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Vector Gaussian Multiple Description With Two
Levels of Receivers

Hua Wang and Pramod Viswanath, Member, IEEE

Abstract—The problem of�multiple descriptions of a stationary
and ergodic Gaussian source with two levels of receivers is investi-
gated. Each of the first-level receivers receive (an arbitrary subset)
� of the� descriptions, �� � ��. The second-level receiver receives
all � descriptions. All the receivers, both at the first level and the
second level, reconstruct the source using the subset of descrip-
tions they receive. The corresponding reconstructions are subject
to quadratic distortion constraints. Our main result is the deriva-
tion of an outer bound on the sum rate of the descriptions so that
the distortion constraints are met. We show that an analog–digital
separation architecture involving joint Gaussian vector quantizers
and a binning scheme meets this outer bound with equality for sev-
eral scenarios. These scenarios include the case when the distortion
constraints are symmetric and the case for general distortion con-
straints with � � � and � � �.

Index Terms—Binning, Gaussian source, inner bound, multiple
description problem, outer bound, rate distortion.

I. INTRODUCTION

M ULTIPLE description coding is used in transmission of
information under some quality of service requirement

through unreliable communication links. In this problem (cf.
Fig. 1), an information source is encoded into packets, which
are sent through separate parallel communication channels.
Some packets may get lost during the transmission, but as long
as one packet is received, the decoder can reconstruct the infor-
mation source with some fidelity, and when more packets are
received, the decoder is able to generate higher quality approx-
imations of the information source. In the most general case,
there are different combinations of received packets with
each combination corresponding to one of subsets of

. In [1], El Gamal and Cover derived an achievable
rate region for two descriptions . This region was shown
to be tight for the case of “no excess rate” by Ahlswede [2], and
was shown not to be tight in general by Zhang and Berger [3]. In
[4]–[6], a symmetric multiple description problem was studied.
In [7], the optimal rate–distortion region of the multiple descrip-
tions with one deterministic reconstruction was derived.
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The only known complete solution for the entire rate region
is for two descriptions of a memoryless Gaussian source with
quadratic distortion measures [8]. Reference [4] provides an
outer bound to the optimal rate–distortion region in the scalar
quadratic Gaussian case with arbitrary ([4, Theorem 2]). Fur-
ther, it is shown to be tight for in the case of symmetric
distortion constraints ([4, Theorem 4]). Reference [9] extended
this result from the scalar symmetric case to the vector asym-
metric case.

In this paper, we generalize the study in [9] by considering
the central receiver along with first-level receivers, each of
which receives a different subset of of the total descrip-
tions . As in [9], we model the source as a memoryless,
but vector Gaussian source. Further, we handle quadratic con-
straints on the reconstruction of the original source by consid-
ering a covariance distortion measure constraints, in the sense
of a positive semidefinite ordering. Corresponding to first-
level receivers and the single central receiver, there are
distortion matrices. An inner bound to the optimal rate distor-
tion region of this problem was given in [4] for the asymmetric
case and in [5], [6] for the symmetric case. Note that specifi-
cally, with this problem boils down to the setting studied
in detail in [9].

A. An Achievable Architecture

There is an achievable architecture which divides the analog
and digital aspects of the description problem. As illustrated in
Fig. 2, the first step is an analog-to-digital conversion and uses

correlated vector quantizers: the source is multiply described
by joint Gaussian vector quantizers. In the second step, the dig-
ital descriptions are hashed (using the Slepian–Wolf binning
scheme) to generate the indices to be sent through chan-
nels. The hash function (or binning scheme) is in such a way
that any subset of the indices received at first-level receiver
can uniquely lead to the corresponding descriptions in the first
step. Finally, the reconstruction of the original source is based
on these descriptions. In case all indices are received (the
central receiver), all descriptions of the first step are available
for the source reconstruction. Observe that when , there
is no second step.

Two important features of this architecture are worth empha-
sizing:

• It separates the analog and digital aspects of the source
representation. The first step converts the original analog
source into discrete descriptions (bits). From the view of
the second step, any interpretation of the bits in terms of
the original real-valued source (such as most significant bit
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Fig. 1. Multiple description problem.

Fig. 2. An achievable architecture.

(MSB) or least significant bit (LSB)) is irrelevant. Only the
statistical relation between the discrete descriptions is used
in the binning scheme.

• While the operation in the first step uses the fact that the
descriptions are generated at a centralized location, the en-
coders of the second step could be operating in a distributed
fashion without impacting the performance of the architec-
ture; indeed, Slepian–Wolf binning scheme was precisely
introduced for distributed lossless compression of discrete
information sources. Thus, the flexibility offered by the
ability to generate the descriptions at a centralized loca-
tion appears to be not used in its entirety. Nevertheless, we
show the optimality of this architecture in several scenarios
in this paper.

We note that this architecture is part of a more general,
layered achievable scheme for the general multiple description
problem proposed in [6].

B. Main Result

Our main result is in the derivation of a fundamental lower
bound to the sum rate which all descriptions that satisfy the
distortion constraint have to obey. We also show that this lower
bound is tight in several scenarios by explicitly demonstrating
that the architecture depicted in Fig. 2 achieves this lower
bound. These scenarios include the case of symmetric distor-
tion constraints and the case of and for arbitrary
distortion constraints.

This paper is organized as follows. In Section II, we give a
formal description of the problem. In Section III, we present a
Gaussian achievable scheme. In Section IV, we provide a lower
bound to the sum rate. In Section V, we give the conditions for
the Gaussian strategy to achieve the lower bound. In Section VI,
we study the case when all the distortion constraints for the first

level receivers are equal. In Section VII, we study the case when
. We conclude in Section VIII.

We describe the notation in this paper in the following. We use
lowercase letters to indicate scalars, boldface lowercase letters
to indicate vectors, and boldface uppercase to indicate matrices.
The superscript denotes matrix transpose. We use and to
denote the identity matrix and the all zero matrix, respectively.
The partial order denotes positive definite (semidefi-
nite) ordering, i.e., means that is a
positive definite (semidefinite) matrix. We use to de-
note a Gaussian random vector with mean and covariance .
Given , we use to denote

. All logarithms in this paper are to the natural
base.

II. PROBLEM SETTING

We model a stationary and ergodic Gaussian source as a
vector (of length ) memoryless process , with the
marginal distribution Gaussian: . Without much loss
of generality, we suppose throughout this paper that (an

matrix) is positive definite. In the multiple description
problem of interest, there are encoders, each mapping the
(analog) information source into a sequence of bits (discrete
information). Corresponding to the th encoder, the encoding
function maps a source sequence to
a codeword , where is the codebook
corresponding to this encoder. The rate needed to describe the
codebook in nats is .

There are two levels of decoders. For a given , there are
first-level decoders and one second-level central decoder.

Each of the first-level decoders can receive different combi-
nation of codewords . The decoding
function then uses the received codewords to reconstruct the
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original source; we denote the reconstruction by , where
, parameterizes the specific subset of

codewords (amongst a total of ) that this particular receiver
had access to. The second-level central decoder has access to all
the codewords and generates , an estimation of the source
sequence based on these codewords. Since we are inter-
ested in covariance constraints, the decoding functions can be
restricted to be the minimal mean-square error (MMSE) esti-
mate of the source sequence based on the received codewords,
without any loss of generality. Therefore, and can be
written as

(1)

We say that the source can be multiple described at
rates with distortion constraints

and , if the following covariance
constraints are satisfied

(2)

Note that for the first-level decoder there are distortion con-
straints.

Our focus is on finding the smallest achievable sum rate
of descriptions for given distortion constraints

and . For notational simplicity we
write these distortion constraints as in the
remainder of this paper.

III. AN ACHIEVABLE SCHEME

We have introduced an achievable architecture to address this
multiple description problem in Section I-A (see Fig. 2). In this
section, we characterize the performance of this architecture,
i.e., the tradeoff between the rate of descriptions and the distor-
tions achieved by the receivers. Let be -dimen-
sional zero-mean jointly Gaussian random vectors that are in-
dependent of . We stack these vectors together in one vector

, and use to denote the positive-definite co-
variance matrix of this -dimensional vector. Define

(3)

We consider those that satisfy the following constraints for
all sets satisfying :

(4)

We are now ready to describe the encoding and decoding func-
tions in the architecture of Fig. 2 using as a parameter.
To construct the codebook for the th description, first generate

vectors randomly according to the marginal distribution
of , and then uniformly distribute these vectors into
bins. As long as

(5)

for every observed source sequence , the encoders can find se-
quences that are jointly typical with , and send
the corresponding bin indices of the resulting through the th
channel, respectively. Each of the first-level receiver receives

descriptions, i.e., bin indices. It then looks in these bins
for a unique combination of vectors (each from one bin) that
are jointly typical, and generates a reproduction sequence which
is the MMSE estimation of the source sequence from these
vectors. The second-level receiver receives all bin indices. It
then looks in these bins for a unique combination of vec-
tors (each from one bin) that are jointly typical, and generates
a reproduction sequence which is the MMSE estimation of the
source sequence from these vectors. Now the probability that
a randomly generated combination of codewords , for
any are jointly typical is roughly

(6)

and the number of possible combination of codewords
in a set of bins are .

Thus, as long as

(7)

and

(8)

all the decoders (both the first- and the second-level) can find
unique combination of vectors that are jointly typical.

We now show that the condition in (8) is redundant. To do
that, just summing up all the equations in (7) and using the iden-
tity

we have

(9)

where in the last step we used the subset inequality of entropy
[12, Theorem 16.5.1]. Thus, we can see that under condition (7),
both level decoders are successful.
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The inequalities in (5) and (7) define the region of description
rates that are feasible. In general it appears to
be quite involved to exactly evaluate the achievable region by
taking union over the intermediary variables . In the
following, we provide a lower bound for the achievable sum rate
that is met with equality in several scenarios.

Lemma 1: For every satisfying (4), the sum rate of mul-
tiple description with two levels of receivers satisfies

(10)

Proof: Let in (5) and we get

(11)

Summing over all the inequalities in (7) and we get

(12)
A simple counting argument leads us to

(13)

Subtracting (13) from (11) and using the identity

we get the desired result.

Observe that this is only a lower bound on the sum rate. There
are many ways of combining (5) and (7) and as such, the bound
in (10) may not be achievable. However, there are some impor-
tant cases where (10) is indeed achievable. When , it is
shown in [9] that (10) is achievable by relying on the combi-
natorial structure of the achievable region: specifically, the re-
gion was shown to be a contra-polymatroid. Another example
for is when all the distortions in the first layer are equal.
We have the following result.

Lemma 2: When all the distortion constraints in the first
layer are equal, if we choose ’s such that all the
are equal for and all the are equal for

, then (10) is achievable.
Proof: This result is a straightforward application of The-

orem 1 of [5].

Later we will show that under the symmetric distortion con-
straints, we can restrict ourselves to consider that the ’s such
that all the are equal for and all the
are equal for , and still achieve the
optimal sum rate. We call this choice of ’s as symmetric de-
scriptions.

With asymmetric distortion constraints in the first layer, we
have the following result.

Lemma 3: With and , (10) is achievable.
Proof: From the Proof of Lemma 1, it is clear that we only

need to show that there exists and satisfying (5) and
nonnegative such that

(14)

and

(15)

Solving the previous two equations, we have

(16)

Suppose we choose and satisfying (5) and (14).
We have

(17)

Similarly, we have and . Hence, at
most one of and can be negative. If all of them are
nonnegative, our proof is complete. On the other hand, suppose
one of them is negative for our choice of and . We
next show that we can find and satisfying (5) and
(14) and resulting in nonnegative and . Without loss
of generality, suppose . Then we can reduce to
and to so that , and

(18)

and hence

(19)

Then

(20)
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IV. LOWER BOUND TO SUM RATE

Our main result is the following lower bound on the sum rate
of any multiple descriptions that meet the given distortion con-
straints with two levels of receivers.

Theorem 1: Meeting the distortion constraints , the
sum rate of any multiple description scheme is lower-bounded
by

(21)

Proof: Adopting the technique used in [8] of creating new
auxiliary random variables which are noisy versions of the
source, we define a memoryless Gaussian process
with marginal distribution . We let
be independent of the information source as well as the
codebooks for . Construct a random process

by

It follows that is also a memoryless Gaussian process
with marginal distribution ; here .

Consider the following sequence of lower bounds to the sum
rate of the multiple descriptions:

(22)

where in steps and we used the inequality related to the
entropy rate of subsets [12, Theorem 16.5.1].

Using the steps similar to those used in the proof of the lower
bound developed in [9], we have

(23)

Combining (22) and (23), and taking the supremum over all
positive-definite matrices , we have proved the claimed in-
equality.

As in the case of the necessary condition for achievable sum
rate, in step of (22) we can use inequality related to en-
tropy rate of different subsets and hence give different outer
bounds. This complication arises because there are many sub-
sets of size . Nevertheless, we show in the next section that
when (10) is achievable for the optimal Gaussian multiple de-
scription scheme, the lower bound in (21) is actually tight.

V. OPTIMAL SUM RATE

In this section, we provide conditions under which the lower
bound (21) is achieved by the separation architecture in Fig. 2
and is hence tight.

Theorem 2: If there exists a choice of of the form

(24)

where , such that (10) is achievable and all the
distortion constraints are met with equality, then the optimal
sum rate is given by (21).

Proof: To compare the lower bound (21) and the achievable
sum rate (10), one way is to directly calculate the optimal value
of these two bounds. While this approach is reasonable for the
scalar Gaussian source case, it is quite involved to carry out this
program for the vector Gaussian source case we are studying.
In the following, we provide an alternative characterization of
the achievable rate; this makes the way for a much easier to
comparison with the lower bound (33).

Consider an Gaussian random vector that is in-
dependent of and all ’s. Define . The following
rates are achievable using the separation architecture of Fig. 2:
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(25)

where the last step follows from a procedural Gaussian MMSE
calculation.

Note that if

(26)

then in (25) is actually an equality. Thus, if our choices of
and satisfy the following two conditions:

• equation (26) is true;
• the distortion constraints are satisfied with equality, i.e.,

(27)

then the achievable rate (25) matches the lower bound (21), and
thus we characterized the optimal sum rate. In the following, we
examine under what circumstances the above two conditions are
true.

First, it is easy to check that the following sufficient condition
for (26) is true.

Proposition 1: Let be zero-mean jointly
Gaussian random vectors independent of , and let indi-
cates the positive definite covariance matrix for .
Let

If takes form of (24) with , then there ex-
ists such that (26) is true, where is an
Gaussian random vector that is independent of and all ’s,
and the covariance matrix of is

.
Proof: See the Appendix.

Next we characterize the in (24) from the condition that
all distortion constraints are met with equality. Using MMSE

estimation, from the distortion constraints of the first level of
receivers, we have that for all

(28)

From the distortion constraint of the second level of receiver, we
have

(29)

Summing up the equalities represented in (28) for each subset
, we have

(30)

Define

(31)

We can rewrite (30) as

(32)

Thus, when all the distortion constraints are met with equality,
we can solve from (32). From [9, Lemma 5], we know that
if the solution is positive definite and (29) holds, then the
covariance matrix defined in (24) is positive definite.

To summarize, we have the following theorem.

Theorem 3: Given distortion constraints . If there
exists a solution to (32) and , such that
(10) is achievable and all the distortion constraints are met with
equality (i.e., (28) and (29) hold), then the analog–digital sep-
aration architecture with defined in (24) with
achieves the optimal sum rate, and the optimal for lower
bound (21) is .

From Theorem 3 we know that the analog–digital separation
architecture achieves the optimal sum rate if the given distortion
constraints satisfy the condition for Theorem 3, and
we can calculate the optimal by solving matrix equations.
In general, not all the distortion constraints may be achieved by
equality. In this case, we may be able to show that there exists
an analog–digital separation architecture that achieves the sum
rate lower bound, and results in distortions such that

for , and .
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When , it is shown in [9] that (10) is achievable due to
the contra-polymatroid structure of the achievable region. It is
also shown in [9] that the problem of the distortion constraints
not being met with equality can be handled through a technique
called enhancing. In the following sections, we provide an ex-
ample of the multiple description problem with where
the optimal sum rate can still be characterized.

VI. SYMMETRIC DISTORTION CONSTRAINTS

A natural instance of the multiple description problem im-
poses a distortion constraint based on the cardinality of the
subset of descriptions received by the user (as opposed to re-
quiring different distortion constraints for specific subset of the
descriptions being received). In the problem of our focus, this
means that we have only two distortion constraints and :
either corresponding to or all of the descriptions being re-
ceived. From the symmetry of the problem, we have seen in
Lemma 2 that to achieve the optimal sum rate we can use the
same rate for all encoders, and further that the sum rate given
in (10) is achievable if we use symmetric descriptions. The only
complication left is that not all of the distortion constraints may
be met with equality. We now attempt to address this issue and
show that the separation architecture in Fig. 2 achieves the sum
rate lower bound given in Theorem 1.

Specifically, we have the following corollary of Theorem 1
by specializing all the to be in (21).

Theorem 4: For given symmetric distortion constraints
, the optimal sum rate for multiple descriptions of a

memoryless Gaussian source is

(33)

In the following we first consider a scalar Gaussian source.
Using the insights developed, the proof for the general vector
case is more transparent.

A. Scalar Gaussian Source

Consider a scalar memoryless Gaussian information source;
the marginal distribution is . Let the distortion con-
straints be , with the natural ordering

As an achievable scheme, we have the separation architecture
from Fig. 2. Specifically, let the choice of the parameter (co-
variance matrix for ) be

(34)

Setting to equality the distortion conditions ((28) and (29)), we
see that

(35)

We can now check whether the condition for Theorem 3, i.e.,
, is true or not. We do this by separately considering

three cases.

Case 1: .

In this case, the condition holds. From The-
orem 3, we conclude that the separation architecture achieves
the optimal symmetric rate; specifically, the covariance matrix
of takes the form (34) with and as given by
(35).

Case 2: .

In this case, the condition does not hold. How-
ever, the analog–digital separation architecture can still achieve
the sum rate. To see this, note that we can find a such that

and

We can show that the distortion with
can be achieved by choosing and

for . From (10), the achievable sum rate is

(36)

Therefore, we conclude that in this case, the point-to-point
rate–distortion bound for the second level receiver is achiev-
able.

Case 3: .

In this case as well, the condition does not hold.
However, we can find a such that and

We can show that the distortion with can
be achieved by choosing and for

. From (10), the achievable sum rate is

(37)

We conclude that in this case the point-to-point rate–distortion
bound for the first-level receiver is achievable.

In summary, we have shown that the analog–digital separa-
tion architecture from Fig. 2 achieves the lower bound to the
sum rate for scalar Gaussian source.
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B. Vector Gaussian Source

Proof: Now we are ready to consider the general vector
situation: the memoryless source has marginal distribution

. Let the distortion constraints be , with

Consider the achievable scheme from Fig. 2 with the choice of
the parameter (covariance matrix of ) to be

(38)

We next show that with an appropriately chosen , this
scheme achieves the lower bound (21) to the sum rate. Our first
step is to characterize the conditions for the distortions are met
with equality, i.e., (27) is true. From (28) and (29), we see that

(39)

We can solve for and in the covariance matrix using
this constraint to get

(40)

If the solution satisfies

(41)

then we can conclude, from Theorem 3, the optimality of the
corresponding analog–digital separation architecture. To com-
plete the Proof of Theorem 4, we need to address the situation
when for arbitrary given distortion constraints (32) may not have
a solution that satisfies (41).

Note that the (32) is now

(42)

where

(43)

Define

(44)

(45)

Note that

(46)

Consider the following optimization problem:

(47)

Since is a continuous map and is a compact
set, there exists an optimal solution to (42) where satisfies
the Karush–Kuhn–Tucker (KKT) conditions [13, Sec. 5.5.3]:
there exist and such that

(48)

(49)

(50)

Now falls into the following four cases. Case 1:
. Alternatively, and are not eigenvalues of . Case 2:

. Alternatively, some eigenvalues of are
, but no eigenvalues of are . Case 3: .

Alternatively, some eigenvalues of are , but no eigenvalues
of are . Case 4: . i.e., both and are
eigenvalues of .

Using the technique similar to those used in the proof of [9,
Theorem 3], we can show that in all these cases there exists a
choice of the parameter such that corresponding achievable
scheme achieves the sum rate lower bound, and resulting in dis-
tortions such that and . Details
of the proof is omitted here.

To summarize, we see that the analog–digital separation ar-
chitecture achieves the limiting sum rate. The limiting sum rate
is the solution to an optimization problem. For some specific
distortion constraints, the sum rate can be characterized as the
solution to a matrix equation (Case 1).

VII. EXAMPLE:

In this section we provide another example where the lower
bound to sum rate (21) can be achieved by the analog–digital
separation architecture. We consider the case where the first-
level decoder can receive any combination of descrip-
tions. We first assume that (10) is the achievable sum rate. In
this case, there are distortion constraints. We consider
the analog–digital separation architecture with the covariance
matrix for taking the form of (24). We need
to solve in (24) from the conditions that all distortion con-
straints are met with equality. When , these conditions
are

(51)
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Define

(52)

We have the following equation for :

(53)

We can also solve from the following equation:

(54)

where . If the solution of (53)
satisfies , then from Theorem 3 we know that the
analog–digital separation architecture achieves the optimal sum
rate. When the solution does not satisfy , define

(55)

(56)

Note that

(57)

Consider the following optimization problem:

(58)

We can connect , the solution to (53), to the optimization
problem described above. By using techniques similar to those
in the Proof of Theorem 4, we can show that there exists an
analog–digital separation architecture that achieves the sum
rate lower bound, and results in distortions such
that for , and

. We omit the complete details due to the close
similarity to the Proof of Theorem 4.

From the preceding discussion, we can see that if (10) is
achievable, then the analog–digital separation architecture is op-
timal. From Lemma 3 we know that when and ,
(10) is always achievable. Thus we have the following result.

Theorem 5: For and , given distortion con-
straints , the optimal sum rate is

(59)

VIII. CONCLUSION

We studied the problem of multiple description of a vector
Gaussian source with two levels of receivers, subject to
quadratic distortion constraints. We derived an outer bound on
the sum rate of the descriptions, and provided an analog–digital
separation achievable scheme. We demonstrated that the outer
bound and the achievable sum rate met for several scenarios.

APPENDIX

Conditioned on , the collection of random variables
are Gaussian and thus we have

(60)

From MMSE of from we have

(61)

and

(62)

where is an matrix of all ones and is the Kronecker
product [11, Sec. 6.5].

By Fischer inequality (the block matrix version of
Hadamard inequality, see [11, Theorem 6.10]) we know
that if and only if the off-di-
agonal block matrices of are all zero matrices. Thus,
we have

if and only if

(63)

or, equivalently, if and only if

(64)

Letting , we have

(65)

Letting , we have

(66)

and it is readily seen that (26) is true.
To get a valid , we need the additional condition

.
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