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Probability Estimation in the Rare-Events Regime
Aaron B. Wagner, Pramod Viswanath, and Sanjeev R. Kulkarni

Abstract

We address the problem of estimating the probability of an observed string that is drawn i.i.d. from an unknown
distribution. Motivated by models of natural language, we consider the regime in which the length of the observed
string and the size of the underlying alphabet are comparably large. In this regime, the maximum likelihood
distribution tends to overestimate the probability of the observed letters, so the Good-Turing probability estimator
is typically used instead. We show that when used to estimate the sequence probability, the Good-Turing estimator
is not consistent in this regime. We then introduce a novel sequence probability estimator that is consistent. This
estimator also yields consistent estimators for other quantities of interest and a consistent universal classifier.

I. INTRODUCTION

Existing research on probability estimation and lossless compression focuses almost exclusively on one
asymptotic regime: the source alphabet and probability distribution are fixed, even if they are unknown,
and the amount of data is permitted to tend to infinity. This mathematical scaling captures the practical
scenario in which enough data is available so that every possible source symbol is observed many times.
This practically-important asymptotic facilitates the use of typicality techniques that are the cornerstone
of results in information theory. An analogous asymptotic is often employed when studying reliable
communication over noisy channels.

Despite the ubiquity and success of this approach, however it is not appropriate in all situations. In
particular, it harbors an implicit assumption that may fail in practice. If the probability distribution that
generates a discrete memoryless source is held fixed, and the amount of observed data (i.e., the block
length) is allowed to tend to infinity, then asymptotically the distribution can be estimated perfectly from
the data, even if nothing about the distribution is known a priori. In short, the conventional asymptotic
tacitly assumes that the distribution can be learned from the data. In practice, however, this may not be
the case.

A. Modeling Natural Language
Consider, for example, what is arguably the most fundamental of data sources, natural language. Any

realistic model of natural language must capture the statistical dependence among nearby letters. Perhaps
the simplest model is to assume that this dependence is Markovian. To be concrete, one could assume that
each English letter depends only on the previous three letters, and then estimate the transition probabilities
from a large text corpus. One realization of this source model is the following [1, p. 109]

The generated job providual better trand the displayed
code, abovery upondults well the coderst in thestical it
do hock bothe merg.

Quantitative measures show that that even this third-order Markov approximation is inadequate: the entropy
of this source is 2.8 bits per symbol [1, p. 111], while real English (ignoring punctuation and case) is
estimated to have an entropy of 1.3 bits per symbol [2] or lower [3, p. 50] [1, p. 138]. This model
evidently fails to capture much of the structure of the language.
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This could be rectified by using a higher-order Markov model, but higher-order models present their
own difficulties. Intuition suggests that the order of the Markov model would need to be about 10 letters to
capture most of the dependence present in the language. But a 10th-order Markov model over an alphabet
of size 100 has 10011 different transition probabilities that must be learned, however, which would require
many exabytes of data1. Since text-processing systems usually operate on much smaller documents, it is
unreasonable to assume that they can learn the underlying distribution from the observed data. Thus the
conventional asymptotic is not appropriate for English text.

Of course, many 10-tuples of characters never occur in real English, so the 10th-order transition
probability matrix has significant sparsity that lowers its effective dimension. The most convenient way of
harnessing this sparsity is to use words as the atomic source symbols. But since there are several hundred
thousand English words, even a first-order word-level Markov model still requires several gigabytes of
text to learn completely. Thus the conventional asymptotic is still inappropriate.

The poor fit between the usual information-theoretic models and natural language data can also be seen
from word-count studies in linguistics. Under the conventional asymptotic, a string of source symbols with
length n will be dominated by Θ(1) different symbols each appearing Θ(n) times. For natural language
data, on the other hand, the set of words that appear order-n times2 collectively comprise only about one
quarter to one third of the overall document [4, p. 9]. Length-n documents are therefore dominated by
words that appear fewer than order-n times.

The frequency with which words appear was studied by Zipf [5], who found that in a particular
document, the kth most frequent word tended to have an empirical probability proportional to 1/kp, where
p is near one. But later work [4, Sec. 1.3] has shown that the Zipf distribution and its improvements [6],
[7], [8] misfit data in a systematic way. More importantly for us, if we assume the source has a Zipf-like
distribution and let the sample size n tend to infinity, then the source will emit strings which are dominated
by Θ(1) different symbols each appearing Θ(n) times. Evidently the problem is not with the choice of
the source distribution, it is with the asymptotic itself.

B. Contributions of this Paper
We study probability estimation using a different scaling model that is better suited to natural language

applications. We treat words as the atomic source symbols, so that the “alphabet” is large but intersymbol
dependence is slight. In fact, we neglect intersymbol dependence in the present work and model words as
drawn i.i.d. from a large alphabet. Rather than using a fixed distribution, however, and letting the block
length tend to infinity, we suppose that the alphabet size and the source distribution both scale with the
block length. In particular, we assume that the source that generates the length-n string has an alphabet of
size Θ(n) with each symbol having probability Θ(1/n). This asymptotic allows us to focus on the regime
of practical interest, in which the length of the document and the number of distinct words appearing
within it are comparably large. We call this the rare-events regime.

In the rare-events regime, the empirical distribution does not converge to the true distribution as the
block length tends to infinity. This fact makes even some basic probability estimation problems nontrivial.
Yet, we show in this paper that many important quantities can be estimated consistently from the observed
data. Specifically, we show that in the rare-events regime, when the underlying distribution is unknown,
• the total (sum) probability of the set of symbols appearing k times in the sequence can be consistently

estimated from the observed sequence for each k, using the Good-Turing estimator [9],
• the normalized probability of the observed sequence can be consistently estimated from the sequence

itself,
• the normalized entropy of the source can be consistently estimated from the sequence itself,

1The number of distinct English characters, including upper and lower case and punctuation symbols, is approximately 100.
2The set of these words is called the linguistically closed class.
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• the relative entropy between the true and empirical distributions can be estimated consistently from
the observed sequence, as can the relative entropy between the true distribution and the uniform
distribution over the symbols that appear k times, for each k,

• the normalized probability of one sequence under the distribution that generated a second sequence
can be consistently estimated, as can the relative entropy between the two distributions, using only
the pair of sequences, and

• consistent universal hypothesis testing is possible.
Improved models and probability estimation techniques for natural languages could lead to better

algorithms for text compression, optical character recognition, speech recognition, author identification,
and subject classification. It should be added that improved text compression increases the security
of cryptographic techniques in addition to reducing storage and transmission requirements, since any
redundancy present in the plaintext message makes cryptographic schemes easier to compromise. Although
we are motivated by problems in natural language processing, the rare-events model is also applicable in
other application areas, such as digital video and audio, where pixels and samples, respectively, play the
role of words.

C. Connections to the Literature
Large-alphabet sources are known to present special challenges in information theory. Kieffer [10]

provided necessary and sufficient conditions for whether a class of sources is universally compressible
under the conventional asymptotic. He noted that his result implies that the class of stationary and ergodic
sources over an infinite alphabet is not universally compressible, in contrast to the finite-alphabet case.
The impetus for the present paper came from the more-recent work of Orlitsky et al. [11], [12]. These
authors called attention to the discrepancy between the asymptotic that is typically used in information
theory and many realistic data sources, and showed that a function of the observed sequence called the
pattern can be universally compressed, even when the alphabet is infinite and the source distribution is
arbitrary. Our focus is on estimation instead of compression, and we exploit the rare-events structure of
natural language instead of assuming an arbitrary source distribution.

The source model that we study is essentially the “Large Number of Rare Events” (LNRE) model
introduced by Khmaladze [13] (see also [14]). By studying word counts in large documents, Baayen [4]
argues that the LNRE model is well suited to natural language sources. Detection and estimation problems
involving LNRE sources have been considered [15], [16], but these have not addressed the estimation
of important information-theoretic quantities such as sequence probabilities, entropies, and divergences.
Paninski [17] proves the existence of a consistent entropy estimator in a similar regime. This paper
provides a constructive demonstration of such an estimator; moreover, we provide explicit estimators for
a range of other important quantities.

Generating symbols from an i.i.d. source is equivalent to dropping balls into bins: the bins represent
the source symbols and the balls represent positions in the string. Thus this work is connected to the
extensive literature on random allocations and occupancy problems (e.g. [18], [19]). In the terminology
of balls and bins, our asymptotic amounts to assuming that the number of balls and bins tend to infinity
at the same rate. There is a literature on random allocations in this regime (see [18], [19], [20], [21] and
the references therein), but it focuses mainly on central limit and large deviations characterizations of the
number of bins containing a given number of balls. It does not address the information-theoretic questions
studied here.

In collaboration with Turing, Good [9] introduced a probability estimator that turns out to be well-suited
to the rare-events regime. Good was motivated by the problem of estimating the probability of a symbol
selected randomly from the set of symbols appearing k times in the string, for a given k. Good motivates
the Good-Turing estimator via a calculation of its bias; other early theoretical work on the Good-Turing
estimator also focused on its bias [22], [23]. Recent work has been directed toward developing confidence
intervals for the estimates using central limit theorems [24], [25] and concentration inequalities [26],
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[27]. Orlitsky et al. [12] studied what they call the pattern redundancy of the Good-Turing estimator and
showed that it is near optimal but can be improved. None of these works, however, has shown that the
estimator is consistent.

We show that the Good-Turing estimator is consistent for rare-event sources3. We consider the problem
of estimating the total probability of all symbols that appear k times in the observed string for each
nonnegative integer k. For k = 0, this is the total probability of the unseen symbols, a quantity that
has received particular attention [22], [28], [29]. Estimating the total probability of all symbols with the
same empirical frequency is a natural approach because these symbols cannot be distinguished using the
observed data. Although the total probabilities are themselves random, we show that in the rare-events
regime, they converge to a deterministic limit, which we characterize. Note that if the alphabet was small
and the block length was large, then estimating the total probabilities would reduce to estimating the
probability of the individual symbols because it is unlikely that multiple symbols will have the same
empirical frequency.

D. Outline
The rare-events model is described in detail in the next section. In Section III, we discuss the Good-

Turing total probability estimator and show that it is consistent for rare-events sources. Section IV shows
how the Good-Turing estimator can be used to consistently estimate a number of other important quantities,
including the probability of the observed sequence and the entropy of the source. In Section V, we extend
the rare-events model to pairs of sources, and in Section VI we show that an extension of the Good-Turing
total probability estimator can be used to consistently estimate the probability of one sequence under the
distribution that generated a second sequence. This result has implications for universal hypothesis testing
in the rare-events regime, which are discussed in Section VII. Finally, in Section VIII, we study the
finite-n behavior of our estimators via simulation. The proofs of the results in Sections II through VI are
given in Appendices A through E, respectively, with the exception of those that are brief.

II. THE RARE-EVENTS MODEL

Let An be a sequence of finite alphabets. For each n, let pn be a probability distribution on An satisfying

č

n
≤ pn(a) ≤ ĉ

n
(1)

for all a ∈ An, where č and ĉ are fixed positive constants that are independent of n. For each n, we
observe a random string X of length4 n drawn i.i.d. from An according to pn. We abuse notation slightly
and use Xn to refer to a generic random variable with distribution pn and Xi to refer to the ith variable
from X.

Note that both the alphabet and the underlying distribution vary with n. Note also that by assumption (1),
each element of An has probability Θ(1/n) and thus will appear Θ(1) times on average in the string. In
fact, for any fixed k, the probability of any given symbol appearing k times in the string is bounded away
from 0 and 1 as n→∞. In words, every letter is rare. The number of distinct symbols in the string will
grow linearly with n as a result. While there are other, less restrictive ways of requiring that all symbols
appear “rarely,” or not at all, the condition in (1) is particularly useful [19, p. 6]. We do not assume that
pn or even the constants č and ĉ are known.

Our focus will be on quantities such as pn(X) and H(pn) that are invariant under a relabeling of the
symbols in An. It is therefore convenient to consider the multiset of probabilities assigned by pn. It is
also convenient to normalize these probabilities so that they are Θ(1).

3By consistent, we mean that the estimator converges to the true value with probability one as the block length tends to infinity. This is
sometimes called strong consistency.

4We do not index X by the block length n since it should be clear from the context.
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Definition 1. Let Xn be a random variable on An with distribution pn. The shadow of pn, denoted by
Pn, is defined to be the distribution of the random variable n · pn(Xn).

Example 1. If A1 = {a, b, c}, and

p1(a) = p1(b) =
1

2
· p1(c),

then the shadow, P1, is uniform over {1/4, 1/2}. If pn itself is uniform, then the shadow is a point mass.
Note that Pn is a probability distribution on C := [č, ĉ], and that the entropy of pn can be expressed

as5

H(pn) = −
∫
C

log
x

n
dPn(x). (2)

In order to prove consistency results, we assume that the shadows converge weakly.

Definition 2. A rare-events source is a sequence (An, pn) of alphabets and distributions such that (1)
holds for some positive č and ĉ and the shadows {Pn} converge weakly to a distribution P .

Example 2. If pn is a uniform distribution over an alphabet of size n, then the shadow is a point mass
at 1 for each n and hence converges in distribution. More complicated examples can be constructed
by quantizing a fixed density more and more finely as follows. Let f(x) be a density on [0, 1] that is
continuous a.e. such that

č ≤ f(x) ≤ ĉ.

Let X have density f and let pn be the distribution of dnXe. Then pn is a distribution on {1, . . . , n}, and
we obtain a rare-events source with the limiting shadow P being the distribution of f(X). This example
can be easily modified so that the cardinality of An is βn for some β 6= 1.

A. Important Limits
Our goal is to estimate the probability of the observed sequence, the entropy of the source, and other

quantities using only the sequence itself. We first show that the quantities of interest converge to limits
that depend on the limiting shadow P ; this will also serve as a preview of the quantities to be estimated.

For each nonnegative integer k, let Bn,k denote the random set of symbols in An that appear exactly
k times in X. We call

γn,k := pn(Bn,k)

the total probability of symbols appearing k times. We view γn,k as a random probability distribution on the
nonnegative integers. For a rare-events source, this distribution converges almost surely to a deterministic
Poisson mixture.

Proposition 1. The random distribution γn,k converges to

λk :=

∫
C

xke−x

k!
dP (x) k = 0, 1, 2, . . .

in L1 almost surely as n→∞.

The proofs of the results in this section combine moment calculations, usually involving a Poisson
approximation to a binomial distribution, with concentration results. It should be mentioned that Propo-
sition 1 above, and Proposition 7 and Theorem 1, which appear later, do not require the assumption
that č ≤ npn(a) ≤ ĉ for all a and n [30]. Our proofs of the other results in this paper do rely on this
assumption, however.

5Throughout we use natural logarithms.
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Recall that the classical (finite-alphabet, fixed-distribution) asymptotic equipartition property (AEP)
asserts that

lim
n→∞

1

n
log µ(W) = −H(µ) a.s., (3)

where W is an i.i.d. sequence drawn according to µ. Loosely speaking, (3) says that the probability of
the observed sequence, µ(W), is approximately

exp(−nH(µ)).

In the rare events regime, one expects the probability of an observed sequence to be approximately(
e−h

n

)n
for some constant h. Indeed, in the rare events regime the following AEP holds true.

Proposition 2. For any rare-events source,

lim
n→∞

1

n
log pn(X) + log n =

∫
C

log x dP (x) a.s.

It will be useful later to decompose both the sequence probability and the limit in Proposition 2
according to Bn,k. Write

1

n
log pn(X) + log n =

1

n

n∑
i=1

log(npn(Xi))

=
n∑
k=1

k

n

∑
a∈Bn,k

log(npn(a)). (4)

Proposition 3. For any k ≥ 1,

k

n

∑
a∈Bn,k

log(npn(a))→
∫
C

xk−1e−x

(k − 1)!
log x dP (x) a.s.

Next consider the entropy of the source. From (2), we have

H(pn)− log n = −
∫
C

log x dPn(x).

The following characterization of the growth rate of the entropy is immediate.

Proposition 4. For any rare-events source,

lim
n→∞

H(pn)− log n = −
∫
C

log x dP (x).

Proof: By hypothesis, Pn converges weakly to P , and log x is bounded and continuous over C.
Consider next the relative entropy between the true distribution, pn, and the empirical distribution, pX,

of X. The empirical distribution is the maximum likelihood estimate for pn given X, and it is natural
to ask how far this estimate is from the true distribution, as measured by the relative entropy. In the
conventional asymptotic, this relative entropy tends to zero as the block length tends to infinity. For a
rare-events source, we have the following non-zero limit.

Proposition 5. For any rare-events source,

lim
n→∞

D(pX||pn) =

∫
C

∞∑
k=0

xke−x

k!
log

k + 1

x
dP (x) a.s.

≥ e−ĉ.
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Finally, consider again the total probabilities. Given a consistent estimator for the total probability of all
symbols appearing k times, there is a natural estimator for the constituent probabilities of these symbols:
we simply divide the estimated total probability by |Bn,k|. This estimate will be good only if the true
distribution, pn, restricted to Bn,k, is nearly uniform, and we would like to know how far pn deviates from
a uniform distribution when conditioned on Bn,k. The next result shows that the relative entropy between
the two distributions converges to a limit that depends on P .

Proposition 6. Let

Dn,k =
∑
a∈Bn,k

pn(a)

pn(Bn,k)
log

pn(a)|Bn,k|
pn(Bn,k)

.

denote the (random) relative entropy between the true distribution on Bn,k and the uniform distribution
over this set. Then for any rare-events source and any k ≥ 1,

lim
n→∞

Dn,k =
1

λk

∫
C

e−xxk

k!
log x dP (x) + log

λk−1

kλk
a.s.

III. GOOD-TURING CONSISTENCY

We first show that the Good-Turing total probability estimator is consistent. This result will serve as a
basis for the estimators to follow.

The Good-Turing estimator is traditionally viewed as an estimator for the probabilities of the individual
symbols. Let ϕn,k = |Bn,k| denote the number of symbols that appear exactly k times in the observed
sequence. The basic Good-Turing estimator assigns probability

(k + 1)ϕn,k+1

nϕn,k
(5)

to each symbol that appears k ≤ n−1 times [9]. The case k = n must be handled separately, but this case
is unimportant since under our model it is unlikely that the string will consist of one symbol repeated n
times.

Actually, Good introduces (5) as an estimate of the probability of a symbol chosen uniformly at random
from Bn,k. Good points out that this estimation problem is related to the problem of estimating the total
probability of all symbols appearing k times, γn,k, because the ϕn,k in the denominator can be interpreted
as merely dividing the total probability equally among the ϕn,k symbols on Bn,k. Thus the Good-Turing
total probability estimator assigns probability

φn,k :=
(k + 1)ϕn,k+1

n
k = 0, 1, . . . , n− 1

to the set of symbols that have appeared k times. As a convention, we shall always assign zero probability
to the set of symbols that appear n times

φn,n := 0.

Like γn,k, φn,k is a random probability distribution on the nonnegative integers.
As an estimator for γn,k, φn,k is not ideal. For one thing, φn,k can be positive even when Bn,k is

empty and γn,k is clearly zero. A similar problem arises when estimating the probabilities of individual
symbols, and modifications to the basic Good-Turing estimator have been proposed to avoid it [9]. But
we shall show that even the basic form of the Good-Turing estimator is consistent for total probability in
the rare-events regime. The key is to establish a convergence result for the Good-Turing estimator that is
analogous to Proposition 1 for the total probabilities.

Proposition 7. The random distribution φn,k converges to λk in L1 almost surely as n→∞.
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The proof of Proposition 7 parallels that of Proposition 1 in the previous section. In particular, we first
show that the mean of φn,k converges to λk and then establish concentration around the mean. The desired
consistency follows from this result and Proposition 1.

Theorem 1. The Good-Turing total probability estimator is consistent in L1, i.e.,

lim
n→∞

n∑
k=0

|γn,k − φn,k| = 0 a.s.

Proof: We have
n∑
k=0

|γn,k − φn,k| ≤
n∑
k=0

|γn,k − λk|+
n∑
k=0

|λk − φn,k|.

We now let n→∞ and invoke Propositions 1 and 7.

For the case in which the underlying distribution pn is uniform over an alphabet of size βn, Dupuis et
al. [21] have determined the large-deviations behavior of vectors (ϕn,1, . . . , ϕn,K). It would be desirable to
extend their result to non-uniform rare-events sources, and also to determine the large-deviations behavior
of the entire vector (ϕn,1, . . . , ϕn,n).

IV. SINGLE-SEQUENCE ESTIMATORS

Next we turn to the problem of estimating the quantities of interest using the observed sequence. Recall
that these quantities are

(i) the probability of the observed sequence,
(ii) the entropy of the underlying distribution,

(iii) the relative entropy between the empirical distribution and the true distribution, and
(iv) the relative entropy between the true distribution and the uniform distribution over all symbols that

appear k times in the observed string, for each k.
The Good-Turing total probability estimator provides a natural starting point for the design of these
estimators. We show that a naive application of the Good-Turing estimator does not yield a consistent
estimator of the sequence probability, but that a more sophisticated application of the Good-Turing
estimator indeed works. We then use this sequence probability estimate to obtain a consistent estimator
for quantities (ii)–(iv).

A. Naive Good-Turing is not Consistent
Before discussing the new estimator, it is instructive to see how a naive application of the Good-Turing

total probability estimator fails to yield a consistent sequence probability estimator. The naive approach
is to first estimate the probability of each symbol and then multiply these probabilities accordingly. If we
multiply the individual probability estimates in (5), we obtain the following estimate for the probability
of the observed sequence

n−1∏
k=1

(
(k + 1)ϕn,k+1

nϕn,k

)kϕn,k
.

This in turn suggests the following estimator for the limit in Proposition 2
n−1∑
k=1

kϕn,k
n

log

(
(k + 1)ϕn,k+1

ϕn,k

)
. (6)

This estimator is problematic, however, because for the largest k for which ϕn,k > 0,

(k + 1)ϕn,k+1

ϕn,k
= 0,
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which means that the corresponding term in (6) equals −∞. Various “smoothing” techniques have been
introduced to address this and related problems with the estimator [9]. Our approach will be to truncate
the summation at a large but fixed threshold, K

K∑
k=1

kϕn,k
n

log

(
(k + 1)ϕn,k+1

ϕn,k

)
.

In the rare events regime, with probability one it will eventually happen that ϕn,k > 0 for all k = 1, . . . , K,
thus obviating the problem.

By Proposition 7, this estimator will converge to
K∑
k=1

λk−1 log
kλk
λk−1

. (7)

We next show that this quantity need not tend to the correct limit (given in Proposition 2) as K tends to
infinity.
Example 3. Consider the case in which An is the set {1, 2, . . . , 3n}. Suppose that pn assigns probability
1/(4n) to the first 2n elements and probability 1/(2n) to the remaining n. The limiting scaled shadow
P will place mass 1/2 on each of the points 1/4 and 1/2. From Proposition 2, the limiting normalized
probability of X is −(1/2) log 8. By (7), the naive estimate converges to

1

2

K∑
k=1

e−1/4(1/4)k−1

(k − 1)!

(
1 + e−1/42k−1

)
· log

(√
8(1 + e−1/42k)

4(1 + e−1/42k−1)

)

+
1

2

K∑
k=1

e−1/4(1/4)k−1

(k − 1)!

(
1 + e−1/42k−1

)
log

1√
8
.

As K tends to infinity, the second sum converges to the correct answer, −(1/2) log 8. But one can verify
that every term in the first sum is strictly positive. Thus a naive application of the Good-Turing estimator
is not consistent in this example. Note that simple modifications of the Good-Turing scheme such as that
of Orlitsky et al. [12, Eq. (17)] will not rectify this.

The problem is that, according to Proposition 7, the Good-Turing estimator is estimating the sum, or
equivalently the arithmetic mean, of the probabilities of the symbols appearing k times in X. Estimating the
sequence probability, on the other hand, amounts to estimating the product, or equivalently the geometric
mean, of these probabilities. If pn is uniform, then the arithmetic and geometric means coincide, and one
can verify that the naive sequence probability estimator is consistent. In the above example, pn is not
uniform, and the naive estimator converges to the wrong value.

B. A Consistent Sequence-Probability Estimator
To create a consistent estimator, we write the normalized sequence probability as in (4)

1

n
log pn(X) + log n =

n∑
k=1

k

n

∑
a∈Bn,k

log(npn(a)).

Thus it suffices to create a consistent estimator for the quantity

k

n

∑
a∈Bn,k

log(npn(a)) (8)
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for each k. Our approach is the following. From Propositions 3 and 7, we have

lim
n→∞

k

n

∑
a∈Bn,k

log(npn(a)) =

∫
C

xk−1e−x

(k − 1)!
log x dP (x) a.s. (9)

and

lim
n→∞

φn,k =

∫
C

xke−x

k!
dP (x) = λk a.s.

Our approach will be to express the right-hand side of (9) in terms of the λk. We will then “plug-in”
φn,k, which is only a function of the observed sequence, for λk to obtain an estimator. We begin by
expanding log x as a Taylor series about a constant c

log x = log c−
∞∑
m=1

(1− x/c)m

m
0 < x ≤ 2c,

where the convergence is uniform over compact sets in (0, 2c). By the binomial theorem, this can be
written as

log x = log c−
∞∑
m=1

m∑
`=0

1

m

(
m

`

)(
−x
c

)`
0 < x ≤ 2c.

If we substitute this expression into (9) and formally swap the integral and infinite sum, we obtain∫
C

xk−1e−x

(k − 1)!
log x dP (x) = λk−1 log c−

∞∑
m=1

m∑
`=0

1

m

(
m

`

)
(−c)−`

∫
C

xk+`−1e−x

(k − 1)!
dP (x)

= λk−1 log c−
∞∑
m=1

m∑
`=0

1

m

(
m

`

)
(−c)−` (k + `− 1)!

(k − 1)!
λk+`−1

≈ φn,k−1 log c−
∞∑
m=1

m∑
`=0

1

m

(
m

`

)
(−c)−` (k + `− 1)!

(k − 1)!
φn,k+`−1,

which is essentially our estimator. Two practical questions arise, namely, how many terms to include in
the infinite sum and how to choose the constant c. Including more terms in the sum obviously provides
for a better approximation of log x, but the rate of convergence of φn,k slows as k increases. We show
that we obtain a consistent estimator by having the number of terms grow very slowly with n

N = b(log n)ε1c,

where ε1 is a constant in (0, 1). Note that we suppress the dependence of N on n. In practice this choice
amounts to including only the first few terms. Regarding the choice of c, if ĉ were known, then we
could choose c to guarantee that [č, ĉ] ⊆ (0, 2c) so that the series expansion is uniformly convergent over
C. Since we are not assuming that ĉ is known, we choose c to grow with n to guarantee that 2c > ĉ
eventually. There is a tension inherent in choosing the speed with which c grows, however. We desire
rapid growth so that (0, 2c) quickly envelopes C. But once this occurs, slower growth will yield better
convergence of the power series over C. It turns out that if

cn = b(log n)ε2c

where 0 < ε2 < ε1, then the power series converges uniformly over compact sets, as shown next.

Lemma 1. The function

log cn −
N∑
m=1

1

m

(
1− x

cn

)m
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converges to log x uniformly on compact subsets of (0,∞).

Our estimator for the quantity in (8) is the following

Definition 3. For 1 ≤ k ≤ n−N , let

ζn,k = log(cn)φn,k−1 −
N∑
m=1

m∑
`=0

(−cn)−`

m

(
m

`

)
(k + `− 1)!

(k − 1)!
φn,k+`−1. (10)

The next result shows that this estimator is consistent.

Theorem 2. For any rare-events source and any k ≥ 1,

lim
n→∞

ζn,k =

∫
C

xk−1e−x

(k − 1)!
log x dP (x) a.s.,

and hence
ζn,k −

k

n

∑
a∈Bn,k

log(npn(a))→ 0 a.s.

Our end goal is to estimate the sequence probability, and Theorem 2 and Proposition 2 together indicate
that a natural estimator is

∑
k ζn,k. Choosing the number of terms to include in this sum presents a similar

tradeoff to the choice of the number of power series terms to include in ζn,k itself. We show that a
consistent estimator can be obtained by again using N = b(log n)ε1c.

Definition 4.

ζn =
N∑
k=1

ζn,k. (11)

Theorem 3. For any rare-events source,

lim
n→∞

ζn =

∫
C

log x dP (x) a.s.,

and hence
1

n
log pn(X) + log n− ζn → 0 a.s.

Since the estimator is an alternating sum with large constants, its numerical stability is unclear a priori.
In Section VIII, we show via simulation that the estimator is stable and exhibits reasonable convergence
properties. We also numerically optimize the ε1 and ε2 parameters.

C. A Consistent Estimator for Entropy and Relative Entropy
The sequence probability estimator can also be used to estimate the entropy of the source, the relative

entropy between the true and empirical distributions, and the relative entropy between the true and uniform
distributions over the symbols appearing k times. Recall that the entropy of pn can be expressed as

−
∫
C

log
x

n
dPn(x).

Thus H(pn)− log n converges to

−
∫
C

log x dP (x).

Theorem 4. For any rare-events source,

H(pn)− log n+ ζn → 0 a.s.
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We turn next to the problem of estimating the relative entropy between the true distribution and the
empirical distribution. It is well known that the probability of the observed sequence is given by [31,
Theorem 11.1.2]

pn(X) = exp(−n(D(pX||pn) +H(pX))). (12)

Thus our estimator for the sequence probability can be combined with the entropy of the empirical
distribution to yield an estimator for D(pX||pn).

Theorem 5. For any rare-events source,

D(pX||pn) + ζn +H(pX)− log n→ 0 a.s.
Proof: By (12),

D(pX||pn) + ζn +H(pX)− log n = − 1

n
log pn(X)− log n+ ζn

which tends to zero almost surely by Theorem 3.
The final result in this section shows that we can consistently estimate the relative entropy between the

true and uniform distribution over the symbols appearing k times.

Theorem 6. For any rare-events source and for any k ≥ 1,

Dn,k −
ζn,k+1

φn,k
− log

φn,k−1

kφn,k
→ 0 a.s.

V. TWO-SEQUENCE MODEL

The results up to this point have addressed a single source in isolation. Many problems in natural
language processing and information theory, such as hypothesis testing and mismatched compression,
require considering multiple sources simultaneously.

We now suppose that for each n, we have a pair of probability measures on An, pn and qn, satisfying
č

n
≤ min(pn(a), qn(a)) ≤ max(pn(a), qn(a)) ≤ ĉ

n
(13)

for all a ∈ An and all n for some positive constants č and ĉ. We observe two strings of length n. The first,
X, is drawn i.i.d. from An according to pn. The second, Y, is drawn i.i.d. according to qn. We assume
that the two strings are statistically independent.

Let Pn denote the distribution of
(npn(Xn), nqn(Xn)),

where Xn is drawn according to pn. Likewise, let Qn denote the distribution of

(npn(Yn), nqn(Yn)),

where Yn is drawn according to qn.
Note that both Pn and Qn are probability measures on C2 := [č, ĉ]×[č, ĉ]. It follows from the definitions

that Pn and Qn are absolutely continuous with respect to each other with Radon-Nikodym derivative
dQn

dPn
(x, y) =

y

x
. (14)

Note that the relative entropy between qn and pn is given by

D(qn||pn) =

∫
C2

log
y

x
dQn(x, y). (15)

We shall again assume that Pn converges in distribution to a probability measure P on C2. Since Pn
and Qn are related by (14), this implies that Qn converges to Q satisfying

dQ

dP
(x, y) =

y

x
.

Definition 5. A rare events two-source is a sequence (An, pn, qn) of alphabets and distributions satisfy-
ing (13) such that Pn converges weakly to a distribution P .
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A. Important Limits
In the next section, we shall construct a consistent estimator for pn(Y), that is, the probability of the

sequence generated using qn under pn, using only X and Y. This problem arises in detection, where one
must determine the likelihood of a given realization under multiple probability distributions. As in the
single-sequence setup, this probability converges if it is suitably normalized.

Proposition 8. For any rare-events two-source,

1

n
log pn(Y) + log n =

∫
C2

log x dQ(x, y) a.s. (16)

An analogous result obviously holds for qn(X).
We shall also construct a consistent estimator for the relative entropy between qn and pn from the

sequences X and Y, a quantity that is related to pn(Y).

Proposition 9. For any rare-events two-source,

lim
n→∞

D(qn||pn) =

∫
C2

log
y

x
dQ(x, y)

=

∫
C2

y

x
log

y

x
dP (x, y).

The proof immediately follows from (15), since log y/x is bounded and continuous over C2. An
analogous result holds for D(pn||qn).

VI. TWO-SEQUENCE ESTIMATORS

We turn to the problem of estimating pn(Y) and D(qn||pn) using the sequences X and Y. In the
single-sequence setting, our starting point was the Good-Turing total probability estimator. For pairs of
sequences, we require a similar “engine.”

Let ϕn,k,j denote the number of symbols that appear k times in X and j times in Y. Then

ψn,k :=
n∑
j=1

jϕn,k,j
n

is the fraction of Y taken up by symbols appearing k times in X. It turns out that ψn,k obeys a convergence
result that is similar to the one for φn,k.

Proposition 10. For any rare-events two-source and for any k,

lim
n→∞

ψn,k =

∫
C2

xke−x

k!
dQ(x, y) a.s. (17)

Comparing Propositions 8 and 10, we see that to estimate pn(Y) we need a way of estimating the
integral in (16) from the Poisson mixture given in (17). But this is equivalent to the problem of estimating
the single-sequence probability from φn,k, which was solved in Section IV. We simply replace φn,k with
ψn,k in the definition of ζn,k and ζn.

Definition 6. Define

ξn = log(cn)
N∑
k=1

ψn,k−1 −
N∑
k=1

N∑
m=1

m∑
`=0

(−cn)−`

m

(
m

`

)
(k + `− 1)!

(k − 1)!
ψn,k+`−1.

Theorem 7. For any rare-events two-source,

lim
n→∞

ξn =

∫
C2

log x dQ(x, y) a.s. (18)
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and hence
lim
n→∞

1

n
log pn(Y) + log n− ξn = 0 a.s. (19)

By combining ξn with our single-sequence estimator, we can consistently estimate the relative entropy
between qn and pn. Let us redefine ϕn,k to be the number of symbols appearing k times in Y, and let
ζn,k and ζn be the estimators in (10) and (11) as before.

Theorem 8. For any rare-events two-source,

lim
n→∞

|D(qn||pn) + ξn − ζn| = 0 a.s. (20)

VII. UNIVERSAL HYPOTHESIS TESTING

The ξn estimator also provides a consistent decision rule for universal hypothesis testing. In particular,
it shows that consistent universal hypothesis testing for rare-events sources is possible. Suppose that we
again observe X and Y, which we now view as training sequences. In addition, we observe a test sequence,
say Z, which is generated i.i.d. from the distribution rn. We assume that Z is independent of X and Y
and that either rn = pn for all n or rn = qn for all n. The problem is to determine which of these two
possibilities is in effect using only the sequences X, Y, and Z.

Under the conventional asymptotic, the two possible distributions can be learned from the test sequences
in the large n limit, (say, from their empirical distributions), and a standard likelihood ratio test can be
employed. This can be easily shown to be a consistent decision rule, although there are other schemes
with superior error exponents [32], [33]. For rare-events sources, finding a consistent decision rule is less
simple.

Using Theorem 7, one can estimate pn(Z) and qn(Z) and by comparing the two, determine which of
the two distributions is more likely to have generated Z. The next result shows that this decision rule is
consistent.

Lemma 2. ∫
C2

log x dQ(x, y) ≤
∫
C2

log y dQ(x, y),

with equality if and only if P = Q, i.e.,

P ((x, y) : x = y) = Q((x, y) : x = y) = 1.

Proof: Since
log

x

y
≤ x

y
− 1

with equality if and only if x = y, we have∫
C2

log
y

x
dQ(x, y) ≥

∫
C2

(
1− x

y

)
dQ(x, y)

with equality if and only if
Q((x, y) : x = y) = 1.

Now ∫
C2

(
1− x

y

)
dQ(x, y) =

∫
C2

dQ(x, y)−
∫
C2

x

y
dQ(x, y)

= 1−
∫
C2

dP (x, y) = 0.

But
Q((x, y) : x = y) = 1

if and only if
P ((x, y) : x = y) = 1

if and only if P = Q.
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Fig. 1. Densities used to simulate the single-sequence and two-sequence estimators. The probabilities of the individual symbols are assigned
from these densities as in Example 2.
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Fig. 2. Simulation of single-sequence probability estimator for the source distribution in Fig. 1(a). The dotted line indicates the true limiting
sequence probability, as computed using Proposition 2. For each value of n, the estimator was computed on 50 independent realizations of
the source. Each estimate is noted by a ’+’ on the graph, and the mean estimate is indicated by the solid line. (ε1 = 0.99, ε2 = 0.5)

VIII. SIMULATION RESULTS

We next simulate the one- and two-sequence probability estimators to determine their convergence
properties, test their numerical stability, and optimize the parameters ε1 and ε2. Consider the single-
sequence estimator (ζn) and suppose that the source is generated via Example 2 using the bi-uniform
density in Fig. 1(a). Fig 2 shows the simulated performance of the estimator for n = 10m where m varies
from 2 to 7. Fig. 3 shows the results of a similar simulation using the distribution in Fig. 1(b). Both
simulations show reasonable convergence and numerical stability.

The plots were generated using the parameters ε1 = 0.99 and ε2 = 0.5. Increasing ε1 tends to reduce
the bias of the estimator while increasing its variance, as illustrated in Fig. 4. As the source distribution
becomes more “peaky,” this effect becomes more pronounced, which in turn makes the range of acceptable
ε1 smaller6. The choice ε = 0.99 provides both a small bias and small variance in most cases. The estimator
is relatively insensitive to the choice of ε2.

Fig. 5 shows the performance of the two-sequence estimator (ξn) in which X and Y are chosen according
to the densities in Fig. 1(b) and 1(a), respectively. Again the densities are mapped to rare-events sources
using the sampling approach in Example 2. We see that the same values of ε1 and ε2 also work for the
two-sequence estimator.

6Also note that as the distribution becomes more peaky, the variance of pn(X) increases, which makes this quantity more difficult to
estimate.
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Fig. 3. Simulation of the single-sequence probability estimator for the source distribution in Fig. 1(b). (ε1 = 0.99, ε2 = 0.5)
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Fig. 4. Effect of ε1 on estimator performance for the distribution in Fig. 1(b). The upper plot uses ε1 = 0.6 and the lower plot uses ε1 = 1.1.
Increasing ε1 tends to reduce the bias of the estimate while increasing its variance. Although our results do not guarantee convergence for
the ε1 = 1.1, the lower plot is useful for observing the effect of increasing ε1.
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APPENDIX A
SINGLE-SEQUENCE LIMITS

The proofs of the results in Section II tend to follow a common pattern. We first compute the expectation
of the relevant quantity and show that it converges to the desired limit. We then show concentration around
the mean to establish almost sure convergence. For the expectation calculations, it is convenient to make
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Fig. 5. Simulation of the two-sequence probability estimator. (ε1 = 0.99, ε2 = 0.5)

several definitions. Let
gnk (x) =

(
n

k

)(x
n

)k (
1− x

n

)n−k
and

gk(x) =
xk exp(−x)

k!
.

Since (
n

k

)
1

nk
→ 1

k!
as n→∞

and (
1 +

xn
n

)n
→ exp(x) if xn → x,

it follows that for all sequences xn → x, gnk (xn)→ gk(x). Note also that gnk (x) ≤ 1 if 0 ≤ x ≤ n by the
binomial theorem. In several of the proofs we will use the abbreviation

c := max(| log(č)|, | log(ĉ)|).
Lemma 3. For all nonnegative integers k,

lim
n→∞

E[γn,k] = λk.

Proof: For any k ≥ 0,

E[γn,k] =
∑
a∈An

(
n

k

)
pn(a)k(1− pn(a))n−kpn(a)

=
∑
a∈An

gnk (npn(a))pn(a)

= E[gnk (npn(Xn))],

where Xn has distribution pn. Since npn(Xn) converges in distribution to a random variable W with
distribution P , we can create a sequence of random variables {Wn}∞n=1 such that Wn has the same
distribution as npn(Xn) and Wn converges to W almost surely [34, Theorem 4.30]. Then

gnk (Wn)→ gk(W ) a.s.



18

Since gnk (Wn) ≤ 1 a.s., the bounded convergence theorem implies that

lim
n→∞

E[gnk (Wn)] = E[gk(W )]

=

∫ ∞
0

gk(x) dP (x) = λk.

Lemma 4. For all nonnegative integers k,

lim
n→∞

|γn,k − E[γn,k]| = 0 a.s.

Proof: If we change one symbol in the underlying sequence, then γn,k can change by at most
2ĉ/n. By McDiarmid’s [35] form of the Azuma-Hoeffding concentration inequality (available as [36,
Corollary 2.4.14]), it follows that for all τ > 0

Pr (|γn,k − E[γn,k]| ≥ τ) ≤ 2 exp

[
−nτ

2

8ĉ2

]
.

Since the right-hand side is summable over n, the Borel Cantelli lemma implies the result.
Proof of Proposition 1: It follows from Lemmas 3 and 4 that for each k,

lim
n→∞

γn,k = λk a.s.

That is, the random distribution γn,k converges pointwise to λk with probability one. The strengthening
to L1 convergence follows from Scheffé’s theorem [37, Theorem 16.12], but we provide a proof since it
is brief. Observe that with probability one,

0 =
∞∑
k=0

[λk − γn,k]

=
∞∑
k=0

[λk − γn,k]+ −
∞∑
k=0

[λk − γn,k]− ,

where [·]+ and [·]− represent the positive and negative parts, respectively. Thus
∞∑
k=0

|λk − γn,k| = 2
∞∑
k=0

[λk − γn,k]+ a.s.

But [λk−γn,k]+ converges pointwise to 0 a.s. and is less than or equal to λk. The dominated convergence
theorem then implies that

lim
n→∞

∞∑
k=0

[λk − γn,k]+ = 0 a.s.

Lemma 5. (a) For any k ≥ 1,

lim
n→∞

E

k
n

∑
a∈Bn,k

log(npn(a))

 =

∫
C

xk−1e−x

(k − 1)!
log x dP (x).

(b)

lim
n→∞

E

[
1

n
log pn(X)

]
+ log n =

∫
C

log x dP (x).
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Proof: For any k ≥ 1,

E

k
n

∑
a∈Bn,k

log(npn(a))

 =
k

n

∑
a∈An

(
n

k

)
(pn(a))k(1− pn(a))n−k log(npn(a))

=
∑
a∈An

gn−1
k−1 ((n− 1)pn(a)) log(npn(a))pn(a)

= E
[
gn−1
k−1 ((n− 1)pn(Xn)) log(npn(Xn))

]
.

As in the proof of Lemma 3, it follows that

lim
n→∞

E
[
gn−1
k−1 ((n− 1)pn(Xn)) log(npn(Xn))

]
=

∫
C

e−xxk−1

(k − 1)!
log x dP (x),

which establishes (a). Now

1

n
log pn(X) + log n =

1

n

n∑
i=1

log(npn(Xi)).

Thus

E

[
1

n
log pn(X)

]
+ log n = E[log(npn(Xn))]

=

∫
C

log x dPn(x)

→
∫
C

log x dP (x),

where the convergence follows because Pn → P weakly and log x is bounded and continuous over C.

Lemma 6. (a) For any k ≥ 1,

k

n

∑
a∈Bn,k

log(npn(a))− lim
n→∞

E

k
n

∑
a∈Bn,k

log(npn(a))

 = 0 a.s.

(b)

lim
n→∞

1

n
log pn(X)− E

[
1

n
log pn(X)

]
= 0 a.s.

Proof: If one symbol in the underlying i.i.d. sequence is altered, then

k

n

∑
a∈Bn,k

log(npn(a))

can change by at most 2kc/n and
1

n
log pn(X) + log n

can change by at most 2c/n. Concentration and almost sure convergence then follows as in the proof of
Lemma 4.

Propositions 2 and 3 follow immediately from Lemmas 5 and 6. Before proving Proposition 5, we
prove a convergence result for the empirical entropy.
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Lemma 7. For any rare-events source,

H(pX)− log n→ −
∫
C

∞∑
k=1

e−xxk

k!
log(k + 1) dP (x) a.s.

Proof: We have

H(pX)− log n = −
n∑
k=1

ϕn,k · k
n

log k

= −
n−1∑
k=1

φn,k log(k + 1).

Then for all sufficiently large n,∣∣∣∣∣
n−1∑
k=0

φn,k log(k + 1)−
n−1∑
k=0

E[φn,k] log(k + 1)

∣∣∣∣∣ ≤
n−1∑
k=0

|φn,k − E[φn,k]| · n1/3,

which tends to zero a.s. by Lemma 11 to follow. Thus it suffices to show that
n−1∑
k=0

E[φn,k] log(k + 1)→
∫
C

∞∑
k=0

e−xxk

k!
log(k + 1) dP (x). (21)

As in the proof of Lemma 10 to follow,

E[φn,k] =

∫
C

gn−1
k

(
n− 1

n
x

)
dPn(x).

Since
n−1∑
k=0

φn,k = 1 a.s.

we have that
n−1∑
k=0

E[φn,k] =
n−1∑
k=0

∫
C

gn−1
k

(
n− 1

n
x

)
dPn(x) = 1.

Therefore we can create a random variable Wn with distribution

Pr(Wn = k) = E[φn,k].

By Lemma 10 to follow, {Wn} converges in distribution to a random variable W with distribution

Pr(W = k) =

∫
C

e−xxk

k!
dP (x).

Since Wn is a mixture of binomials,

E[Wn] =
n−1∑
k=0

∫
C

kgn−1
k

(
n− 1

n
x

)
dPn(x)

=

∫
C

n−1∑
k=0

kgn−1
k

(
n− 1

n
x

)
dPn(x)

=
n− 1

n

∫
C

xdPn(x)

→
∫
C

x dP (x)
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where the convergence follows because the identity function x is bounded and continuous over C and Pn
converges weakly to P . But by monotone convergence,

E[W ] =
∞∑
k=0

∫
C

k
e−xxk

k!
dP (x)

=

∫
C

∞∑
k=0

k
e−xxk

k!
dP (x)

=

∫
C

x dP (x).

Thus E[Wn]→ E[W ], and the sequence {Wn} is uniformly integrable [37, Theorem 16.14], which implies
that log(Wn + 1) is uniformly integrable [38, Ex. 4.5.1], and hence

E[log(Wn + 1)]→ E[log(W + 1)].

But

E[log(Wn + 1)] =
n−1∑
k=0

E[φn,k] log(k + 1)

and

E[log(W + 1)] =
∞∑
k=0

∫
C

e−xxk

k!
dP (x) log(k + 1)

which by monotone convergence equals∫
C

∞∑
k=0

e−xxk

k!
log(k + 1) dP (x).

This establishes (21) and hence the lemma.
Proof of Proposition 5: We have

D(pX||pn) = −H(pX)− 1

n
log pn(X)

= − [H(pX)− log n]−
[

1

n
log pn(X) + log n

]
.

The convergence then follows from Lemma 7 and Proposition 2. To show the e−ĉ lower bound, we use
the fact that log x ≤ x− 1,∫

C

∞∑
k=0

xke−x

k!
log

x

k + 1
dP (x) ≤

∫
C

∞∑
k=0

xke−x

k!

(
x

k + 1
− 1

)
dP (x)

=

∫
C

∞∑
k=0

xk+1e−x

(k + 1)!
dP (x)− 1

= −
∫
C

e−x dP (x)

≤ −e−ĉ.

Lemma 8. For any k ≥ 0,

lim
n→∞

E

 ∑
a∈Bn,k

pn(a) log(npn(a))

 =

∫
C

e−xxk

k!
log x dP (x).
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Proof: We have

E

 ∑
a∈Bn,k

pn(a) log(npn(a))

 =
∑
a∈An

(
n

k

)
(pn(a))k+1(1− pn(a))n−k log(npn(a))

=
∑
a∈An

gnk (npn(a)) log(npn(a))pn(a)

= E[gnk (npn(Xn)) log(npn(Xn))].

As in the proof of Lemma 3, we have

lim
n→∞

E[gnk (npn(Xn)) log(npn(Xn))] =

∫
C

e−xxk

k!
log x dP (x).

Lemma 9. For any k ≥ 0,

lim
n→∞

∑
a∈Bn,k

pn(a) log(npn(a))− E

 ∑
a∈Bn,k

pn(a) log(npn(a))

 = 0.

Proof: If one symbol in the underlying i.i.d. sequence is altered, then∑
a∈Bn,k

pn(a) log(npn(a))

can change by at most 2cĉ/n. Concentration and a.s. convergence then follow as in the proof of Lemma 4.

Proof of Proposition 6: We have

Dn,k =
1

pn(Bn,k)

∑
a∈Bn,k

pn(a) log(npn(a)) + log
ϕn,k

npn(Bn,k)
.

By Lemmas 8 and 9,

lim
n→∞

∑
a∈Bn,k

pn(a) log(npn(a)) =

∫
C

e−xxk

k!
log x dP (x) a.s.

By Proposition 1,

lim
n→∞

pn(Bn,k) = λk a.s.,

and by Proposition 7

lim
n→∞

ϕn,k
n

=
λk−1

k
a.s.

The result follows.
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APPENDIX B
GOOD-TURING ESTIMATOR

Lemma 10. For any rare-events source,

lim
n→∞

∞∑
k=0

|E[φn,k]− λk| = 0.

Proof: For any 0 ≤ k ≤ n− 1,

φn,k =
∑
a∈An

k + 1

n
1(a ∈ Bn,k+1).

Thus

E[φn,k] =
∑
a∈An

k + 1

n

(
n

k + 1

)
(pn(a))k+1(1− pn(a))n−k−1

=
∑
a∈An

(
n− 1

k

)
(pn(a))k(1− pn(a))n−k−1pn(a)

=
∑
a∈An

gn−1
k ((n− 1)pn(a))pn(a)

= E[gn−1
k ((n− 1)pn(Xn))].

The reasoning in the proof of Lemma 3 can then be used to show that E[φn,k]→ λk. The strengthening
to L1 convergence follows from Scheffé’s theorem.

Lemma 11. For any δ > 0,

lim
n→∞

n−1∑
k=0

|φn,k − E [φn,k]| · n1/2−δ = 0 a.s.

Remark: The n1/2−δ factor is not necessarily the largest possible, but it is sufficient for our purposes.
Proof: We have

n−1∑
k=0

|φn,k − E[φn,k]| · n1/2−δ

≤
dnδ/4e∑
k=0

|φn,k − E[φn,k]| · n1/2−δ +
n−1∑

k=dnδ/4e+1

φn,k · n1/2−δ +
n−1∑

k=dnδ/4e+1

E[φn,k] · n1/2−δ. (22)

We will show that each of these terms tends to zero in turn. For the first term, observe that if we alter one
symbol in the underlying i.i.d. sequence, then φn,k will change by at most 2(k+ 1)/n. As in the proof of
Lemma 4, McDiarmid’s form of the Azuma-Hoeffding concentration inequality implies that

Pr (|φn,k − E[φn,k]| > ε) ≤ 2 exp

(
− ε2n

8(nδ/4 + 2)2

)
for all k ≤ dnδ/4e. Then by the union bound,

Pr

dnδ/4e∑
k=0

|φn,k − E[φn,k]| · n1/2−δ > ε

 ≤ dnδ/4e∑
k=0

Pr

(
|φn,k − E[φn,k]| · n1/2−δ >

ε

dnδ/2e

)

≤ 2(nδ/4 + 1) exp

(
− ε2n2δ

8(nδ/4 + 2)2(nδ/2 + 1)2

)
.
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Since the right-hand side is summable, the first term in (22) tends to zero a.s. by the Borel-Cantelli lemma.
To handle the second term, note that since ϕn,k is integer valued, it suffices to show that

lim
n→∞

sup
dnδ/4e<k≤n−1

φn,k = 0 a.s. (23)

To show this, observe that

Pr(ϕn,k > 0) ≤
∑
a∈An

(
n

k

)
(pn(a))k(1− pn(a))n−k.

Now if k > dnδ/4e, then for all sufficiently large n, we can upper bound the right-hand side by taking
k = dnδ/4e [31, Eq. 11.47], yielding

Pr(ϕn,k > 0) ≤
∑
a∈An

(
n

dnδ/4e

)
(pn(a))dn

δ/4e(1− pn(a))n−dn
δ/4e

≤ n

č

(
n

dnδ/4e

)(
ĉ

n

)dnδ/4e
.

Using Feller’s bounds on the Stirling approximation, Orlitsky et al. [11, Lemma 4] have shown that(
n

k

)
≤ e1/(12n)

√
2π

√
n

k(n− k)

(en
k

)k
. (24)

Thus

Pr(ϕn,k > 0) ≤ n

č

e√
2π

√
n

dnδ/4e(n− dnδ/4e)

(
eĉ

dnδ/4e

)dnδ/4e
≤ n3/2e

č
√

2π

(
eĉ

dnδ/4e

)dnδ/4e
.

By the union bound, this implies that for all sufficiently large n,

Pr

(
sup

dnδ/4e<k≤n−1

ϕn,k > 0

)
≤ n5/2e

č
√

2π

(
eĉ

dnδ/4e

)dnδ/4e
≤ n5/2e

č
√

2π

(
eĉ

nδ/4

)nδ/4

Since the right-hand side is summable, it follows that

lim
n→∞

sup
dnδ/4e<k≤n−1

ϕn,k = 0 a.s.

which implies (23). Finally, turning to the third term in (22), we have

E [φn,k] =
∑
a∈An

(
n− 1

k

)
(pn(a))k(1− pn(a))n−k−1pn(a)

≤
∑
a∈An

(
n− 1

k

)
(pn(a))k(1− pn(a))n−k−1.



25

If k > dnδ/4e, then the right-hand side can be upper bounded by taking k = dnδ/4e. Thus

E [φn,k] ≤
∑
a∈An

(
n− 1

dnδ/4e

)
(pn(a))dn

δ/4e

≤
∑
a∈An

(
n− 1

dnδ/4e

)(
ĉ

n

)dnδ/4e
≤ n

č

(
n− 1

dnδ/4e

)(
ĉ

n

)dnδ/4e
,

which implies that
n−1∑

k=dnδ/4e+1

E[φn,k] · n1/2−δ ≤ n5/2−δ

č

(
n− 1

dnδ/4e

)(
ĉ

n

)dnδ/4e
.

Using the Orlitsky et al. bound in (24) once again shows that the right-hand side tends to zero. This shows
that the right-hand side in (22) tends to zero a.s. and completes the proof.

Proof of Proposition 7: The result follows from Lemmas 10 and 11.

APPENDIX C
SINGLE-SEQUENCE ESTIMATORS

Proof of Lemma 1: By the well-known Mercator series, for all y such that −1 < y ≤ 1,

log(1 + y) = −
∞∑
m=1

(−y)m

m
.

In particular, ∣∣∣∣∣log(1 + y) +
N∑
m=1

(−y)m

m

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

m=N+1

(−y)m

m

∣∣∣∣∣
≤

∞∑
m=N+1

|y|m

=
|y|N+1

1− |y|
.

Consider a compact set contained in an interval [ˇ̌c, ˆ̂c] and write

αn =
ˆ̂c

cn
− 1

βn =
ˇ̌c

cn
− 1.

Then we have

sup
βn≤y≤αn

∣∣∣∣∣log(1 + y) +
N∑
m=1

(−y)m

m

∣∣∣∣∣ ≤ sup
βn≤y≤αn

|y|N+1

1− |y|
.

For all sufficiently large n, |αn| ≤ |βn|, so

sup
βn≤y≤αn

|y|N+1

1− |y|
=
|βn|N+1

1− |βn|
.
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Substituting x/cn for 1 + y, this can be rewritten as

sup
ˇ̌c≤x≤ˆ̂c

∣∣∣∣∣log
x

cn
+

N∑
m=1

1

m

(
1− x

cn

)m∣∣∣∣∣ ≤ |βn|N+1

1− |βn|
.

Thus it suffices to show that
|βn|N+1

1− |βn|
→ 0.

But for all sufficiently large n,

log
|βn|N+1

1− |βn|
= (N + 1) log

(
1−

ˇ̌c

cn

)
− log

(
ˇ̌c

cn

)
≤ −(N + 1)

(
ˇ̌c

cn

)
− log

(
ˇ̌c

cn

)
,

which diverges to −∞.
The main task in this Appendix is to prove Theorems 2 and 3, and the main step in this task is to

establish convergence of the expectation. We divide this step into a sequence of lemmas. Define the
functions

Γn,k(x) =
xk−1e−x

(k − 1)!
log(cn)−

N∑
m=1

m∑
`=0

(−cn)−`

m

(
m

`

)
xk+`−1e−x

(k − 1)!

and

Γn(x) =
N∑
k=1

Γk(x).

Lemma 12. (a) For any k ≥ 1, Γn,k(x) converges to

xk−1e−x

(k − 1)!
log x

uniformly on compact sets as n→∞.
(b) Γn(x) converges to log x uniformly on compact sets as n→∞.

Proof: By the binomial theorem,
m∑
`=0

(−cn)−`

m

(
m

`

)
xk+`−1e−x

(k − 1)!
=

m∑
`=0

1

m
(−cn)m−m−`

(
m

`

)
xk+`−1e−x

(k − 1)!

=
1

m
(−cn)−m (x− cn)m

xk−1e−x

(k − 1)!
.

Thus we have

Γn,k(x) =
xk−1e−x

(k − 1)!
log(cn)−

N∑
m=1

(−cn)−m

m
(x− cn)m

xk−1e−x

(k − 1)!

=

[
log(cn)−

N∑
m=1

(−cn)−m

m
(x− cn)m

]
xk−1e−x

(k − 1)!

and

Γn(x) =

[
log(cn)−

N∑
m=1

(−cn)−m

m
(x− cn)m

][
N∑
k=1

xk−1e−x

(k − 1)!

]
.
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But

log(cn)−
N∑
m=1

(−cn)−m

m
(x− cn)m → log x

uniformly on compact sets by Lemma 1. This establishes (a). To show (b), note that
N∑
k=1

xk−1e−x

(k − 1)!
→ 1

uniformly on compact sets as well.
We next show a similar result but with the Poisson mass functions in Γn,k(x) and Γn(x) replaced by

binomial mass functions. Define the function

Γ̃
(h)
n,k(x) =

(
h

k − 1

)(x
h

)k−1 (
1− x

h

)h−k+1

log(cn)

−
N∑
m=1

m∑
`=0

(−cn)−`

m

(
m

`

)
(k + `− 1)!

(k − 1)!

(
h

k + `− 1

)(x
h

)k+`−1 (
1− x

h

)h−k−`+1

and

Γ̃(h)
n (x) =

N∑
k=1

Γ̃
(h)
n,k(x).

Lemma 13. (a) For any k ≥ 1, Γ̃
(n)
n,k(x) converges to

xk−1e−x

(k − 1)!
log x

uniformly on compact sets as n→∞.
(b) Γ̃

(n)
n (x) converges to log x uniformly on compact sets as n→∞.

(c) For any k ≥ 1, Γ̃
(n−1)
n,k (n−1

n
x) converges to

xk−1e−x

(k − 1)!
log x

uniformly on compact sets as n→∞.
(d) Γ̃

(n−1)
n (n−1

n
x) converges to log x uniformly on compact sets as n→∞.

Proof: Consider the difference between Γn,k(x) and Γ̃
(n)
n,k(x),

|Γn,k(x)− Γ̃
(n)
n,k(x)| ≤

∣∣∣∣xk−1e−x

(k − 1)!
−
(

n

k − 1

)(x
n

)k−1 (
1− x

n

)n−k+1
∣∣∣∣ log(cn)

+
N∑
m=1

m∑
`=0

c−`n
m

(
m

`

)
xk+`−1

(k − 1)!

∣∣∣∣e−x − (k + `− 1)!

nk+`−1

(
n

k + `− 1

)(
1− x

n

)n−k−`+1
∣∣∣∣ .

Fix a compact set in [ˇ̌c, ˆ̂c]. Applying Corollary 1 in Appendix F gives, for all sufficiently large n,

|Γn,k(x)− Γ̃
(n)
n,k(x)| ≤ log(cn)√

n

xk−1

(k − 1)!
+

N∑
m=1

m∑
`=0

c−`n
m

(
m

`

)
xk+`−1

(k − 1)!

1√
n
.
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Note that the c−`n factor in the second term can be omitted since cn ≥ 1 for all sufficiently large n.
Applying the binomial theorem then yields

|Γn,k(x)− Γ̃
(n)
n,k(x)| ≤ log(cn)√

n

xk−1

(k − 1)!
+

N∑
m=1

1

m
(1 + x)m

xk−1

(k − 1)!

1√
n

≤ log(cn)√
n

xk−1

(k − 1)!
+
N(1 + x)Nxk−1

(k − 1)!
√
n

.

In particular, we have

sup
ˇ̌c≤x≤ˆ̂c

|Γn,k(x)− Γ̃
(n)
n,k(x)| ≤ log(cn)√

n

ˆ̂ck−1

(k − 1)!
+
N(1 + ˆ̂c)N ˆ̂ck−1

(k − 1)!
√
n

.

Corollary 2 in Appendix F implies that the right-hand side tends to zero as n→∞. This fact along with
Lemma 12(a) establishes (a). Continuing,

sup
ˇ̌c≤x≤ˆ̂c

|Γn(x)− Γ̃(n)
n (x)| ≤

N∑
k=1

[
log(cn)√

n

ˆ̂ck−1

(k − 1)!
+
N(1 + ˆ̂c)N ˆ̂ck−1

(k − 1)!
√
n

]

=
log(cn)√

n
exp(ˆ̂c) +

N(1 + ˆ̂c)N exp(ˆ̂c)√
n

,

which also tends to zero as n → ∞. This fact along with Lemma 12(b) establishes (b). To show (c),
note that the proof of (a) also works for Γ̃

(n−1)
n,k (x). In addition, (n− 1)x/n converges to x uniformly on

compact sets. Since
xk−1e−x log x

(k − 1)!

is uniformly continuous on compact sets, (c) follows. The proof of (d) is analogous.

Lemma 14. (a) For any k ≥ 1,

lim
n→∞

E[ζn,k] =

∫
C

xk−1e−x

(k − 1)!
log x dP (x)

(b)

lim
n→∞

E[ζn] =

∫
C

log x dP (x)

Proof: Observe that

E [φn,k] =
∑
a∈An

(
n− 1

k

)
(pn(a))k(1− pn(a))n−1−kpn(a).

Thus we have

E[ζn,k] =
∑
a∈An

log(cn)

(
n− 1

k − 1

)
(pn(a))k−1(1− pn(a))n−kpn(a)

−
∑
a∈An

N∑
m=1

m∑
`=0

(−cn)−`

m

(
m

`

)
·

(k + `− 1)!

(k − 1)!

(
n− 1

k + `− 1

)
(pn(a))k+`−1(1− pn(a))n−k−`pn(a),
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which can be rewritten as
E[ζn,k] =

∫
C

Γ̃
(n−1)
n,k

(
(n− 1)x

n

)
dPn(x).

Similarly,

E[ζn] =

∫
C

Γ̃(n−1)
n

(
(n− 1)x

n

)
dPn(x).

Now by Lemma 13(c) and (d),

Γ̃
(n−1)
n,k

(
(n− 1)x

n

)
→ xk−1e−x

(k − 1)!
log x uniformly on C

Γ̃(n−1)
n

(
(n− 1)x

n

)
→ log x uniformly on C.

Furthermore, Pn → P weakly. This implies (a) and (b).

Lemma 15. (a) For any k ≥ 1,
lim
n→∞

|ζn,k − E[ζn,k]| = 0 a.s.

(b)
lim
n→∞

|ζn − E[ζn]| = 0 a.s.

Proof: For both parts, it suffices to show that

lim
n→∞

N∑
k=1

|ζn,k − E[ζn,k]| = 0 a.s.

Now
N∑
k=1

|ζn,k − E[ζn,k]| ≤
N∑
k=1

N∑
m=1

m∑
`=0

c−`n
m

(
m

`

)
(k + `− 1)!

(k − 1)!
· |φn,k+`−1 − E [φn,k+`−1]|

+
N∑
k=1

log(cn) |φn,k−1 − E [φn,k−1]| .

Write
ηn = sup

0≤k≤2N−1
|φn,k − E [φn,k]| .

Then
N∑
k=1

|ζn,k − E[ζn,k]| ≤
N∑
k=1

N∑
m=1

m∑
`=0

c−`n
m

(
m

`

)
(k + `− 1)!

(k − 1)!

1

n1/3
(ηn · n1/3) + log(cn) ·N · ηn.

Now ηn · n1/3 → 0 a.s. and ηn ·N → 0 a.s. by Lemma 11, and for all sufficiently large n,

1

n1/3

N∑
k=1

N∑
m=1

m∑
`=0

c−`n
m

(
m

`

)
(k + `− 1)!

(k − 1)!

(a)

≤ 1

n1/3

N∑
k=1

N∑
m=1

m∑
`=0

(
m

`

)
(k +m− 1)!

(k − 1)!

=
1

n1/3

N∑
k=1

N∑
m=1

2m
(k +m− 1)!

(k − 1)!

≤ N22N(2N)!

n1/3
,



30

where in (a) we have used the fact that cn ≥ 1 eventually. In Appendix F, we verify that this last quantity
tends to zero (Lemma 24).

Theorems 2 and 3 follow immediately from Lemmas 14 and 15 and Propositions 2 and 3.
Proof of Theorem 4: We have

H(pn)− log n+ ζn = ζn −
∫

log x dPn(x),

but both terms on the right-hand side converge to∫
log x dP (x),

the latter because Pn → P weakly and log x is bounded and continuous over C.
Proof of Theorem 6: By the triangle inequality,∣∣∣∣Dn,k −

ζn,k+1

φn,k
− log

φn,k−1

kφn,k

∣∣∣∣ ≤ ∣∣∣∣Dn,k −
1

λk

∫
C

xke−x

k!
log x dP (x)− log

λk−1

kλk

∣∣∣∣
+

∣∣∣∣ 1

λk

∫
C

xke−x

k!
log x dP (x)− ζn,k+1

φn,k

∣∣∣∣
+

∣∣∣∣log
λk−1

kλk
− log

φn,k−1

kφn,k

∣∣∣∣ .
But the three terms on the right-hand side tend to zero by Proposition 6, Theorem 2, and Proposition 7.

APPENDIX D
TWO-SEQUENCE LIMITS

Lemma 16.
lim
n→∞

E

[
1

n
log pn(Y)

]
+ log n =

∫
C2

log x dQ(x, y).

Proof: Let B′n,k denote the set of symbols in An that appear k times in Y. Then we may write

1

n
log pn(Y) + log n =

1

n

n∑
k=1

∑
a∈B′

n,k

k log(npn(a)).

Then observe that for any 1 ≤ k ≤ n,

E

k
n

∑
a∈B′

n,k

log(npn(a))

 =
k

n

∑
a∈An

(
n

k

)
(qn(a))k(1− qn(a))n−k log(npn(a))

=
∑
a∈An

(
n− 1

k − 1

)
(qn(a))k−1(1− qn(a))n−k log(npn(a))qn(a).

Thus

E

 1

n

n∑
k=1

∑
a∈B′

n,k

k log(npn(a))

 =
∑
a∈An

log(npn(a))qn(a)

=

∫
C2

log x dQn(x, y).
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Now Qn → Q weakly and log x is bounded and continuous over C2, so

lim
n→∞

∫
C2

log x dQn(x, y) =

∫
C2

log x dQ(x, y).

Lemma 17.
lim
n→∞

∣∣∣∣ 1n log(pn(Y))− E
[

1

n
log pn(Y)

]∣∣∣∣ = 0 a.s.

The proof of this result is virtually identical to that of Lemma 6 and is omitted. Proposition 8 follows
immediately from this result and the previous one.

APPENDIX E
TWO-SEQUENCE ESTIMATORS

Lemma 18. For any k ≥ 0,

lim
n→∞

E[ψn,k] =

∫
C2

xke−x

k!
dQ(x, y).

Proof: For any k ≥ 0,

E [ψn,k] =
∑
a∈An

n∑
j=1

j

n

(
n

k

)
(pn(a))k(1− pn(a))n−k

(
n

j

)
(qn(a))j(1− qn(a))n−j

=
∑
a∈An

n∑
j=1

(
n

k

)
(pn(a))k(1− pn(a))n−k

(
n− 1

j − 1

)
(qn(a))j(1− qn(a))n−j

=
∑
a∈An

(
n

k

)
(pn(a))k(1− pn(a))n−kqn(a) (25)

=
∑
a∈An

gnk (npn(a))qn(a)

=

∫
C2

gnk (x) dQn(x, y).

The result then follows as in the proof of Lemma 3.
Unlike the other quantities examined in this paper, McDiarmid’s inequality is not strong enough to prove

concentration for ψn,k. We proceed by creating a Doob martingale and applying the Azuma-Hoeffding
inequality directly.

Lemma 19. For any δ > 0,

lim
n→∞

sup
0≤k≤n

|ψn,k − E [ψn,k]| · n1/2−δ = 0 a.s.

Proof: Fix k, and define the martingale {Zi}2n
i=0 by

Z0 = E [ψn,k]

Zi = E [ψn,k|X1, . . . , Xi] i = 1, . . . , n, and
Zi = E [ψn,k|X, Y1, . . . , Yi−n] i = n+ 1, . . . , 2n.

Fix 1 ≤ i ≤ n, and let X̃i be identically distributed with Xi and independent of (X,Y). Let Bn,k denote
the set of symbols that appear k times in X, and let B̃n,k denote the set of symbols that appear k times
in (X1, . . . , Xi−1, X̃i, Xi+1, . . . , Xn). Write

ψn,k =
1

n

n∑
j=1

1(Yj ∈ Bn,k) = fk(X,Y).
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Then

|Zi − Zi−1| = |E[fk(X,Y)|X1, . . . , Xi]− E[fk(X,Y)|X1, . . . , Xi−1]|
= |E[fk(X,Y)|X1, . . . , Xi]

− E[fk(X1, . . . , X̃i, . . . , Xn,Y)|X1, . . . Xi]|
≤ E[|fk(X,Y)− fk(X1, . . . , X̃i, . . . , Xn,Y)||X1, . . . , Xi].

Next note that

fk(X,Y)− fk(X1, . . . , Xi−1, X̃i, Xi+1, . . . , Xn,Y) =
1

n

n∑
j=1

[
1(Yj ∈ Bn,k)− 1(Yj ∈ B̃n,k)

]
and

|1(Yj ∈ Bn,k)− 1(Yj ∈ B̃n,k)| ≤ 1(Yj = Xi) + 1(Yj = X̃i).

Thus

|Zi − Zi−1| ≤
1

n

n∑
j=1

E[1(Xi = Yj) + 1(X̃i = Yj)|X1, . . . , Xi].

But
E[1(Xi = Yj)|X1, . . . , Xi] ≤

ĉ

n

and likewise
E[1(X̃i = Yj)|X1, . . . , Xi] ≤

ĉ

n
.

Thus
|Zi − Zi−1| ≤

2ĉ

n
a.s.

for i = 1, . . . , n. Similarly, fix n + 1 ≤ i ≤ 2n, and let Ỹi−n be identically distributed with Yi−n and
independent of (X,Y). Then

|Zi − Zi−1| = |E[fk(X,Y)|X, Y1, . . . , Yi−n]

− E[fk(X, Y1, . . . , Ỹi−n, . . . , Yn)|X, Y1, . . . , Yi−n]|
≤ E[|fk(X,Y)− fk(X, Y1, . . . , Ỹi−n, . . . , Yn)||X, Y1, . . . , Yi−n].

But
|fk(X,Y)− fk(X, Y1, . . . , Ỹi−n, . . . , Yn)| ≤ 1

n
a.s.

Thus
|Zi − Zi−1| ≤

1

n
a.s.

for i = n+ 1, . . . , 2n. It follows that

|Zi − Zi−1| ≤
max(1, 2ĉ)

n
a.s.

for all i = 1, . . . , 2n. Thus by the Azuma-Hoeffding inequality [36, Corollary 2.4.7],

Pr (|ψn,k − E [ψn,k]| > τ) ≤ 2 exp

(
− nτ 2

4 max(1, 2ĉ)2

)
,

which implies

Pr
(
|ψn,k − E [ψn,k]| · n1/2−δ > τ

)
≤ 2 exp

(
− n2δτ 2

4 max(1, ĉ2)

)
.
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By the union bound, this gives

Pr

(
sup

0≤k≤n
|ψn,k − E [ψn,k]| · n1/2−δ > τ

)
≤ 2(n+ 1) exp

(
− n2δτ 2

4 max(1, ĉ2)

)
.

The result then follows by the Borel-Cantelli lemma.
Proposition 10 is an immediate consequence of the previous two lemmas.

Lemma 20.
lim
n→∞

E[ξn] =

∫
C2

log x dQ(x, y).

Proof: From (25)

E[ψn,k] =
∑
a∈An

(
n

k

)
(pn(a))k(1− pn(a))n−kqn(a).

Thus

E[ξn] =
∑
a∈An

N∑
k=1

(
n

k − 1

)
(pn(a))k−1(1− pn(a))n−k+1 log(cn)qn(a)

+
∑
a∈An

N∑
k=1

N∑
m=1

m∑
`=0

(−1)1−`

m
(cn)−`

(
m

`

)
(k + `− 1)!

(k − 1)!

·
(

n

k + `− 1

)
(pn(a))k+`−1(1− pn(a))n−k−`+1qn(a)

=
∑
a∈An

Γ̃(n)
n (npn(a))qn(a)

=

∫
C2

Γ̃(n)
n (x) dQn(x, y).

Now since Γ̃
(n)
n converges uniformly to log x on C2 by Lemma 13(b) and Qn → Q weakly, this converges

to ∫
C2

log x dQ(x, y).

Lemma 21.
lim
n→∞

|ξn − E[ξn]| = 0 a.s.

Proof: We have

|ξn − E[ξn]| ≤
N∑
k=1

|ψn,k−1 − E [ψn,k−1]| log(cn)

+
N∑
k=1

N∑
m=1

m∑
`=0

(cn)−`

m

(
m

`

)
(k + `− 1)!

(k − 1)!
|ψn,k+`−1 − E [ψn,k+`−1]|

≤ N log(cn)

n1/3
sup

0≤k≤N−1
|ψn,k − E [ψn,k]| · n1/3

+ sup
0≤k≤2N−1

[|ψn,k − E [ψn,k]|] · n1/3·

1

n1/3

N∑
k=1

N∑
m=1

m∑
`=0

(cn)−`

m

(
m

`

)
(k + `− 1)!

(k − 1)!
.
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Now
lim
n→∞

sup
0≤k≤n

|ψn,k − E [ψn,k]| · n1/3 = 0 a.s.

by Lemma 19. Also,
N log(cn)

n1/3
→ 0

and for all sufficiently large n,

1

n1/3

N∑
k=1

N∑
m=1

m∑
`=0

(cn)−`

m

(
m

`

)
(k + `− 1)!

(k − 1)!

(a)

≤ 1

n1/3

N∑
k=1

N∑
m=1

m∑
`=0

(
m

`

)
(k +m− 1)!

(k − 1)!

=
1

n1/3

N∑
k=1

N∑
m=1

2m
(k +m− 1)!

(k − 1)!

≤ N22N(2N)!

n1/3
,

where in (a) we have used the fact that cn ≥ 1 eventually. The result then follows from Lemma 24 in
Appendix F.

Proof of Theorem 7: The previous two lemmas together imply (18). Then (18) and Proposition 8
together imply (19).

Proof of Theorem 8: By Proposition 9,

D(qn||pn)→
∫
C2

log y dQ(x, y)−
∫
C2

log x dQ(x, y).

But
ξn →

∫
C2

log x dQ(x, y)

by Theorem 7 and

ζn →
∫
C2

log y dQ(x, y).

by Theorem 3.

APPENDIX F
ANCILLARY RESULTS

Lemma 22. For any i ≥ 0, j ≥ 0, and n ≥ 0 such that i+ j ≤ n,∣∣∣∣ (n− i)!
(n− i− j)!nj

− 1

∣∣∣∣ ≤ j(i+ j)

n
.

Proof: Observe that

0 ≤ 1− (n− i)!
(n− i− j)!nj

≤ 1−
(
n− i− j

n

)j
.

Now if
f(x) = (1− x)j − (1− jx),

then f(0) = 0 and f ′(x) ≥ 0 for all 0 ≤ x ≤ 1. Thus f(x) ≥ 0 if 0 ≤ x ≤ 1, which implies

1−
(

1− i+ j

n

)j
≤ j(i+ j)

n
.
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Lemma 23. For any n, k ≤ n, and y ≥ 0,

sup
0≤x≤y

∣∣∣∣exp(−x)−
(

1− x

n

)n−k∣∣∣∣ ≤ yn−k+1ey

(n− k + 1)!
+

(k + 1)y + y2

n
· ey.

Proof: By the binomial theorem,(
1− x

n

)n−k
=

n−k∑
i=0

(
n− k
i

)(
−x
n

)i
.

Thus ∣∣∣∣exp(−x)−
(

1− x

n

)n−k∣∣∣∣ ≤ n−k∑
i=0

∣∣∣∣(n− ki
)(
−x
n

)i
− (−x)i

i!

∣∣∣∣+

∣∣∣∣∣
∞∑

i=n−k+1

(−x)i

i!

∣∣∣∣∣ .
By Taylor’s theorem, if 0 ≤ x ≤ y, ∣∣∣∣∣

∞∑
i=n−k+1

(−x)i

i!

∣∣∣∣∣ ≤ yn−k+1ey

(n− k + 1)!
.

And by Lemma 22,
n−k∑
i=0

∣∣∣∣(n− ki
)(
−x
n

)i
− (−x)i

i!

∣∣∣∣ =
n−k∑
i=0

xi

i!

∣∣∣∣ (n− k)!

(n− k − i)!ni
− 1

∣∣∣∣
≤

∞∑
i=0

yi

i!

i(k + i)

n

=
(k + 1)y + y2

n
· ey.

Corollary 1. For any compact set C, any δ ∈ (0, 1), all sufficiently large n, and all k ≤ N and ` ≤ N ,

sup
x∈C

∣∣∣∣exp(−x)− n!

(n− k − `)!nk+`

(
1− x

n

)n−k−`∣∣∣∣ ≤ 1

nδ
.

Proof: Suppose that C is bounded from above by ˆ̂c. Then applying Lemmas (22) and (23) gives∣∣∣∣exp(−x)− n!

(n− k − `)!nk+`

(
1− x

n

)n−k−`∣∣∣∣ ≤ exp(−x)

∣∣∣∣1− n!

(n− k − `)!nk+`

∣∣∣∣
+

n!

(n− k − `)!nk+`

∣∣∣∣exp(−x)−
(

1− x

n

)n−k−`∣∣∣∣
≤ (k + `)2

n
+

ˆ̂cn−k−`+1e
ˆ̂c

(n− k − `+ 1)!
+

(k + `+ 1)ˆ̂c+ ˆ̂c2

n
· eˆ̂c

≤ 1

nδ

for all sufficiently large n.

Lemma 24. For any y > 0 and any δ > 0,

lim
n→∞

N2yN(2N)!

nδ
= 0.
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Proof: It suffices to show the result when y ≥ 1. We have

N2yN(2N)!

nδ
≤ ((log n)ε1)2y(logn)ε1 (2(log n)ε1)2(logn)ε1

nδ
.

Writing x for log n, it suffices to show that

(xε1)2yx
ε1 (2xε1)2xε1

exp(δx)
→ 0

as x→∞, or, equivalently, that

f(x) = 2ε1 log(x) + xε1 log y + 2xε1 log(2xε1)− δx→ −∞.

But this holds since f(x)/x→ −δ as x→∞.

Corollary 2. For any y > 0,
N(1 + y)N√

n
→ 0.
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