Anonymity in the Bitcoin Peer-to-Peer Network

Shaileshh Bojja Venkatakrishnan, Giulia Fanti, Andrew Miller, Pramod Viswanath

Why do People Use Cryptocurrencies?

Currency Stability

Investment

Technical Properties/ Ideology

"Untraceable Bitcoin"

Teenagers using untraceable currency Bitcoin to buy dangerous drugs online

Fears have been raised as children as young as 14 are getting parcels of legal highs delivered to their home

This is false.

How can users be deanonymized?

Entire transaction histories can be compromised.

What about the peer-to-peer network?

Public Key ← IP Address

Our Work

Analysis

Pr(detection)

Redesign

Dandelion

Model

Assumptions and Notation

Attacks on the Network Layer

What can go wrong?

What the eavesdropper can do about it

Summary of adversarial model

Analysis

How bad is the problem?

Flooding Protocols

Trickle (pre-2015)

Diffusion (post-2015)

Does diffusion provide stronger anonymity than trickle spreading?

d-regular trees

Fraction of spies p = 1

Arbitrary number of connections θ

Anonymity Metric $P(\text{detection}|\dot{\tau}, G)$

$$oldsymbol{ au} = egin{bmatrix} au_1 \\ au_2 \\ au_1 \\ au_n \end{bmatrix}$$

Estimators

$P(\text{detection}|\boldsymbol{\tau},G)$

Results: d-Regular Trees

	Trickle	Diffusion
First-Timestamp	$O\left(\frac{\log d}{d}\right)$	$O\left(\frac{\log d}{d}\right)$
Maximum-Likelihood	$\Omega(1)$	$\Omega(1)$

Intuition: Symmetry outweighs local randomness!

Proof sketch (diffusion, max likelihood)

Results: Trees

Results: Bitcoin Graph

Diffusion does not have (significantly) better anonymity properties than trickle.

Redesign

Can we design a better network?

Botnet adversarial model

Metric for Anonymity

Recall

Precision

$$\frac{1}{n} \sum_{v} \frac{1\{M(v's tx) = v\}}{\text{# tx mapped to v}}$$

E[Recall] =
Probability of Detection

Mapping M

Goal:

Design a distributed flooding protocol that minimizes the maximum precision and recall achievable by a computationally-unbounded adversary.

Fundamental Limits

What are we looking for?

Asymmetry

Mixing

What can we control?

Spreading Topology Dynamicity Protocol Approximately Dynamic Diffusion regular Static

Given a graph, how do we spread content?

What is the underlying graph topology?

How often does the graph change?

Spreading Protocol: Dandelion 2) Spreading Phase 1) Anonymity Phase

Why Dandelion spreading?

Theorem: Dandelion spreading has an

optimally low maximum recall of $p + O\left(\frac{1}{n}\right)$.

lower bound = p

fraction of spies

number of nodes

Graph Topology: Line

Dynamicity: High

Change the anonymity graph frequently.

Dandelion Network Policy

Spreading Protocol

Given a graph, how do we spread content?

Topology

What is the anonymity graph topology?

Dynamicity

How often does the graph change?

lower bound = p^2

Theorem: DANDELION has a nearly-optimal

maximum precision of
$$\frac{2p^2}{1-p}\log\left(\frac{2}{p}\right) + O\left(\frac{1}{n}\right)$$
.*

fraction number of of spies nodes

Performance: Achievable Region

Why does DANDELION work?

Strong mixing properties.

Precision: O(p)

Complete graph

Precision: $\frac{p}{1-p}(1-e^{p-1})$

How practical is this?

Dandelion spreading

Anonymity graph construction

Dealing with stronger adversaries

Learn the graph

Misbehave during graph construction

Misbehave during propagation

4-regular graphs

Only send messages on outgoing edges

Multiple nodes diffuse

Anonymity graph construction

Latency Overhead: Estimate

Information Propagation in the Bitcoin Network, Decker and Wattenhofer, 2013

Deployment considerations

Why not alternative solutions?

Connect through Tor

I2P Integration (e.g. Monero)

Take-Home Messages

- 1) Bitcoin's P2P network has poor anonymity.
- 2) Moving from trickle to diffusion did not help.
- 3) Dandelion may be a lightweight solution for certain classes of adversaries.

https://github.com/gfanti/bitcoin

DANDELION vs. Tor, Crowds, etc.

- 1) Messages propagate over the **same** cycle graph
- 2) Anonymity graph changes dynamically.
- 3) No encryption required.

Anonymity graph construction

Base Case 0.5 0.3 0.2 0.1 0.0 0.6 k=1 **Rounds** 0.2 0.1 0.0

Degree

Dealing with stronger adversaries

Learn the graph

Misbehave during graph construction

Misbehave during propagation

4-regular graphs

Get rid of degree-checking

Multiple nodes diffuse

Learning the anonymity graph

Manipulating the anonymity graph

Dandelion++ Network Policy

Spreading Protocol

Given a graph, how do we spread content?

Topology

What is the anonymity graph topology?

Dynamicity

How often does the graph change?