assume
that is a distributed Gaussian test channel.

Theorem 1 and Lemma 1 together show that
equals the rate region. In particular, this implies that the separa-
tion-based scheme depicted in Fig. 2 is an optimal architecture
for this problem. We note that the quadratic Gaussian two-en-
coder source-coding problem is not unique in this respect.
Prior work has shown this architecture to be optimal for other
important problems as well [4], [6]–[8], [10]–[12].

In fact, the separation-based architecture achieves the rates

even if the source is not Gaussian. Let be a se-
quence of zero-mean i.i.d. random vectors, not necessarily
Gaussian, with covariance matrix . We consider the same
source-coding problem as before, but with the alternate source

in place of . Let denote the inner bound obtained
from Proposition 1.

Proposition 2: The separation-based architecture achieves
the rates

(8)

for the source . That is, contains this set.
Proof: See Appendix A.

Theorem 1 and Proposition 2 together imply that the separa-
tion-based architecture requires higher rates to send a Gaussian
source than it does to send any other source with the same co-
variance. In particular, a Gaussian source has the smallest rate
region for a given covariance matrix. This result is a two-en-
coder extension of the well-known fact that a Gaussian source
has the largest rate–distortion function for a given variance [13,
Example 9.7] (see Lapidoth [14] for a stronger version).

IV. CONVERSE PRELIMINARIES

Oohama [5] determined the rate region when only one of the
two distortion constraints is present

(9)

(10)

As a consequence of his result, it follows that

(11)

This outer bound is tight in a certain special case. Let denote
the set of matrices such that

(12)

for some diagonal and positive semidefinite matrix . There is
a one-to-one correspondence between and the set of dis-
tributed Gaussian test channels. Specifically, is the covari-
ance matrix of , where is a distributed Gaussian
test channel with

and and are defined by

As such, we will sometimes refer to , or equivalently , as a
(distributed Gaussian) test channel. Note that the mutual infor-
mation between and can be expressed in terms of

(13)

Let denote the set of distortion pairs such
that there exists a in with top-left entry and bottom-
right entry . It is straightforward to verify that is in

if and only if

(14)

The set is significant because if is not in
, then the rate region can be determined using existing

results.

Lemma 2: If is not in , then

(15)

In particular, the rate region equals

(16)
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Fig. 4. Dependence of the product � � on the error correlation coefficient � for � � ���.

The proof is given in Appendix B. In light of this lemma,
Lemma 1, and (11), it suffices to show that when is in

We show this in the next section.
Our proof uses a characterization of the sum-rate of the

quadratic Gaussian CEO problem. In the two-encoder version
of this problem, encoders 1 and 2 observe and , respec-
tively, and then communicate with a single decoder as in the
original problem. But now and are of the form

where , , and are independent and Gaussian, and the
decoder estimates instead of and . The distortion
measure is again the average squared error. This problem’s
rate region was determined independently by Oohama [8]
and Prabhakaran, Tse, and Ramchandran [10].3 Their result
shows that the separation-based architecture is optimal for this
problem.

For our purpose, we will find it more convenient to consider
the problem in which the decoder attempts to estimate for
some given vector . We call this problem the -sum problem.
For some values of , the -sum problem can be coupled to a
CEO problem. For these values of , it follows that the separa-
tion-based architecture is optimal.

Lemma 3: The sum-rate for the -sum problem with
and allowable distortion equals

and (17)

In Appendix C, we prove an extended version of this lemma
that includes a description of the entire rate region. Here we
note some properties of and the optimization problem (17).

3In fact, both works solved the problem for an arbitrary number of encoders,
but this generality is not needed at this point.

Recall that is in if there exists a diagonal and positive
semidefinite matrix such that

(18)

This formula provides a convenient way of evaluating the off-
diagonal entry of in terms of its diagonal entries and . Let
us write

where . Equating the off-diagonal entries in (18)
gives

(19)

Since , it follows that must be positive. But this
quadratic equation in has only one positive root

(20)

Thus, there is no other matrix in with top-left entry and
bottom-right entry . Using (20), the determinant of can be
expressed in terms of and

(21)

where was defined in Section II. The effect of the product
on is shown in Fig. 4. As tends to , converges to

and converges to . On the other hand, as tends to
zero, also converges to zero, i.e., the errors become asymptot-
ically uncorrelated.

Next we show that every matrix in solves a -sum
problem for some with . This fact will be used in
the proof of our main result.

Lemma 4: Let
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be in , and let

(22)

Then is sum-rate optimal for the -sum problem, i.e.,

(23)

The proof is deferred to Appendix D. It is helpful to note that
if the diagonal entries of are equal, then the coordinates of

will also be equal. This fact makes the proofs that follow
somewhat simpler when the two distortion constraints and

are equal. As such, the reader is encouraged to keep this case
in mind as we turn to the proof of the main result.

V. PROOF OF THE MAIN RESULT

Recall that we may restrict attention to the case in which
is in . Let us now fix one such distortion pair;

we will suppress dependence on in what follows. Let
denote the element of whose top-left and bottom-right

entries are and , respectively.

Definition 2: For , let

and define

(24)

Let be the vector defined in (22). Then let

(25)

The next lemma is central to the proof of our main result.

Lemma 5: If is strict-sense achievable, then

(26)

Proof: By hypothesis there exists a code
satisfying (2). Then

(27)

where denotes differential entropy. But the first term on the
right-hand side satisfies

(28)

while the second term satisfies

(29)

since conditioning reduces entropy. Let denote the covari-
ance matrix of

(30)

and let

denote the error covariance matrix of the code. We may assume
that and are MMSE estimators, in which case The-
orem 9.6.5 in Cover and Thomas [15] implies that

Applying the concavity of - [15, Theorem 16.8.1], we
have

(31)

(32)

Combining this inequality with (27) and (28) gives

(33)

Now (27) implies that

Thus, must be nonsingular and hence positive definite. Let us
write it as

where , , and is in . Define
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Fig. 5. � ��� and � ��� for the case � � ��� and � � � � ����. The plot for � ��� was generated using the convex optimization formulation of the
sum-rate for the ���-sum problem given in Appendix C. The circled point at which the two functions intersect is the min-max and equals the sum-rate.

and note that is in . Then is diagonal

Since and , it follows that is positive
semidefinite, i.e., . In particular, [16,
Corollary 7.7.4]. This implies that

(34)

Next observe that

In particular, we have

(35)

i.e., this code achieves distortion for the -sum
problem. Lemma 3 then implies that

Combining this with (34) gives

The conclusion follows by taking the infimum over in .

The next step is to evaluate the infimum in (26). Examples of
and are shown in Fig. 5. We show that these

two functions always intersect at the correlation coefficient of
, , and at this point, they equal the min-max.

Lemma 6:

Proof: Let us write , the matrix in with diagonal
entries , as

Then observe that since , if , we have

(36)

On the other hand, if , then since is nonin-
creasing

(37)

where we have used the fact that solves the -sum problem.
It follows that

We conclude the proof by invoking the formula for the determi-
nant of a matrix in (21).
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Fig. 6. Graphical depiction of the lower bound argument.

Proof of Theorem 1: As discussed in Section IV, it suffices
to show that

Lemmas 5 and 6 together imply that if the rate–distortion vector
is strict-sense achievable and is in

, then

(38)

On the other hand, Lemma 2 implies this inequality if
is strict-sense achievable and is not in

. It follows that (38) holds whenever
is strict-sense achievable. Since the right-hand side is contin-
uous in , this implies that if the point
is in , then (38) again holds. This implies the desired
conclusion.

A. Reprise

The argument used in the converse proof can be summarized
as follows. Since the distortion constraints only constrain the
magnitude of the individual errors, and not their correlation,
we view the determination of the sum-rate as an implicit mini-
mization over all possible error covariance matrices, subject to
upper bounds on the diagonal elements. We then lower-bound
the sum-rate for each possible error covariance matrix using two
approaches. First, we consider the rate needed by a centralized
encoder to achieve the given error covariance matrix. Second, we
use the existing characterization of the rate region for the CEO
problem to solve the -sum problem for some vectors. This
solution is then used to lower-bound the sum-rate of the problem
under study for a given error covariance matrix. The first bound
is most effective when the correlation between the errors is large.

The second bound is most effective when the correlation is small.
We therefore form a composite bound by taking the maximum
of these two lower bounds. The argument is illustrated in Figs. 5
and 6. Note that both of the lower bounds are needed.

VI. THE -SUMS PROBLEM

Consider next a generalization of the classical problem in
which the decoder attempts to estimate for a given set of
vectors . We may assume without loss of generality
that these vectors are distinct and have unit norm.

Define the matrix

consisting of the column vectors side-by-side. The
problem is then to reproduce the vector subject to separate
constraints on the average squared error of each component. We
call this the -sums problem. Note that the classical quadratic
Gaussian two-encoder source-coding problem can be viewed
as an instance of the -sums problem with equal to the
identity matrix. We will show that the techniques used to solve
that problem can be used to solve the general -sums problem
if the vectors satisfy a certain condition. Specifically,
we will require that the product of the two coordinates of each
vector is nonnegative

(39)

This condition is satisfied if and only for each either both
coordinates of are nonnegative or both are nonpositive.
From a source-coding perspective, these two cases are essen-
tially equivalent, so for simplicity we will assume that the
components of are nonnegative for each .
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The condition in (39) depends on our standing assumption
that . If is negative, then the condition in (39)
becomes

(40)

Note that either way, the condition includes the case when is
the identity matrix, i.e., the classical version of the problem.

A. Main Result

In this section, we use to denote the rate region
of the -sum problem with distortion constraint . Let

denote the minimum sum-rate for the
-sums problem achieved by the separation-based scheme,

which shown in (41) at the bottom of the page. Then let
denote the set of rate pairs whose sum is at

least

(42)

In terms of these sets, the separation-based architecture achieves
the following inner bound.

Lemma 7: For the -sums problem, the separation-based
architecture achieves the rates

The proof is elementary but somewhat involved and is given
in Appendix E. The main result of this section is the following
theorem that shows that this inner bound equals the rate region.

Theorem 2: The rate region of the -sums problem equals

(43)

The proof parallels that of Theorem 1. In particular, we use
functions similar to and . The details are given
in Appendix F.

By mimicking the proof of Proposition 2, one can show that
the separation-based architecture achieves the rates in (43) even
if the source is not Gaussian. Theorem 2 then implies that, as with
the classical version of the problem, the separation-based inner
bound and the rate region are both smallest for a Gaussian source.

B. The Remote-Source Problem

As an application of Theorem 2, consider the remote-source
version of the original problem. Here the encoders’ observations
are viewed as an underlying source plus additive noise

where , , and are independent and Gaussian. We as-
sume these random variables have zero mean and the following
second moments:

so that has covariance matrix . The aim is to reproduce
and subject to distortion constraints and , respectively.
A partial characterization of the rate region for this problem
was obtained by Oohama [17]. By coupling this problem to an

-sums problem, we can determine the rate region completely.

Corollary 1: The rate region for the remote-source problem
with distortion constraints and equals the rate region for
the -sums problem with distortion constraints and

, where

and

Proof: Standard calculations show that ,
and in particular, can be written

where is Gaussian, independent of , and has mean zero
and variance . Then for any random variable such that

, we have

(44)

Now consider a pair of encoders, and , and a decoder
with

Since the source is i.i.d., for any time , we have

Thus, by (44), it follows that

(45)

By averaging both sides of this equation over time, we see that
any code that achieves distortion for must achieve distor-

and (41)
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Fig. 7 Setup for the many sources problem.

tion for and vice versa. Likewise, any code that
achieves distortion for must achieve distortion for

and vice versa. The conclusion follows.

Observe that this proof does not require the assumption that
, only that . If , then and

satisfy the condition in (39). On the other hand, if ,
then and satisfy the condition in (40). Since the cases

, , and can be solved using existing techniques,
the rate region for the remote source problem is solved for any
value of .

VII. MANY SOURCES

Our technique can be used to determine the sum-rate for more
than two sources if a certain symmetry condition holds. Suppose
now that there are jointly Gaussian sources, , with
covariance matrix

...
...

. . .
...

for some . That is, the source components are
Gaussian, exchangeable, and positively correlated. We assume
that the sources are separately encoded, as shown in Fig. 7, and
that distortion constraints are imposed on the individual re-
productions

for all in

The separation-based scheme yields an inner bound on the rate
region, and in particular, an upper bound on the sum-rate. As
in the case of two sources, let denote the set of matrices
such that

for some diagonal and positive semidefinite matrix . The sum-
rate achieved by the separation-based scheme is then

and

(46)

where denotes the vector with one in position and zero else-
where. By following the proof of Theorem 1, one can show that

this sum-rate is optimal if the distortion constraints
are equal.

Theorem 3: If , then the separation-
based architecture is sum-rate optimal. In particular, the sum-
rate is given by (46). Furthermore, in this case, the infimum in
(46) is achieved by a in of the form

for some .
The proof is given in Appendix G. As with the -sums

problem, it is possible to mimic Proposition 2 and show that
the separation-based architecture achieves the sum-rate in (46)
even if the source is not Gaussian. It follows that the Gaussian
source has the largest sum-rate among all exchangeable and
positively correlated sources when all of the distortion con-
straints are equal.

VIII. CONCLUDING REMARKS

We determined the rate region of the quadratic Gaussian
two-encoder source-coding problem. This result implies that a
simple architecture that separates the analog and digital aspects
of the compression is optimal, and that this architecture requires
higher rates to send a Gaussian source than it does to send any
other source with the same covariance. We also described how
our proof technique can be extended to determine the sum-rate
of some generalizations of this problem. We now comment on
two aspects of our results.

A. An Extremal Result

One consequence of our main result is that there is no loss
of optimality in using Gaussian auxiliary random variables in
the separation-based inner bound. More precisely, the regions

and defined in (5) and (6) are equal. In
particular, these two regions have the same sum-rate. Thus, to
the optimization problem

minimize

subject to

(47)

we can add the constraint

is jointly Gaussian

without changing the optimal value. The same is true, of course,
of the optimization problem

maximize

subject to

(48)

This is akin to the well-known fact that the Gaussian distribu-
tion maximizes entropy for a given covariance. But this result is
more subtle in that the conditional covariance of given is not
fixed, and by using non-Gaussian , one can potentially realize
conditional covariances that are unattainable with Gaussian dis-
tributions. Evidently, the entropy-maximizing property of the
Gaussian distribution more than compensates for its smaller set
of achievable conditional covariances.
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Using Theorem 2, it is possible to generalize this result to
allow distortion constraints on linear combinations of the source
variables and . It is also possible to prove a multiletter
version of this result by first proving a multiletter version of
the inner bound, in which several source symbols are treated
as a single “supersymbol.” Whether one can prove any of these
extremal results without reference to the source-coding setup
that is the subject of this paper is an interesting open question.

B. Source Augmentation

The most noteworthy aspect of our proof is the random vari-
able that we add to the source in Appendix C to solve the

-sum problem. Unlike other more typical auxiliary random
variables, does not represent a component of the code. Rather,
it is used to aid the analysis by inducing conditional indepen-
dence among the observations, which allows us to couple our
problem to a CEO problem. Of course, there are many random
variables that will induce conditional independence. The role of
Lemma 4 is to identify the best one.

This technique of augmenting the source to induce condi-
tional independence has proven useful in other contexts as well.
Ozarow [18] used it to prove the converse for the Gaussian two-
descriptions problem. Wang and Viswanath [19] used it to de-
termine the sum-rate for the Gaussian vector multiple-descrip-
tions problem with individual and central decoders. Wagner and
Anantharam [11], [12] used it to prove an outer bound for the
discrete multiterminal source-coding problem.

Recently, we have generalized the CEO result to sources
whose correlation satisfies a certain tree condition [20] (see also
[21]). This suggests an approach for generalizing the results
in this paper. Specifically, one could potentially augment the
source to couple a given distributed source coding problem to
this tree problem instead of the more restrictive CEO problem.
Determining whether this revised approach yields stronger
results is a worthwhile question for future research.

APPENDIX A
PROOF OF PROPOSITION 2

Let be a rate pair in

By Lemma 1, there exists a in such that

(49)

Now can be expressed as

for some coefficients and in , where , , and are
independent and is Gaussian. Now construct auxiliary random
variables and for the true source via

with independent of . Note that the Markov condition

is satisfied and that and have the same second-
order statistics. Thus, the error in the linear MMSE estimate of

given , , equals the error in the linear MMSE
estimate of given

(50)

But conditional expectation minimizes mean square error

(51)

and for jointly Gaussian random variables, the linear MMSE
estimate is also the conditional expectation [22, Theorems 9.1-1
and 9.1-2]. Since is in , this implies

It follows that is in . Next, we show that
satisfies

(52)

To prove this, it suffices to show that

(53)

By symmetry, it suffices to prove the last two inequalities. Let

Then we have

where

follows from the Markov condition ,

follows because differential entropy is invariant to
shifts,

follows because conditioning reduces differential
entropy,

follows from the fact that has the same covariance
as , and the Gaussian distribution maximizes differ-
ential entropy for a given variance, and

follows because steps and are tight if is
Gaussian.
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We can prove (53) via similar reasoning

(54)

It follows that the rate pair belongs to .

APPENDIX B
CONVERSE FOR A SPECIAL CASE

Proof of Lemma 2: The conclusion is easily verified if
, so assume instead that .

Without loss of generality, let us assume that .
Then by (14), we must have

If this holds, then

But one can verify directly that

(55)

Now via calculus one can show that if is in
then and must satisfy

It follows that

In particular, we have

(56)

The result then follows from (11) and Lemma 1.

APPENDIX C
THE -SUM PROBLEM

In this appendix, we determine the rate region for the -sum
problem if satisfies . If , then the rate
region has already been determined by Oohama [5], so we shall
assume that .

We begin by noting that if and the allowable distortion are
both scaled by the same factor, then the rate region remains un-
changed. We may therefore assume that is normalized. In par-
ticular, we may assume that

(57)

where

(58)

(59)

and

(60)

This normalization is convenient because, as we shall see, it
admits a particularly simple coupling to a CEO problem.

Lemma 8: Suppose the vector satisfies and the
normalization (57). Then the rate region for the -sum problem
with allowable distortion equals

there exist such that

(61)

In particular, the sum-rate equals

and

(62)

or equivalently

and (63)

Furthermore, the infimum in (63) is achieved by a unique fea-
sible .

Proof: Let

(64)

Clearly and . Using (58) and (59), one can verify
that . It follows that and are each contained in

. Let , , and be independent zero-mean Gaussian
random variables with variances
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Since has covariance matrix , we can
couple these variables to to create a CEO problem

(65)

The notation is justified by the fact that

Now starting with (57), we have

Substituting for and and rearranging gives

(66)

But observe that

and

Substituting these equations into (66) gives

(67)

Similarly

(68)

Now using the fact that , we have

(69)

Substituting for and using (64), this gives

Thus, we have

(70)

It follows that

and, in particular, can be written

where is Gaussian, independent of , and has variance

(71)

Then, for any random variable such that , by a
calculation similar to (44), we have

(72)

As in the proof of Corollary 1, it follows that any code that
achieves distortion for the -sum problem must achieve dis-
tortion for the CEO problem (65) and vice versa. The
characterization of the rate region in (61) and the sum-rate in
(62) now follow from existing results on the CEO problem [8],
[10]. To show that (63) equals (62), we first show that (62) can
be rewritten as (73) at the bottom of the page. To see this, note
that the two optimization problems differ only in the objective,
and both objectives are increasing functions of and . Now
if , then both infima are zero. On the other hand, if

, then in both problems, we may assume without loss
of generality that the constraint is met with equality

(74)

But if the constraint is met with equality, then the two objectives
are equal. Thus, the two optimization problems are equivalent.

and (73)
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Let be a distributed Gaussian test channel such that

If we define

then a standard calculation shows that

(75)

Thus, the expression in (73) equals (76), shown at the bottom of
the page. Now since and ,
we have

(77)

Applying (72) again, we can write the infimum in (76) as

are jointly Gaussian

which equals

and (78)

Now since the quantity

is strictly concave, it follows that the infimum in (62) is achieved
by a unique feasible point. This, in turn, implies that the infimum
in (73) is achieved by a unique feasible point. By the equivalence
between the feasible points in (73) and (78) it follows that the
infimum in (78) is also achieved by a unique feasible point.

APPENDIX D
EVERY SOLVES A -SUM PROBLEM

Proof of Lemma 4: Without loss of generality, we may as-
sume that has been scaled so that it satisfies the normalization

(57). Then the sum-rate for the -sum problem with allowable
distortion

is given by

and

(79)

where , , and were defined in (58) through (60).
The remainder of the proof consists of three parts.

(I) We identify candidate optimizers for (79), and , in
terms of .

(II) We show that and achieve the infimum in (79).
(III) We show that at and , the objective

equals

Part I: Since is in , there exists and ,
such that

(80)

Our candidate optimizers are then

(81)

This formula can be understood as follows. Since is in ,
there exists a distributed Gaussian test channel such that

. Now can be written

where is an independent Gaussian vector with covariance
matrix

are jointly Gaussian

(76)
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As in the previous appendix, let

(82)

and let , , and be zero mean Gaussian random variables
with

Then couple these variables to such that

and . It then follows that

Part II: Next we show that and solve the optimiza-
tion problem (79). Since the optimization problem is convex, it
suffices to show that and satisfy the Karush–Kuhn–Tucker
(KKT) conditions [23, Sec. 5.5.3]. The Lagrangian for this op-
timization problem is

(83)

Thus, it suffices to show that

(84)

(85)

for some . To show (84), note that (80) implies that

(86)

Then define

(87)

Since by definition

it follows from (86) that

Referring to the definition of and , this implies

(88)

(89)

Combining (81) and (87), we have

Thus, (84) is equivalent to

(90)

But by using (88) and (89), one can verify that this pair of con-
ditions holds if

(91)

This establishes (90) and hence (84). Now as in the previous
appendix we have

(92)

This establishes (85) and the optimality of and .
Part III: It only remains to show that

(93)

Observe that the left-hand side equals

Repeating the argument in (77), we have

APPENDIX E
ACHIEVABILITY FOR -SUMS

Before proving Lemma 7, we examine some of the properties
of the constituent regions . Without loss of generality,
we focus on .

Let denote the function whose epigraph is

(94)

which may equal infinity for some . Note that is non-
increasing. Since is closed and convex, must be
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Fig. 8. An example illustrating the definitions of � , � , � , and � in Ap-
pendix E.

continuous on its effective domain [24, Theorems 7.1 and 10.1].
Thus, is closed and proper [24].

For in the effective domain of , let denote the
subdifferential of at

(95)

Note that can be interpreted geometrically as the set
of slopes of all supporting lines at . From standard results in
convex analysis [24, Sec. 24], is the interval between
the left and right derivatives of at . The graph of ,

resembles the graph of a nondecreasing function, except that
any jump discontinuities have been “filled in” with vertical seg-
ments. As such, is monotonic in the sense that if

then for any in and in .
We now partition the effective domain of into three

parts. Let

(96)

These intervals are depicted in Fig.8. We call the steep part of
and and the shallow part. Some of these intervals

might be empty in some cases. Note that the sum-rate decreases
as one moves left-to-right in and increases as one moves
left-to-right in and .

Next we associate each point in the effective domain
of with a test channel that meets the distortion con-
straint with equality. Since is on the boundary of

, it must be on the boundary of the contrapolymatroid
of some test channel satisfying . Suppose

first that is in . Then has a supporting line with
slope at . Since the contrapolymatroid
associated with is contained in , this contrapolyma-
troid must also be supported by a line with slope at

. This implies that is on the vertical
portion of the boundary of this contrapolymatroid.

In fact, by the definition of , must be the
left corner point of the contrapolymatroid of this test channel.
We then associate with the unique test channel whose left
corner point is . Likewise, to every in , we
associate the unique test channel whose right corner point is

.
If is nonempty, then is bounded. In this case, as

, the associated test channels will converge
to a test channel . We associate this test channel with all
in .

If is in , then is supported at by a
line with slope . This implies that is sum-rate
optimal. We then associate all in with the unique test
channel that is sum-rate optimal (see Lemma 8).

Note that the endpoints of the interval must correspond to
the corner points of the sum-rate optimal contrapolymatroid. It
follows that the associated test channels vary continuously with

over the entire effective domain of . The test channels
also vary monotonically in the sense that if and and

are the associated test channels, then

for some nonnegative numbers and . Note that for each
test channel that meets the distortion constraint with equality, at
least one of its corner points must be on the boundary of .

Now consider a second vector, , and suppose that
weights more heavily than does

(97)

Next we show that as one moves left-to-right along the boundary
of , the distortion that the associated test channels induce
on is nondecreasing.

Lemma 9: Suppose , and let and be the
associated test channels. Then

(98)

Proof: Define and by

(99)

(100)

Since , we know that

for some nonnegative numbers and . Then it follows that
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Furthermore, we know that

To establish (98), we will show that

(101)

Now can be written

(102)

where , , and are nonnegative. In terms of these parameters,
we have

A tedious but straightforward calculation shows that the expres-
sion on the right-hand side of (101) equals the first expression at
the bottom of the page, which is nonnegative because ,

, and

by (97).

From the proof, we can see that if the inequality in (97) is
reversed, then the inequality in (98) is also reversed.

We now turn to the proof that

(103)

is achievable. Recall that is defined as

where is defined in the second equation at the
bottom of the page. We begin by showing that this infimum is
achieved.

Lemma 10: There exists a in such that

and (109) at the bottom of the following page holds.

Proof: Let be any matrix in that satisfies the distor-
tion constraints. The infimum is then upper-bounded by

Now the set of such that

(104)

(105)

is compact, and the objective is continuous, so the infimum is
achieved.

Proof of Lemma 7: Recall we are assuming that the vec-
tors are distinct and have norm one. We may also
assume, without loss of generality, that they have been ordered
so that their first coordinates are decreasing

which implies that their second coordinates are increasing

Let

(106)
and

(107)
denote the functions whose epigraphs are the constituent re-
gions. The corresponding function for the intersection is given
by

To show that the intersection is achievable, is suffices to show
that for each for which , is achiev-
able for some or is achievable.

By Lemma 10, there exists a in that is sum-rate op-
timal within the class, meaning that is satisfies (108)–(109) at
the bottom of the following page. Let denote the set of con-
straints that are active at

and
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Fig. 9. Illustration of��� -sums achievability argument.

which must be nonempty. Let denote the largest element of .
Thus, the sum is the one that weights most heavily of all
of the sums whose constraints are active at .

Consider the contrapolymatroid region associated with .
We shall show that the right corner point of this region is on the
boundary of . Since achieves the constraint with
equality, either the left corner point or the right corner point (or
both) of its contrapolymatroid region must lie on the boundary
of . Suppose it is only the left corner point that lies on the
boundary of . This corner point would then have to lie on
the steep part of the boundary ( ) of . Consider moving
a small amount to the right along the boundary of . Since
the distortion for varies continuously as we move along the
boundary of for each , for a sufficiently small move-
ment, none of the distortion constraints in will be violated.
At the same time, by Lemma 9, none of the distortion constraints
in will be violated either.

Thus, we can strictly reduce the sum-rate without violating
any of the distortion constraints. This contradicts the assumption
that is sum-rate optimal within the class . Hence it must
be the right corner point, , of the contrapolymatroid
that is on the boundary of , as shown in Fig. 9.

Next consider starting at this corner point and moving to the
right along the boundary of . By Lemma 9, the con-
straint will remain satisfied for all . If, as we move to the
right, the constraint is never satisfied with equality for all

, then it follows that the shallow portion of to the
right of is achievable.

If the distortion constraint becomes active for some ,
then there exists a point on the boundary of
whose associated test channel meets both the and dis-
tortion constraints with equality

(110)

(111)

Since is on the shallow portion of the boundary of
, must be the right corner point of the con-

trapolymatroid region associated with . Now at least one of
the corner points of must be on the boundary of . By
Lemma 9, the boundary of must be below that of
to the left of . It follows that it must be the right corner point
of , i.e., , that is on the boundary of . We then
move to the right along the boundary of , repeating the
above process as necessary as new constraints become active.
This shows that for each , is achievable
for some .

An analogous procedure can be followed starting with the
left corner point of the contrapolymatroid associated with .
Finally, between these two corner points, is
achievable.

APPENDIX F
CONVERSE FOR -SUMS

We show in this appendix that the rate region for the -sums
problem is contained in

Since the rate region is clearly contained in , we
only need to show that it is contained in .
That is, we must show that the sum-rate is lower-bounded by
(112), also shown at the bottom of the page. By Lemma 10, this
infimum is achieved by some in . If , then

and our task is trivial. Suppose there-
fore that . Then must meet at least one of the dis-
tortion constraints with equality. If meets exactly one dis-
tortion constraint with equality, then the converse is relatively
simple, because in this case contains
for some .

Lemma 11: Suppose there exists in that is sum-rate
optimal within this class and meets exactly one of the distortion
constraints with equality, i.e., and
for all . Then the sum-rate for the -sums problem is

(108)

and (109)

and (112)
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Proof: It suffices to show that is sum-rate optimal for
the -sum problem with distortion . Recall that one of the
corner points of lies on the boundary of the -sum-rate
region. If this point is not sum-rate optimal, then it is possible to
move a small distance along the boundary of and strictly
decrease the sum-rate. Since the distortion associated with
varies continuously as we move along this boundary for each
, it follows that a sufficiently small movement will not violate

any of the distortion constraints. This contradicts the assumption
that is sum-rate optimal for the -sums problem within the
class . It follows that is sum-rate optimal for the -sum
problem.

It also happens that contains for
some when there is an optimizing on the “boundary” of

. Let denote the set of in such that

for some diagonal and positive-definite . Let ,
which is the set of those such that is
singular.

Lemma 12: Suppose there exists a in that
is sum-rate optimal within the class . Then the sum-rate for
the -sums problem is given by

Proof: As in the previous proof, it suffices to show that for
some , is sum-rate optimal for the -sum problem with
distortion . Now can be written

(113)

where is diagonal, positive semidefinite, singular, and
nonzero. Without loss of generality, we may assume that is
of the form

for some . Let denote the set of constraints that are
active at

(114)

Let denote the constraint in that weights most heavily

We will show that is sum-rate optimal for the -sum
problem with distortion . Now is associated with a point

on the boundary of the -sum-rate region. If this point
is not sum-rate optimal for this problem, then it is possible
to move a small distance to the left along the boundary of

and strictly decrease the sum-rate. Since the distortion
associated with varies continuously as one moves along
this boundary, for a sufficiently small movement, none of the
constraints in will be violated. On the other hand, by Lemma
9, none of the constraints in will be violated either. This
contradicts the assumption that is sum-rate optimal for the

-sums problem within the class . It follows that is
sum-rate optimal for the -sum problem.

The previous two lemmas allow us to focus on the case in
which there exists an optimizing in that meets at least
two of the distortion constraints with equality. Our proof in this
case parallels the proof of Theorem 1. In particular, we introduce
a nonnegative vector such that is sum-rate optimal for the

-sum problem.

Lemma 13: Suppose is sum-rate optimal within
the class as shown in (115) at the bottom of the page. Let

denote the set of constraints that are active at

If , then there exists in , , and a nonnegative
vector such that

1) is sum-rate optimal for the -sum problem

and

(116)

2) is nonnegative, where

(117)

Proof: Any can be written

for some diagonal and positive semidefinite matrix . Thus the
optimization problem in (115) can be written

(118)

subject to

(119)

where ranges over all diagonal and positive-semidefinite ma-
trices. By hypothesis, this optimization problem is solved by

Unfortunately, may not be regular [25, p. 309] for this opti-
mization problem. This is an issue because the KKT conditions

and (115)
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may not hold at a local minimum that is not regular [25, Ex-
ample 3.1.1]. We proceed by using a generalization of the KKT
conditions called the Fritz John conditions [25, Sec. 3.3.5]. The
difference between the Fritz John conditions and the KKT con-
ditions is that the Fritz John conditions include a scalar for the
objective in addition to the multipliers for the constraints. The
Lagrangian for this optimization problem is

(120)

where the second summation handles the constraint that must
be positive semidefinite. Denote the coordinates of by

(121)

By differentiating the Lagrangian with respect to the two diag-
onal entries of and using the calculations in Appendix H, we
can express the Fritz John conditions [25, Proposition 3.3.5] as

(122)

(123)

for some that are nonnegative but not all zero.
Now since by hypothesis, the constraint that be
positive semidefinite is not active at . By complimentary
slackness, this implies that . Also by compli-
mentary slackness, if , so it follows that

(124)

(125)

Now if were equal to zero, then we would have

(126)

Since is unit-norm for all by assumption,
must be positive for all . Thus, (126) would imply

that for all in . But this would contradict the condition
that at least one of the dual variables is nonzero.
It follows that is positive, so we can divide through by in
(124) and (125) to obtain

(127)

(128)

Thus, lies in the convex cone formed by the points

By Carathéodory’s theorem for convex cones [24,
Corollary 17.1.2], there exists in , , such that

lies in the convex cone of those two points alone

(129)

Let denote the matrix

By swapping the roles of and if necessary, we may assume
that .

Let

(130)

By Lemma 4, is sum-rate optimal for the -sum problem,
so it only remains to show that is nonnegative.

Consider the matrix

(131)

In terms of the components of and , the determinant of
is

(132)

By expanding the products and using the fact that , one
can show that . In particular, the conditions in (129) can
be written as

(133)

(134)

Since and are nonnegative, this implies that

(135)

(136)

Now (135) can be written

This can be rearranged to show that

(137)

Likewise, (136) implies

(138)

Now can be written

(139)

(140)
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which is component-wise nonnegative due to (137), (138), and
the nonnegativity of .

Lemma 14: Suppose is strict-sense
achievable and there exists a in that is sum-rate optimal
within the class and meets at least two of the distortion
constraints with equality. Then

Proof: We give an abbreviated proof due to the similarity to
the proofs of Lemmas 5 and 6. From Lemma 13, there exists two
constraint vectors and , , and a nonnegative vector
such that

(i) ,
(ii) ,

(iii) is sum-rate optimal for the -sum problem, and
(iv) is nonnegative, where

For in , let

(141)

Also define

(142)

and by (143), shown at the bottom of the page.
Now fix some code that achieves . Let

denote the decoder’s estimate of , which we
may assume is the conditional expectation of given
the received messages. Let

(144)
denote the average covariance matrix of . Then

is the error covariance matrix for the estimate of the source .
As in the proof of Lemma 5, must be positive definite, and
the sum-rate of the code must satisfy (cf. (33))

(145)

(146)

(147)

In particular, must also be positive definite. Let us write it as

where , , and . Now define

and note that is in . Then , so it follows that

On the other hand

(148)

(149)

i.e., this code achieves distortion for the
-sum problem. Lemma 3 then implies that

It follows that

(150)

Now let

(151)

which must have diagonal entries and , respectively. Let us
write as

Note that we must have since is positive definite
and both and have positive entries. For , we have

(152)

(153)

Since both components of are nonnegative, it follows
that

is nondecreasing in , which implies that is nonin-
creasing. Thus, if

and (143)
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But observe that at , satisfies (154) at the bottom of
the page, and (151) implies that

Since solves the -sum problem, this implies

It follows that

(155)

Combining this with (150) yields the desired conclusion.

We are now in a position to complete the proof of Theorem 2.

Proof of Theorem 2: We only need to show that the rate
region is contained in . Lemmas 11, 12, and
14 together imply that if

is strict-sense achievable, then

and

(156)

It is readily verified that the right-hand side is lower-semi-
continuous in . It follows that (156) also holds if

are achievable. This implies the desired
conclusion.

APPENDIX G
CONVERSE FOR MANY SOURCES

In this appendix, we prove Theorem 3. Recall we are as-
suming that the covariance matrix has the form

...
...

. . .
...

for some and all of the distortion constraints are equal
to . Our goal is to show that the minimum sum-rate, ,
equals

(157)

and that this infimum is achieved by a of the form

(158)

for some . The conclusion is obvious if , so we will
assume that . Using the matrix inversion lemma [26,
p. 50], the matrix inversions in (158) can be computed explicitly

(159)

It follows that there is a unique of the form in (158)
with all of the diagonal entries equal to . Let us call this matrix

. Note that must be of the form

...
...

. . .
...

(160)

for some . Since must be positive definite, it follows
that . Now the inequalities

and

(161)

(162)

are clear, so it suffices to show that

For in let

...
...

. . .
...

and note that is positive definite for each . Then define

(163)

Next consider the problem of reproducing the sum of the
sources at the decoder. By following the proof of Lemma 8,
one can show that this problem is equivalent to the CEO problem

where are zero-mean, Gaussian, and independent,
and has variance . It follows from existing results that the
separation-based scheme achieves the entire rate region, and in
particular it is sum-rate optimal [8], [10]. Thus, the sum-rate for

and (154)
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the -sum problem with distortion constraint is given
by

and

(164)

In fact, the CEO results imply that the infimum in (164) will be
achieved by a of the form in (158). In particular, we
have

(165)

Lemma 15: If is strict-sense
achievable, then

(166)

Proof: By hypothesis, there exists a code

such that

for all in

for all in

From this code, we construct a new code with block length
by time-sharing among all permutations of the sources.

For this new code, the rates are symmetric

for all in

and the distortion still satisfies

for all in

Let

denote the error covariance matrix of the code. By the symmetry
of the time sharing, must have the form

...
...

. . .
...

for some . Following the calculation at the beginning of
the proof of Lemma 5, one can show that is positive definite,
which implies that , and

But , so this implies

(167)

Since the code has error covariance matrix , the distortion it
achieves for the -sum problem is at most . It
follows that

Combining this with (167) gives

The conclusion follows by taking the infimum over in

Next we evaluate the infimum in (166). Recall that is de-
fined by (160).

Lemma 16:

Proof: By differentiating, one can verify that is
nondecreasing on . Then if , we have

(168)

On the other hand, if , then since is nonin-
creasing

(169)

where we have used (165).

Theorem 3 now follows from a continuity argument similar
to the one used in the proof of Theorem 1.

APPENDIX H
DERIVATIVES

Let denote the matrix in defined by

(170)

In this appendix, we compute the derivatives of

and

with respect to and . Write
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(176)

(177)

(178)

Then we have

(171)

(172)

(173)

(174)

Similarly,

(175)

Likewise, we have (176)–(178) at the top of the page, where to
obtain the second equation, we have used the matrix inversion
lemma. Similarly,

(179)
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