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Optimal Sequences for CDMA Under Colored Noise:
A Schur-Saddle Function Property
Pramod Viswanath, Member, IEEE,and Venkat Anantharam, Fellow, IEEE

Abstract—We consider direct sequence code division multiple
access (DS-CDMA), modeling interference from users communi-
cating with neighboring base stations by additive colored noise.
We consider two types of receiver structures: first we consider
the information-theoretically optimal receiver and use the sum
capacity of the channel as our performance measure. Second,
we consider the linear minimum mean square error (LMMSE)
receiver and use the signal-to-interference ratio (SIR) of the
estimate of the symbol transmitted as our performance measure.
Our main result is a constructivecharacterization of the possible
performance in both these scenarios. A central contribution of
this characterization is the derivation of a qualitative feature of
the optimal performance measure in both the scenarios studied.
We show that the sum capacity is asaddle function: it is convex
in the additive noise covariances andconcavein the user received
powers. In the linear receiver case, we show that the minimum
average power required to meet a set of target performance
requirements of the users is asaddlefunction: it is convexin the
additive noise covariances andconcavein the set of performance
requirements.

Index Terms—Code division multiple access (CDMA), colored
noise, optimal sequences, saddle functions, sum capacity.

I. INTRODUCTION

T HIS paper focuses on the uplink of a single base station
wireless system with direct sequence code division

multiple access (DS-CDMA) modeling interference from
users talking to neighboring base stations by colored additive
Gaussian noise. This assumption means that the interference
from outside the cell cannot be controlled but can be measured
and estimated statistically. This is different from the model
in [10], [11] where the authors consider joint processing at
neighboring base stations. We restrict ourselves to the case
when the users within a base station are symbol synchronous.
This allows us to represent the signal transmitted by the users in
a vector space (by modulating theirsignature sequences) with
dimension equal to the spreading gain. We refer to the baseband
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DS-CDMA channel model as avector multiple access channel
(VMAC). The VMAC also models space division multiple ac-
cess (SDMA), multiple access channels with multiple antennas
at the receiver.

The choice of the receiver structure at the base station has an
important effect on the performance of the VMAC. In this paper,
we study two types of receiver structures: the information-the-
oretic optimal receiver and the linear receivers that are sepa-
rately optimal for each user. An information-theoretic optimal
receiver is a maximum-likelihood receiver that jointly estimates
the users symbols and thus needs to process the signals of the
users in a nonlinear fashion. In practice, linear receivers are pop-
ular and in this paper we consider the most prominent one: the
optimal linear receiver. This is the linear minimum mean square
(LMMSE) receiver which for each user achieves the minimum
mean squared error among all linear receivers for that user. The
effect of the signature sequences on the performance of these
linear receivers and the role colored additive noise plays is the
problem addressed in this paper. This is done by first defining
appropriate performance measures, then characterizing the ef-
fect precisely, and finally conclude with some qualitative prop-
erties of the physical phenomena involved.

We assess the performance of the information-theoretically
optimal receiver by itssum capacity. This is defined as the max-
imum sum of rates of users per unit degree of freedom at which
the users can transmit reliably. It measures the overall spectral
efficiency of the communication channel. We assess the perfor-
mance of the LMMSE receiver for each user by the SIR for that
user. The performance of the receiver as a whole is described
in terms of its ability to simultaneously achieve given SIR re-
quirements for the individual users. Our aim in this paper is to
study the effect of colored additive noise on the performance of
DS-CDMA in these scenarios. In what follows, we summarize
our main findings and place them in the context of previously
known results.

First, consider the information-theoretic optimal receivers
at the base station and the corresponding sum capacity of
DS-CDMA. Our main results are enumerated as follows.

1) We characterize the maximum sum capacity for any av-
erage received power profile of the users, the maximum
being over all the choices of signature sequences of the
users. Our characterization is constructive in the sense
that we provide acombinatorialalgorithm that constructs
the corresponding optimal signature sequences.
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2) Our characterization allows us to derive some qualitative
properties of the maximum sum capacity.

a) Maximum sum capacity isconvexin the noise co-
variance matrices andconcavein the vector of re-
ceived user powers. In particular, we have the fol-
lowing observations:

i) for a given total noise power, maximum sum
capacity is minimized when the additive
noise is white;

ii) for a given total received power of the users,
sum capacity is maximized when the re-
ceived user powers are equal.

b) We strengthen the previous statement by working
with a partial order calledSchur majorizationon
vectors in (the definition of Schur majoriza-
tion can be found in Section II-B). This partial
order makes precise the notion that one vector has
components “more spread out” than those of an-
other. We show that the maximum sum capacity is
Schur-convexin the eigenvalues of the noise covari-
ance matrix andSchur-concavein the received user
powers.

3) We compare the sum capacity of DS-CDMA with the
total capacity of parallel Gaussian channels with corre-
lated noise. The well-known water-filling power alloca-
tion is optimal for parallel Gaussian channels. We show
that in our problem, the structure of the optimal signature
sequences and the resulting powers in the directions of the
noise covariance eigenvectors can be viewed as a gener-
alization of this water-filling allocation policy.

In previous work, the capacity region of the DS-CDMA
channel for a fixed choice of signature sequences and received
power profile of the users was characterized in [14]. The
problem of characterizing the maximum sum capacity of
DS-CDMA channels (maximum over all choices of signature
sequences) withwhite noise, was first attempted in [7], which
solved the equal user power constraint case. In [16], the general
case of unequal user powers was solved, again with additive
white noise, and a simple recursive algorithm was provided
to construct the corresponding optimal signature sequences.
In the SDMA model with white additive noise, Suardet
al.[12] characterized the capacity region and also obtained an
expression for the maximum sum capacity when user powers
are symmetric. The results in [16] are also applicable to the
asymmetric user power constraints case for the SDMA model
(with white additive noise). The contribution of the informa-
tion-theoretic portion of this work is to generalize all of the
above works to the situation withcoloredadditive noise.

We now turn to the linear receivers scenario. In this setting,
we are interested in theuser capacityregion of DS-CDMA. We
say that a set of SIR requirements of users isadmissibleif one
can allocate signature sequences to the users and control their re-
ceived power such that the achieved SIR of each user is at least
equal to its SIR requirement. In [17], we showed the admissi-
bility region with additive white noise and with no constraints
on the power allocated to the users to be as follows:users with

SIR requirements are admissible in the system with
processing gain if and only if

(1)

This allowed us to characterize the admissibility of users via a
notion ofeffective bandwidth. If we consider as the effec-
tive bandwidth of a user with SIR requirement, then users are
admissible if and only if the sum of their effective bandwidths is
less than the processing gain of the system. This result captures
the nature of the interference limitation in CDMA systems. This
is evidenced by the observation that there is no upper bound on
the allocated power, and thus (1) remains true when the addi-
tive noise is colored. Thus, in this paper we are interested in
characterizing admissibility of users subject to a constraint on
the average transmitted power of the individual users. Our main
result here is a solution to this problem for general noise covari-
ance structures. We first characterize the optimal allocation of
signature sequences and powers to the users such that the total
allocated power of the users is minimized. Our characterization
is constructive in that we designcombinatorialalgorithms to
construct the optimal allocations. Then, using this characteriza-
tion of the optimal allocations, we obtain an expression for the
user capacity region when there is a constraint on the average
transmitted power of the individual users. This characterization
also allows us to make some qualitative observations about the
user capacity region.

1) For any given SIR requirements of the users such that
the users are admissible, with the optimal allocation of
signature sequences and powers to the users, the LMMSE
receiver of any user is simply the matched filter tuned
to the background colored noise. Thus, the user capacity
region with an average power constraint is unchanged if
we restrict the receiver to be thea priori inferior matched
filter tuned to the background colored noise.

2) For a given total noise power, the user capacity region
increases when the eigenvalues of the noise covariance
matrix become “more spread out” (the precise ordering
is that of Schur majorization). In particular, the user ca-
pacity region is the smallest when the additive noise is
white.

3) For a given sum of effective bandwidths of the users (and
given that the sum is less than the processing gain), the
minimum total power required among all valid allocations
is Schur-concavein the effective bandwidths of the users.
In particular, the minimum total power is smallest when
the SIR requirements (and thus the effective bandwidths)
are all equal.

In [13], the authors consider the SIR achieved by the LMMSE
receiver when the signature sequences of the users are inde-
pendent and randomly chosen. They show that the SIRs of the
users in a large system (with large number of users and large
processing gain) converges in probability to a constant. The
main observation of [17] was that the user capacity region of
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DS-CDMA using random signature sequences is asymptotically
identical to that of the VMAC using optimal chosen signature
sequences and powers. This holds when there are no average
power constraints. Here, we extend the SIR analysis of [13] to
the additive colored noise case and calculate the admissibility
region with average power constraints of the users. We show
that unlike the case when the signature sequences are specially
chosen, there is no saddle property of the SIR achieved by a unit
power user. The SIR of a unit power user in a large system is
shown to be convex in the distribution of the colored noise and
convex in the distribution of the received powers of the users.
Analogous to Schur partial order in finite-dimensional vector
spaces, we use the partial order ofdilation on distributions to
strengthen the saddle property.

This paper is in two parts. In Section II, we deal with the in-
formation-theoretic optimal receivers and the sum capacity of
the VMAC. Section III deals with linear receivers and SIR per-
formance of the users. Finally, a few words about our notation
throughout this paper: we use lower case letters for scalars, bold
face lower case letters for vectors (usually withcomponents),
and upper case letters for matrices. We also denote the transpose
by the superscript and reserve the superscriptto denote the
solution of an appropriate optimization problem.

II. SUM CAPACITY OF DS-CDMA

In this section, we characterize the maximum sum capacity of
DS-CDMA, the maximum being over the signature sequences
of the users. In Section II-A, we give a brief overview of the
DS-CDMA baseband model as a VMAC and Section II-B
provides an expression for the sum capacity of this channel
along with a “sphere-packing” interpretation for the sum
capacity expression. This interpretation sets the stage for our
techniques which are used to find the signature sequences
that achieve the maximum sum capacity. The characterization
of these optimal signature sequences along with a combina-
torial algorithm to construct them is given in Section II-C.
Section II-D studies some properties of the optimal signature
sequences and some features of the combinatorial algorithm
that generates them. Section II-E brings forth the central
contribution of the maximum sum capacity characterization:
qualitative properties of maximum sum capacity as a function
of the received user powers and colored noise variances.
Section II-F summarizes our construction of the optimal sig-
nature sequences. In Section II-G, we compare the maximum
sum capacity of the DS-CDMA channel with that of parallel
Gaussian channels with an appropriate total transmit power
constraint. This comparison allows us to interpret the construc-
tion of the optimal signature sequences as a generalization of
the well-known water-pouring power allocation over parallel
Gaussian channels. We relegate the proofs of the main results
of this section to Appendix A.

A. DS-CDMA Model and the VMAC

There are users in the channel and denotes the pro-
cessing gain (number of chips per symbol).and will be
fixed throughout this paper. In DS-CDMA, each user transmits

its symbols by spreading them using an assigned signature se-
quence. The baseband, sampled (discrete-time), received signal
in the th symbol interval at the receiver can be written as

(2)

where are the signature sequences of the users,
thought of as elements of . We assume that the energy
of each signature sequence is unity, i.e., . Here,

represent the symbols transmitted by the
users at the th use of the baseband sampled channel. There is
a power constraint on each user given by
for user . Here, is a sequence of independent and
identically distributed (i.i.d.) Gaussian vectors with zero mean
and covariance matrix . We assume that is positive definite
and denote its eigenvalues by . We refer
to this channel as a vector multiple access channel (VMAC).

B. Sum Capacity Expression

Fix the signal directions . The sum capacity of the
VMAC in (2) is

where the maximum of the mutual information between the
inputs and the output vector is over independent random
variables with variances upper-bounded by

, respectively. Proceeding as in [7], we see that this
maximum is achieved when the distributions of all the random
variables are Gaussian and thus we arrive at the following
generalization of the result of [14] for colored additive noise.
The sum capacity, in nats per unit degree of freedom, of the
multiple access channel in (2) is given by

(3)

where we have written

and

Our main focus in this section is to characterize the maximum
sum capacity

(4)

where is the set of all real matrices with each column
having norm equal to . Observe that is a continuous
function defined on a compact setand thus the use of in
(4) above is justified. Since , we have for every
orthonormal matrix , it follows from the structure of in
(3) that depends only on the eigenvalues of. A
matrix of signature sequences that achieves the maximum in (4)
is called a matrix of “optimal signature sequences.” This notion
of optimality is specific to the user received power constraints
represented by the matrix.

Prior to attempting to characterize and the optimal
signature sequences, we provide a “sphere-packing” interpre-
tation of the expression for sum capacity in (3). Fix signature
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sequences . Then, our baseband channel model at theth
instant can be rewritten from (2) as

where is a sequence of vectors with components i.i.d.
Gaussian zero mean unit variance vectors. Here,

are the symbols transmitted by users at time
instant and are subject to a unit average power constraint. In
general, is chosen from an appropriately designed code-
book. But the random coding argument uses a codebook that has
entries generated from i.i.d. Gaussian zero mean unit variance
random variables. We will choose this random codebook for our

. Fixing a blocklength (number of symbols jointly de-
coded), we can write the total received signal as

where denotes an identity matrix and denotes the
tensor (or Kronecker) product between matrices. We have used
the notation

...
...

and ...

Define the ellipsoids

and consider the following claims. For every

as (5)

as (6)

The claim of (5) is that the received signal overblocks is con-
tained within the ellipsoid and (6) claims that the colored
noise is contained in the ellipsoid . These claims are ele-
mentary to verify, and an argument analogous to the classical
sphere-packing interpretation for the capacity of the Gaussian
channel (in [2, Sec. 10.1]) shows that the sum capacity in nats
per channel use is upper-bounded by

volume

volume
(7)

Continuing from (7), the volumes of the ellipsoids are given
by

volume

and

volume

where is a scaling constant independent of and . Sub-
stituting these expressions into (7) we arrive at the expression in

(3) for the sum capacity with signature sequences. Thus, max-
imum sum capacity is achieved by choosingso as to maximize
the volume of the ellipsoid . Now, the lengths of the axes
of the ellipsoid are given by the eigenvalues of
and thus, for any signature sequences, the sum of the lengths
of the axes is a constant equal to

where we used the fact that the energy of each signature se-
quence is unity. Given this constraint, the volume is maximized
when the ellipsoid is a sphere, that is, when all the eigen-
values of are equal. However, the condition that each
of the signature sequences has to have unit energy imposes extra
conditions that might rule out the possibility of making all the
eigenvalues of equal. We make this precise by intro-
ducing the following partial order ofmajorizationon the vector
of eigenvalues of . Majorization makes precise the
vague notion that the components of a vectorare “less spread
out” or “more nearly equal” than are the components of a vector

by the statement is majorized by .

Definition 2.1: For , say that is majorized by
(or majorizes ) if

In the above we used the following definition.

Definition 2.2: For any , let

denote the components ofin decreasing order, called theorder
statisticsof .

A comprehensive reference on majorization and its applica-
tions is [6]. A simple (trivial, but important) example of ma-
jorization between two vectors is the following.

Example 2.1:For every such that

majorizes

Continuing this digression, we present some definitions and
facts that form a key part of the discussion ahead. It is well
known that the sum of the diagonal elements of a matrix is equal
to the sum of its eigenvalues. When the matrix is symmetric, the
relationship between the diagonal elements and the eigenvalues
is precisely characterized by majorization.

Lemma 2.1 ([6, Theorems 9.B.1 and 9.B.2]):Let be a
symmetric matrix with diagonal elements and
eigenvalues . We have

majorizes
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Further, if and are num-
bers such that majorizes , then there exists a real symmetric
matrix with diagonal elements and eigenvalues

.

We say that a function is Schur-convexif
whenever majorizes . We also say that is

Schur-concaveif is Schur-convex. We observe that (as in
[16]) is a Schur-concave function of the
vector of eigenvalues of (which we will denote by

). This allows us to conclude that if we can show that there
is an such that is majorized by for every

(for some set such that for every there
exists with the property that ),
then we have identified to be an optimal signature sequence
matrix. We call this vector a “Schur-minimal” vector of
eigenvalues and its existence is the central focus of the next
section where we also develop a combinatorial algorithm that
constructs the optimal . This explains our introduction of the
majorization partial order into the discussion.

C. Maximum Sum Capacity Characterization

Our main result in this subsection is the solution of the opti-
mization problem in (4) and thus the characterization of .
Our solution completely characterizes the structure of theop-
timal signal directions (the that achieve the maximum in (4))
and we also provide a combinatorial algorithm that explicitly
constructs the optimal signature sequences. To keep the flow of
our argument smooth, we relegate the proofs of all the claims in
this subsection to Appendix A.

Our first observation is that in the context of the optimization
problem (4), it suffices to consider only those with the
property that and commute.

Lemma 2.2: , such that
and commutes with .

Define the set as the subset of containing with the
property that commutes with . Then, we can restrict
the optimization in (8) over . Writing the vector of eigen-
values of by , Lemma 2.2 (along with the classical
result that two matrices commute if and only if they have the
same eigenvectors) allows us to write (4) in the simplified form

(8)

Observe that the rank of is upper-bounded by
and hence only of the eigenvalues

are positive. Thus, if , we see from
(8) that the optimal sequences will always have the property

that the subspace they span (of dimension at most) should
not contain the eigenvectors of corresponding to the largest

eigenvalues. Hence, without loss of generality, we
assume that . Let us denote the vector of eigenvalues
of by .

The following result from the proof of [16, Theorem 3.1]
characterizes the map .

Lemma 2.3:

majorizes (9)

The proof of this result also provides an algorithm which,
given , constructs such that . Now, recalling
that the noise variances are ordered as ,
we make an elementary observation that based on this ordering.

Lemma 2.4:For any vector in the posi-
tive orthant of

majorizes

We summarize Lemmas 2.3 and 2.4 as the following formal
result.

Lemma 2.5:Define the polyhedron in the positive orthant
of as shown by the expression at the bottom of the page.

1) For every there exists such that .

2) For every , there exists such that
majorizes .

Consider the following combinatorial algorithm (denoted by
) that has its output a vector . Our main result is that

is a Schur-minimal element of thereby completing our
identification of the optimal signature sequences.

Theorem 2.6:Output of the combinatorial algorithm
is a Schur-minimal element of, i.e., majorizes for every

.

Algorithm :
Input and .

Output .
Update
1. Initialization: and , .
2. Termination: If stop and output the vector

. Else, go to Step 3.
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3. Let

(10)

a) If then set and . Go to
Step 2.

b) If

then set , and .
Go to Step 2.

c) If for some
then set , and

. Go to Step 2.

D. Properties of Algorithm

1) The optimization problem in (8) can be rewritten, in view
of Lemma 2.5, as follows:

The function

is concave and the optimization is overa convex set that
has a Schur-minimal element (Theorem 2.6). Thus, the
solution to the optimization problem (8) is .

2) The algorithm stops after at most steps.
3) The updates of the components of by are in non-

increasing order. Hence, is a greedyalgorithm in the
sense that the algorithm first sets the largest component
of to the smallest value it can attain and then reduces
the problem to one lesser dimension. This claim is proved
in Appendix A.5 where it is used in the proof of Theorem
2.6.

4) The special case of was addressed in [16] and
Algorithm reduces to the following simple form [16,
Sec. 3]. Define the set to be

It follows that if then every userwith power con-
straint also belongs to . The optimal solution

is simply

and

The physical intuition is that for every , the user
is oversized, i.e., its power is largerelativeto the power

constraints of the other users and the degrees of freedom.
Every oversized user is given an independent channel. (In
the DS-CDMA context, this is done by allocating over-
sized users signature sequences that are orthogonal to all
the other signature sequences.)

5) In the special case when , again, Algorithm
has a simple structure. Observe that in this case, Case 3c)
of the algorithm will never be reached and this makes the
algorithm have the following simple form. Define the set

to be

Observe that if then every such that
also belongs to . Thus, is of the form
for some (by convention
indicates is empty). Algorithm simply outputs

and

(11)

The physical intuition is that for every , the
“channel” (the direction specified by the eigenvector of

corresponding to the eigenvalue) is oversizedand
has noise variance largerelativeto the other noise vari-
ances and the number of users and the processing gain.
Hence, the transmit signals do not have any energy in the
direction of these oversized “channels.”

E. Properties of

Consider a VMAC with additive white noise and variance.
Suppose we make one of the noise variances, say, much
larger than the rest while keeping the average of the variances
equal to . The users can avoid using signals in the direction of
the eigenvector of corresponding to the large eigenvalue
and benefit from a reduced average noise variance (since the
overall average noise variance is still). Thus, we expect that
the maximal sum capacity of the latter channel will be more than
the maximal sum capacity of the additive white noise channel.
We make this intuitive idea precise in the following proposition
using the notion of majorization to characterize when a vector
has components more spread out than others.
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Proposition 2.1: Fix , the diagonal matrix of user powers.
Then is convex in . Also,

for every and such that majorizes
.

Thus, Proposition 2.1 says that for fixed user power con-
straints, increases if the noise variance becomes “more
colored” while keeping the total noise variance constant.
On the other hand, keeping the additive noise variances fixed,
if the user power constraints are asymmetric, keeping the total
user power fixed, it is intuitive that there is lesser flexibility in
choosing . We make this precise in the following.

Proposition 2.2: For fixed , is concave in
and, furthermore, for every such that
majorizes we have

We conclude that is a concave (and Schur-con-
cave) function in and convex (and Schur-convex) in. Thus,

is a saddle functionin and (in fact, is also a
“Schur-saddle function” in the sense of the results of Proposi-
tions 2.1 and 2.2). This saddle function property is reminiscent
of the famous Shannon saddle function property of mutual in-
formation

where is a -dimensional random vector with covariance
matrix and is a -dimensional Gaussian random vector
with the same covariance matrix. Also, is an -dimen-
sional noise vector with covariance matrix and is an

-dimensional Gaussian noise vector with the same covariance
matrix . Our result says that , the maximum value of

(maximum over and independent
distributions on subject to a variance constraint), is a saddle
function in and . The formal proofs of Propositions 2.1 and
2.2 are in Appendix A.6.

F. Construction of Optimal Signature Sequences

The general scheme to construct the optimal signature se-
quences is contained in the proofs of ourmain results:Lemma2.5
and Theorem 2.6. In what follows, we summarize this construc-
tion. Let be an orthonormal matrix that
has the property that is a diagonal matrix with diagonal
entries . Furthermore, we assume that we first
use algorithm to generate and construct the vector

. We then use the recursive algorithm in
[16, Sec. 4] to construct such that the matrix is the
diagonal matrix . Then the optimal signal di-
rections are given by . However, the structure of yields
more insight into the nature of the optimal signal directions
and this allows the following more succinct characterization
and construction of the optimal signal directions.

1) We begin with the first iteration of . If Step 3a) is
reached, then we set . This means that the

optimal signal directions are orthogonal to. Thus, this
allows us to recursively reduce the problem to one with
only degrees of freedom.

2) If Step 3b) is reached, then we set

We use the recursive algorithm of [16, Sec. 4] to construct
such that . Then,

the optimal signal directions are . This step
terminates the algorithm and completes the construction.

3) If Step 3c) is reached for , then we have

For expository ease, we assume that the users are ordered
according to their power constraints, i.e.,

. By the hypothesis that Step 3c) is reached for
, and by construction, majorizes the vector

. Thus, we can use the procedure in [16, Sec.
4] to construct an matrix such that

We construct the optimal signal directions for the first
users (these have the largest power constraints) as

The following is a key observation: recall that the output
of is in and hence must

majorize . By construction of ,
above, we must have

majorizes

(12)

Recalling the construction of from from the
proof of Lemma 2.3, we see from (12) that we can con-
struct the matrix such that

We then let the optimal signal directions for the remaining
users be

We emphasize the point that each of the optimal signal
directions of the first users is orthogonal to each one
of the optimal signal directions of the remaining
users. Furthermore, the firstuser signal directions span
the -dimensional subspace while the
signal directions of the remaining users span the
orthogonal complement of this subspace. Thus, if Step
3c) is reached in the first iteration of, this observation
allows us to identify the user signal directions for the first

users and recursively reduce the problem to one of
fewer users andfewer degrees of freedom.
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4) We summarize below some physical insights gained from
the observations made in Section II-D and from the proof
of Theorem 2.6.

a) Consider the first iteration of . Step 3a) is reached
if the largest noise variance is “much larger”
than the other noise variances (in a sense made pre-
cise in the algorithm). Our optimal signal directions
are chosen in this case to be orthogonal toand
thus they avoid “directions” of high noise variance.
We emphasize that this step is never reached if all
the noise variances are equal.

b) Suppose Step 3c) is reached for some .
This means that the average of the largestuser
power constraints is “much larger” than other av-
erages of user powers in a sense that depends on
the noise variances as well (made precise in the al-
gorithm) and the optimal signal directions are as-
signed to theseusers so that they span a subspace
(of dimension ) given by . Thus,
these signal directions lie in the subspace with least
noise and, furthermore, the other user signal direc-
tions are orthogonal to this subspace. We empha-
size that this step is never reached if all the user
powers are equal.

G. Parallel Gaussian Channels

Consider the following system of parallel Gaussian channels
(our notation is from [2, Sec. 10.4]):

where the Gaussian noise is independent from channel
to channel. The total power constraint on the input is

. Denoting the sum capacity (the maximum
sum of rates per unit channel at which all information can be
transmitted in each of the channels reliably) of this channel by

we have

(13)

It is very well known that the optimal allocation of powers fol-
lows the water-filling policy for some

such that . A further explicit expression
for the water-filling policy is as follows. Define the set to
be

Observe that if then every such that also
belongs to . Since we have ordered the variances

, the set is of the form for some

(if , then by convention we take
to be empty). The water-filling policy is simply

and

(14)

Then (13) becomes

On the other hand, for every , the sum capacity of the
multiaccess vector channel (2) is

for some orthogonal

where we have denoted the diagonal entries of
by and used the Hadamard inequality [4, Sec.
4.3, Problem 11] in the derivation of the last step. Since

, comparing with (13) we arrive at the
following simple upper bound to :

Though this upper bound is to be expected, our characterization
of the sum capacity shows that if the user powers
are not too “spread apart” (in a sense that depends on the size
of the problem and ) the upper bound can actually be attained.
In fact, we recognize that the simple form ofin (11) in Sec-
tion II-D coincides with the water-filling policy in (14). Thus,
the case of symmetric user powers is a sufficient con-
dition for the sum capacity to be equal to the corresponding
parallel Gaussian channels sum capacity. Our claim is that
a necessary and sufficient for equality of and is Step
3c) of Algorithm being never reached. This follows the fact
that when Step 3c) is never reached,simply reduces to the
water-filling allocation of (14).

III. L INEAR RECEIVERS ANDUSERCAPACITY

Linear receivers are popular and practical choices in wire-
less communication systems. For instance, IS-95 uses RAKE
receivers which are matched filters tuned to the multiple paths
of the received signal [18], and the LMMSE receiver is con-
sidered a promising candidate in the 3G implementation. It is
important to characterize the performance of these receivers in
anetwork-centricway. In this section, we consider a set of users
trying to communicate reliably with a single base station. The
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users have SIR requirements to be met for reliable communica-
tion and we are focusing on DS-CDMA as the multiple-access
scheme. The problem of determining when the requirements of
the users can be satisfied (i.e., they are admissible) and char-
acterizing theoptimal allocations of signature sequences and
powers (optimal in the sense that the average powers of the users
are minimized among all allocations that let the users meet their
SIR requirements) is the central focus of [17]. In this section, we
are interested in the effect of additive colored noise on the ad-
missibility region with average power constraints on the users.
Our main result is a precise characterization that quantifies the
effect of additive colored noise and also allows us to derive im-
portant qualitative properties of the solution.

We have organized the material in this section as follows. In
Section III-A, we briefly describe the model and precisely state
the problem of interest. Section III-B contains our main result:
a complete characterization of the optimal allocation of signa-
ture sequences and powers that minimize the average transmit
powers of the users. Section III-C uses the characterization of
optimal allocations to derive some important qualitative proper-
ties of the solution. In Section III-D, we use the characterization
of the optimal allocations to determine the precise region of ad-
missible SIRs given an average power constraint. Section III-E
studies the effect of additive colored noise when the signature
sequences are random, extends the results of [13], and allows us
to compare the penalty paid on the average power transmitted by
choosing the signature sequences randomly. Section III-F con-
cludes the exposition with some discussion.

A. Model and Problem Statement

We begin by recalling the baseband model of DS-CDMA as
a VMAC in (2)

(15)

Here, is the signature sequence of userand is an element of
with unit energy (i.e., ). The symbol transmitted by

user in the th symbol interval is denoted by and the
receivedpower of user is denoted by . Suppose the symbol
of user is decoded using a linear receiver, characterized by
(a vector in ), then the SIR of user SIR is

SIR (16)

We say that users areadmissiblein the system if there is an
allocation of positive powers , signature sequences

(vectors with unit norm), and linear re-
ceiver structures such that

SIR

Here is some fixed SIR requirement of userthat has
to be met for each user for satisfactory performance. Such a
choice of powers and signature sequences is called avalid allo-
cation. Our focus here is on the LMMSE receiver. This is the op-
timal linear receiver, optimal in the sense of maximizing the SIR
among all linear receivers. A computation analogous to that in

[17, Sec. 2.2] shows that the (unnormalized) LMMSE receiver
for user is given by

(17)

where we have written for and for
as in Section II-B. The corresponding SIR

achieved by user is

SIR (18)

Suppose the users have SIR requirements .
The user capacity region is defined to be the set ofadmissible
SIR requirements, i.e., those for which there exist an allocation
of signature sequences and powers such that the SIR of the users
with LMMSE receivers are at least equal to the requirements. In
[17], we showed that the user capacity region is precisely given
by

where

Motivated by this admissibility result, we call the effective
bandwidth of user. This is because the user capacity region can
then be described as the region where the sum of the effective
bandwidths of the users does not exceed the processing gain.

This result assumes that there is no constraint on the user
power allocated and thus the scenario of colored additive noise
has no affect on this user capacity region. Thus, to sharpen
our understanding of the effect of colored noise and the cor-
responding optimal sequences, we impose a power constraint
on the users. Since it is clear that there cannot be a componen-
twise minimal power solution to achieve a set of target SIRs,
we choose, as in [17, Sects. 4 and 5], to impose a sum received
power constraint. One way to justify this constraint on the re-
ceived power of the users is considering anaverage transmit
powerconstraint on the users. If one is able to adopt a model of
fading for the users that is ergodic (with the same mean fading)
and independent, an average transmit power constraint on the
users translates into a received power constraint. Another justi-
fication is the following. The total transmit power decides the
total interference caused to neighboring cells and the total re-
ceived power captures this quantity as a rough estimate. For
more remarks regarding our focus on the sum received power
constraint, see the discussion section, Section III-F.

B. Main Result: Optimal Allocation

Fix a set of SIR requirements that are admis-
sible with no average received power constraint (thus, the sum
of the effective bandwidths is less than). In this subsection,
we will address the user capacity problem section in a “dual”
sense:minimize the sum of allocated powers among all valid
allocations. The main result of this section is a complete solu-
tion to this “dual” problem. Mathematically, the dual problem
can be stated as below (using the expression (18) for the SIR
achieved by the LMMSE receiver).

Dual Problem Minimize subject to the condition

has diagonal entries

greater than or equal to (19)
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Here varies over the positive diagonal matrices and and
the condition in (19) represents the constraint that the users’s
SIR targets are met. Any pair that solves Problem is
anoptimal allocation.

We begin with a preliminary lemma that characterizes an im-
portant property of all optimal allocations.

Lemma 3.1: If the pair is an optimal allocation, then
and commute.

Proof: As an aid to prove this result, we continue with the
following series of lemmas.

Lemma 3.2:Consider the optimization problem as fol-
lows.

Problem : Maximize

subject to

Here, is a fixed nonnegative diagonal matrix and the opti-
mization is as varies over diagonal matrices with nonnega-
tive entries and ranges over . Then, any pair that
achieves the maximum above has the property that and

commute.

With no user received power constraint, we know that the user
capacity region is the region of the positive orthant bounded
above by . This is a hyperplane, when the
coordinates of the user capacity region are measured in terms
of the effective bandwidths rather than the SIR requirements.
Under this simple coordinate transformation, the user capacity
region is thus convex. Our next lemma shows that the user ca-
pacity region with any given sum received power constraint
continues to be convex with these new coordinates.

Lemma 3.3:Fix a positive sum received power constraint.
Then the set (denoted by) of

such that users with SIRs are admissible when
sum received power constraint is convex.

Since any convex set is precisely the intersection of all closed
half-spaces that contain it [9, Theorem 11.5], Lemmas 3.3 and
3.2 complete the proof of Lemma 3.1. We provide the proofs of
Lemmas 3.3 and 3.2 in Appendixes B.2 and B.1, respectively.

Suppose the pair is a solution to the dual problemin
(19) and let a singular value decomposition of be
where is an orthonormal matrix, is an
diagonal matrix with diagonal entries equal to the eigenvalues
of , and is an matrix with orthonormal rows.
Since , we can rewrite the dual problemas
below. We also observe that the optimal allocation has equality
in the diagonal elements of (19).

Dual Problem : Minimize subject to the condition

has diagonal entries

equal to (20)

Here is any orthogonal matrix, is any nonnegative
diagonal matrix, and is any matrix with orthonormal
rows.

From Lemma 3.1, we have equation

Since two symmetric matrices commute if and only if they are
jointly diagonalizable, can be written as

This result allows us to rewrite the condition (20) as

has diagonal entries

equal to (21)

Appealing to Lemma 2.1, we can rewrite (21) using the notation
as

majorizes

This allows us to rewrite the dual problemusing (21) as fol-
lows:

Dual Problem Minimize subject to the condition

majorizes and

(22)

Suppose is a solution to the problem
above. The optimal allocations are formed as follows. We
use the combinatorial algorithm of [16, Sec. 4] to generate a

symmetric matrix with eigenvalues and
the eigenvalue with multiplicity and diagonal entries

. Then there exists an matrix
with orthonormal rows such that

has diagonal entries . We now allocate the
user powers to be as the diagonal entries of the ma-
trix . Writing the matrix , we
allocate the signature sequences to the users (denoted by the ma-
trix ) to be . Here, we have taken to be any
orthonormal matrix that diagonalizes. It is straightforward to
verify that has unit norm columns and that the pair
is a valid allocation. Thus, it suffices to solve the optimization
problem (22) above.

Consider the followingcombinatorialAlgorithm . It termi-
nates in at most steps.

Algorithm :
Input and .
Output .
Update
1. Initialization: and .
2. Termination: If stop and output the vector . Else,

go to Step 3.
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3. Let

a) If then set and . Go to
Step 2.

b) If

then set , and
. Go to Step 2.

c) If

for some , then set ,
and . Go to Step 2.

Our next main result is the following.

Theorem 3.4:Output of the combinatorial algorithm
solves the dual problem in (22).

The proof is relegated to Appendix B.3. Further, for both the
special cases of , and , ,
the algorithm simplifies substantially. This is analogous to the
simplification mentioned in Section II-D. We now derive some
properties of the optimal allocation of signature sequences and
powers, optimal in the sense of the dual problem. Our main
result is the following.

Proposition 3.1: Let and be a solution to the dual
problem (defined in (19)). Then, the LMMSE receiver for
each user (as in (17)) is given by

for some constant .

We conclude that the LMMSE receiver with the optimal
choice of signature sequences and powers simplifies to the
matched filter, matched to the background noise. The proof of
Proposition 3.1 is in Appendix B.4.

C. Qualitative Properties of Admissibility

We now study properties of the optimal allocation iden-
tified in the previous section and derive some qualitative
features of the solution to the user admissibility problem. Let

denote the minimum sum
power required to achieve the SIR requirements
when the colored additive noise variances are .

We also assume that the SIR requirements are such that the
users are admissible, i.e., . The proofs of the
assertions of this section are in Appendix B.5.

We would like to study the effect of colored noise on the
minimal sum power required to meet a given set of SIR re-
quirements. Suppose the largest of the noise variances,, was
very large, then the allocation could potentially avoid the direc-
tion with this noise component and thereby communicate on the
“cleaner” directions. We make this observation precise in what
follows.

Proposition 3.2: Fix a set of SIR requirements
. Then, is a concave function of and

furthermore, is a Schur-concave function of ,
i.e.,

whenever majorizes .

In particular, Proposition 3.2 says that for a fixed set of SIR
requirements, additive white noise requires the most sum power
allocation among all additive colored noises with the same total
power. On the other hand, keeping the additive colored noise
covariances fixed, we have the following behavior of.

Proposition 3.3: Fix the additive noise variances
. Then, is a convex function of and

furthermore,

whenever majorizes .

Thus, Proposition 3.3 says that is a Schur-convex func-
tion of for fixed additive noise variances.
In particular, this means that among all SIR requirements with
the same sum of effective bandwidths, the minimal sum power
required to meet them is the one corresponding to all SIR re-
quirements being equal.

D. Admissibility Region

In Section III-B, we characterized the allocations that achieve
a given set of SIR requirements while minimizing the sum of re-
ceived power among such allocations. Now, we will fix, an
upper bound on sum received power that can be allocated and
characterize the region of SIRs admissible with this constraint.
In Lemma 3.3, we have already shown that the region of ad-
missible with the power constraint is convex. We now
characterize this convex set. The proof is in Appendix B.6.

Proposition 3.4: SIRs are achievable with a
sum received power constraint if and only if

is contained in the convex hull of as shown at
the top of the following page. Here ranges over all permuta-
tions on the set and is a positive number chosen
such that
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Observe that Section III-B contains the recipe to construct
allocations that achieve any set of requirements
contained in earlier. Since is convex, any point
on its boundary is characterized by a vectorwith nonnega-
tive entries. We can then use the constructive approach of Sec-
tion III-B to construct the corresponding allocation pair .

In the special case when all the SIR requirements are identical
there is a simple characterization of achievability (akin to [17,
Theorem 4.1]). First, we find a positive constantsuch that

Then, it follows that the largest achievable common SIR, de-
noted by , satisfies

E. Random Signature Sequences and Admissibility

In many communication systems employing DS-CDMA, sig-
nature sequences cannot be chosen optimally as a function of
the loading (number of users in the system). In such situations,
it is reasonable to model the signature sequences as random,
but fixed once chosen. This model is used in [13] where the au-
thors derived substantial insight into the performance of linear
receivers (in terms of the SIR of the estimate) using results on
the limiting distribution of the eigenvalues of large random ma-
trices. One of the important results was the derivation of the
limiting behavior of the SIR of the LMMSE estimate of a unit
power user in a large system (largeand large keeping the
ratio of to fixed, which we denote to be). We now present
this result extended to our scenario of interest: colored additive
noise. Let us recall the channel model from (15)

We assume that the entries of the signature sequencesare in-
dependent with zero mean and variance. This normalization
ensures that the signature sequences have unit expected energy.
We assume that the empirical distribution of the eigenvalues of
the covariance matrix of (denoted by ) converges weakly (as

) to a distribution which we denote . We also assume
that the support of is strictly positive and thus bounded away
from zero. We denote the received power of userby and
assume that the empirical distribution of user received powers
converges weakly to a distribution (as ) which we de-
note . We are now ready to present the extension of the main
result of [13]: limiting behavior of the SIR of the LMMSE esti-
mate.

Proposition 3.5: Let denote the (random) SIR of the
LMMSE estimate of user. Then

as and

where is the unique positive solution for in the equation

(23)

The proof in [13, Sec. 4] extends directly to prove the propo-
sition above with the use of the general result in [1]. We omit a
discussion of this extension and focus our attention on qualita-
tive features of , the limiting SIR of the LMMSE estimate of
a unit power user.

We would like to study the behavior of as a function of
and and to this end we introduce the following partial order
on such distributions. This partial order, known asdilation, is
one way of generalizing the partial order of majorization from
finite vector spaces to infinite dimensional spaces (with a locally
convex topology). In our context, the distributionsand are
probability distributions on the nonnegative reals, so we focus
on the space of such distributions. For and , two prob-
ability distributions on the nonnegative reals, we say that “
is adilation of ” if for every integrable nonnegative convex
function on the positive reals we have

Analogous to Schur convexity, we say that a functionthat
maps probability distributions on nonnegative reals to the
reals dilatory-convexif for every pair of probability distri-
butions such that is a dilation of , we have

. We say is dilatory-concaveif is
dilatory-convex. We refer the interested reader to [8] for further
details on the partial order of dilation and for its properties. We
are now ready to state one of the main results of this section.

Proposition 3.6:

1) is dilatory-convex in for fixed .
2) is dilatory-convex in for fixed .

The proof is in Appendix B.7. The result says that for a fixed
received power profile, as the noise becomes more colored
(keeping the same average noise level constant), the SIR of the
LMMSE estimate of a unit power user increases. Also, for fixed
noise covariance, the SIR of the LMMSE estimate of a unit
power user increases when the received power profile becomes
“more spread out” (all users received at the same power is “least
spread”) while keeping the average received power constant. In
the context of specific design of signature sequences, we saw
in Section III-C that performance is better when the noise gets
more colored keeping the average noise power constant. The
optimal signature sequences utilized the particular structure of
the noise covariance and we attributed the gain in performance
to this. However, in the current context, the signature sequences
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are chosen randomly and independent of the noise covariance
and still the performance improves when the noise gets more
colored. The reason is that even though the signature sequences
were chosen independently, the LMMSE receiver uses the
information about the color of the noise to obtain the estimate
of the symbol transmitted and thus the SIR improves.

Having characterized the performance of the LMMSE re-
ceiver, we now turn to the dual question ofuser capacity. Given
a target requirement, under what conditions on the loading

will there exist positive power allocations to the users and
random signature sequences such that the SIR of the LMMSE
estimate is at least equal to the target? Tse and Hanly [13,
Sec. 5] show that, in the case of white additive noise (with vari-
ance ), the requirement is and the minimum re-
ceived power required is

Colored noise does not change the admissibility requirement
since there is no upper limit on the power allocated.

However, the minimum power that needs to be allocated is now
a function of the colored noise covariance. We characterize this
quantity below.

Proposition 3.7: Fix such that and let
denote the minimum received power of every

user such that with random signature sequences the SIR of
the LMMSE estimate is at least. Then, is the
unique positive solution to the equation (for)

(24)

Furthermore, is dilatory-concave in .

The proof is in Appendix B.7. Our result shows that the min-
imum power (for fixed target SIR of ) required decreases as
the noise becomes more colored.

F. Discussion

In this subsection, we have characterized the user capacity
region—the tuples of SIRs of the users that can be jointly
attained—when using the LMMSE receiver. This problem
was addressed in both the case when the signature sequences
are chosen optimally and in the case when they are randomly
chosen. Our main result is a complete characterization of this
region and this allowed us to derive some qualitative properties
of the user capacity region. In particular, we showed that the
minimum average transmit power required to attain a given set
of SIRs is a saddle function: it is convex in the tuple of SIRs
and concave in the eigenvalues of the covariance matrix of the
colored noise. One context in which to place our results in this
section is as an extension of the results of [17] and [13] to the
case of colored additive noise.

In our study of the user capacity region, we have focused
on the constraint of sum of allocated powers of the users. A
more general formulation is to address thedualproblem: given a
tuple of SIR requirements, characterize the region ofadmissible
power allocations of the users. A tuple of power allocations to

the users is admissible if there exists a choice of signature se-
quences such that with these powers and signature sequences the
SIR of the LMMSE estimate is at least equal to the requirement.
We leave this characterization as an interesting open problem.

We studied the impact of optimal signature sequence design
in the presence of colored noise for two different types of
receiver structures. Though the two receiver structures are
very different, the mathematical techniques used to analyze
both the scenarios are very similar. In particular, we found the
partial order of majorization a very appropriate mathematical
tool for both the problems. Further, the signature sequence
design problem was posed as an optimization problem in both
scenarios where we were minimizing a convex function with
majorization constraints. We showed that there exist combina-
torial algorithms, such as those in and , which solve such
optimization problems. This could be of independent interest
in the optimization literature.

We motivated the setting of colored additive noise as inter-
ference from mobiles communicating with other base stations.
It is interesting to study the behavior of distributed signature
sequence adaptation, independently by each base station. The
convergence properties of such asynchronous distributed adap-
tation will, in general, depend on the propagation model across
base stations. A study of this dependence and the corresponding
convergence properties is a natural step motivated by this paper
and the qualitative properties derived from the saddle function
property of the optimal capacity.

APPENDIX A
PROOFSFROM SECTION II

A.1 Proof of Lemma 2.2

This result follows directly from [6, Lemma 9.G.4], which
says the following. For any positive definiteand

(25)

We substitute for and for and define
where is any orthonormal matrix such that and

commute and, furthermore, has the following property. The
eigenvalues of are given by ,

. The claim now directly follows from (25).

A.2 Proof of Lemma 2.3

Recall Lemma 2.1 which states that for any symmetric
matrix, the precise relationship between the diagonal ele-
ments and the eigenvalues is that of majorization. Thus, if

majorizes , then there
exists a symmetric matrix with eigenvalues

and diagonal elements . Let
be the normalized eigenvectors of corresponding to

the eigenvalues . Let . If we
let be the diagonal matrix with entries , then

. Now define . Then, we verify
that has unit diagonal entries, concluding
that . Further, has eigenvalues

. Now, defining where is a or-
thonormal matrix chosen such that commutes with

we have found with eigenvalues in . Conversely,
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if is such that has eigenvalues
then has eigenvalues .
But it also has diagonal entries and so, by
Lemma 2.1, we must have majorizing

.

A.3 Proof of Lemma 2.4

If for all , then the assertion is trivial.
Suppose there exits at least one pair of indexes such that

, and . Define the vector that differs from only
in the components indexed byand as and .
It is seen that

and

where

By definition of majorization, it follows that

majorizes

By repeatedly interchanging every pair with the property
that and and using the associative property of
majorization, the proof is complete.

A.4 Proof of Lemma 2.5

Fix . We first show that there exists such that
. Define by . By

definition of we see that . An appeal to Lemma
2.3 confirms the existence of the with the property that

.
Fix . Thus can be written as

for a particular ordering of . Appealing to Lemma 2.4,

the vector defined by
is majorized by . Appealing to Lemma 2.3, we verify that

. This completes the proof.

A.5 Proof of Theorem 2.6

Consider the following optimization problem:

(26)

and denote it by

Here, is any real continuous, increasing, strictly concave func-
tion. We show below that the output of Algorithmachieves the
maximum in (26) for every real, continuous, increasing, strictly
concave function. Appealing to [6, Proposition 4.B.2], and ob-
serving that the sums of the components of every vector inare
equal, we conclude that the output of Algorithmis majorized

by every element of and is thus the Schur-minimal element
of .

We begin with some preliminary observations about Algo-
rithm .

1) If

then Algorithm output has all equal components.
Hence, we have that is majorized by for any
(see Example 2.1). This will complete the claim that
is indeed the optimizing argument. We henceforth assume
that this case does not occur.

2) We claimed in Section II-D that the updates ofby al-
gorithm are in nonincreasing order without a proof.
We develop some notation and give a formal proof of
this statement. In Algorithm , the termination condition
is and since either is incremented (at least by
) or is decremented by at every iteration, the algo-

rithm has to stop in iterations. Denote the pairs
as the algorithm runs through theiterations by

and the value of in Step 3 by
. Observe that the algorithm always termi-

nates in Step 2 (and, by definition, terminates at theth
iteration). Let us define . It suffices to show that

Fix . In the th iteration, either gets
decremented or gets incremented and we consider each
case separately.

a) Case 1: . By hypothesis, and

(27)

(28)

(29)

We used the fact that

in the derivation of (28). Combining (27)–(29) we
have shown that .

b) Case 2: . By hypothesis we have

(30)
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By hypothesis, we have

(31)

We also have for every , by substi-
tuting for from (30)

Rearranging the terms above leads us to conclude
that

(32)

We also have

Rearrangement of the terms above leads us to con-
clude that

(33)

Combining (31)–(33) we have shown that
.

3) For any we have . This observation
follows from the fact that is updated in the first step
of and in Step 3 of is always less than or equal to

for every .

Our proof that the output of Algorithm is optimal is by
induction. First consider the case and arbitrary .
Since for every we have and ,

we conclude that is majorized by and thus
. This completes the proof. We now make the induction

hypothesis that the output of is optimal for all and all
. We show that the output of is optimal for

and any . Suppose is the optimal argument to
the optimization problem in (26) and the outputof is such
that

We now proceed to get a contradiction to the hypothesis that
is the optimal solution to (26).

1) Suppose . By the earlier observation that the
updates of by Algorithm are in nonincreasing order,
we see that

a) If , then is the output
of with parameters ,

. By hypothesis,
and thus for these parame-
ters. By the induction hypothesis, we have

Since for some we

have by the strict concavity of that

Thus, we arrive at a contradiction to the hypothesis
that is the optimal argument in (26) completing
the proof.

b) If

for some then from we have
. Using the fact that

we arrive at . Thus,
and belong to

with parameters ,
. By the induction hypothesis,

is the optimal argument of

in with these reduced number of param-
eters and hence

contradicts the hypothesis that is the op-
timal argument of in with parameters

, . This com-
pletes the proof.

c) As observed earlier, we do not need to consider the
case when

since in this case is the optimal argument.

2) Henceforth, we take . Let be the
largest index such that . Observe that we have

(34)
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a) Suppose . We have

and thus there exists such that .
We can now define a vectordiffering from only
in components indexed by and as follows:

where

Using (34) we observe that . It is clear that
and that is majorized by . Thus,

and we arrive at a contradic-
tion to our hypothesis that was optimal on .

b) Suppose . By definition we have
and by hypothesis that

We define a vector (strictly) differing from only
in components and by

where

Using (34), observe that . It is clear that
and that is majorized by and we

arrive at a contradiction as before.

This exhausts all the cases and completes the proof of The-
orem 2.6.

A.6 Proof of Propositions 2.1 and 2.2

Fix and consider and such that ma-
jorizes . Using the transitivity of the partial order
of majorization we have

(35)

Now, observe the following one to one relationship be-
tween and : For every

, we have where
. Conversely, for every , we

have where . This allows us to
conclude from (35) that

and thus that is Schur-concave in for fixed . To see
concavity, fix and . From (8), (9), and Lemma 2.4, we
can write for

(36)

where

Observe now that if for , then
for every

(37)

Using the concavity of the logarithm, we have for every
, from (36)

where we used (37) in the second step. This shows Proposition
2.2. Now fix and . Here and are such that the vector
of their eigenvalues (arranged in nondecreasing order)

majorizes

We will show that

Recall the characterization of as in (36). Using the con-
vexity of the map with , for every fixed

, we have that the function

is convex. Since a pointwise supremum of convex functions is
also convex we have shown that is convex in . Since

is also symmetric in (that is, it is invariant to per-
mutations of the elements of ), we have shown that
is Schur-convex in . In our notation, we have shown that

.
To see the convexity of in the covariance matrix , fix

any two noise covariance matricesand . We use the fol-
lowing result [6, Theorem 9.G.1].

Lemma A.1:For any two symmetric matrices and , with
vectors of eigenvalues and , respectively,

is majorized by



VISWANATH AND ANANTHARAM: OPTIMAL SEQUENCES FOR CDMA UNDER COLORED NOISE 1311

Continuing from (36) we have, using the convexity of the map
;

where we used Lemma A.1 in conjunction with the earlier proof
of the Schur-convexity of for fixed in arriving at the
last but one step. This shows the convexity of in and
completes the proof of Proposition 2.1.

APPENDIX B
PROOFSFROM SECTION III

B.1 Proof of Lemma 3.2

We begin with some relabeling. For anyand , let a sin-
gular value decomposition of be where is an

orthonormal matrix, is an diagonal matrix
with diagonal entries equal to the eigenvalues of , and
is an matrix with orthonormal rows. Then, the problem

can be written as follows.

Maximize

subject to

Here is any orthonormal matrix and is any
matrix with orthonormal rows. Suppose is a

solution to . Then we will show that

(38)

and

(39)

We will show these two claims by a perturbation argument and
this will complete the proof of the lemma.

Let be an skew-symmetric matrix (i.e., )
Then, is an orthonormal matrix, for any real. By
hypothesis, we have

(40)

Now and thus

(41)

where

and

Now, by the matrix inversion lemma

(42)

Substituting (41) in (40) and using (42), we obtain

(43)

Also, we have

as (44)

as (45)

Dividing throughout by in (43), and letting , we
obtain (using (44) and (45))

(46)

Similarly, dividing by in (43), and letting , we obtain

(47)

From (46) and (47), we conclude that for every skew-symmetric
matrix we have

which can be rewritten as

(48)

where is the Lie bracket. Choosing

we conclude from (48) that and thus

(49)

We can perturb to and by analogous argu-
ments, conclude that

(50)

Let us define . Then

(51)

From (50) and (51) we conclude that and have a
common set of eigenvectors and thus

(52)

Now, continuing from (49), we have

(53)

(54)

Here we used (52) and (53) in the derivation of (54):
and have a common set of eigenvectors.
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Recalling the definition of as , we see that (52)
and (54) are the same as (38) and (39). This completes the
proof.

B.2 Proof of Lemma 3.3

Define to be the set of such that ,
and such that SIRs are achiev-

able with the following constraints on the allocation of signature
sequences and powers .

1) The sum of powers meets the average sum constraint, i.e.,
.

2) and satisfy the condition .

From Lemma 3.2, we know that

convex hull of convex hull of

Since , it follows that is convex if we can show that
itself is convex. The rest of this proof shows thatis indeed

convex.
Consider a pair , . Then there

exist a two pairs of allocations , such that
and for with the

property that the SIRs achieved by allocation are

for

There exists a singular value decomposition

with the property that

for (55)

From the expression for SIR for the LMMSE receiver (18), we
also have, for

has diagonal entries

In arriving at this expression, we have used (55) and have written
for . Appealing to Lemma

2.1, we also have, for

majorizes (56)

Let us define, for

(57)

(58)

where we used the notation of order statistics from Defini-
tion 2.2. Consider the following claims, for :

is a reordering of

(59)

(60)

(61)

Equations (59) and (60) follow directly from (57) and (58). To
see (61), it suffices to see that, for

The first step used the hypothesis that , ,
the second step follows from (57), the third step used the con-
vexity of the map , , and the last step used
(58).

Fix and define

Define , in terms of , as in
(57) and (58). From (59), (60), and (56), it now follows that

majorizes

(62)

Appealing to Lemma 2.1, (62) allows us to conclude that there
exists a matrix with orthonormal columns such that

has diagonal

entries (63)

Define and the diagonal matrix

Now consider the following allocation of signature sequences
and powers : is defined to be the diagonal

matrix with diagonal entries equal to the diagonal entries of
and

We let the reader verify, using (63) and (61), the following.

1) The allocation pair is valid, i.e.,
and .
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2) The allocation pair achieves SIRs equal to

A similar verification is done in [17, Sec. 5]. This shows that
for . Since ,

are arbitrary points in , we have shown that is convex thus
completing the proof.

B.3 Proof of Theorem 3.4

We begin with some relabeling. Writing , the
optimization problem in (22) becomes

: Minimize subject to

majorizes (64)

Since we have the ordering , we get the simple
inequality

Above, we used the definition and notation of order statistics
from Definition 2.2. We thus conclude that the optimalthat
solves the problem above has the structure .
This observation allows us (from the definition of majorization,
Definition 2.1) to rewrite as follows:

Minimize subject to

and

(65)

(66)

We now rewrite the combinatorial algorithmin this new no-
tation as follows.

Algorithm :
Input and .
Output
Update
1. Initialization: and .
2. Termination: If stop and output the vector . Else,

go to Step 3.
3. Let

(67)

a) If then set and .
Go to Step 2.

b) If

then set , and
. Go to Step 2.

c) If

for some then set ,
and . Go to Step 2.

We now show that the output of the combinatorial algo-
rithm solves the problem .

Since the termination condition is and either is in-
cremented (at least by) or is decremented by at every
iteration, the algorithm has to stop in iterations. De-
note the pairs as the algorithm runs through theitera-
tions by and the value of in Step 3 by

. Observe that the algorithm always terminates in
Step 2 (and, by definition, terminates at theth iteration). Let
us define . We begin with some simple observations.

1) , , and

(68)

Furthermore, we claim that in iteration (this is the
final iteration in which Step 3 is reached), the algorithm
must have visited Step 3b). Since the condition for termi-
nation is satisfied, this rules out Step 3c) being
visited in the th iteration. Suppose Step 3a) was
visited in the th iteration. Then it must be the case
that (since ). Thus, we have

Thus, a contradiction to the hypothesis that Step 3a) is
reached in the th iteration is derived. We conclude
that Step 3b) must have been reached in the th
iteration and thus that and .

2) For

else
(69)
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and in the final iteration

(70)

3) Our next observation is that the value ofdecreases. For-
mally

(71)

This observation is a bit more involved and we provide a
detailed proof.

Proof: Fix . In the th iteration either gets
decremented or gets incremented and we consider each case
separately.

a) Case 1: . By hypothesis and

(72)

(73)

(74)

We used the fact that

in arriving at (73). Combining (72)–(74) and using the
definition of in (67) we have shown that .

b) Case 2: . In this case we have, from (69)

By hypothesis, we have

(75)

Also by hypothesis, for every

which implies

(76)

Again by hypothesis, we have

which implies

(77)

Combining (75)–(77) with the hypothesis of ,
we have from the definition of in (67) that .

This completes the proof of the observation that
.

4) We can also express the output in terms of the pairs
. Fix . Define

if

if .
(78)

Observe that is well defined and has the interpretation
that is updated in iteration .

• Suppose . In this case .

• Suppose . In this case

(79)

We have and thus .
This shows that, for all

(80)

It also follows from the definition of (in (78)) and
(68) that whenever , we have .
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Combining this with the ordering and (71),
we have, for all

(81)

5) We now show that satisfies (65) and (66). Fix any
and consider two cases. First, suppose . Then

(82)

(83)

(84)

(85)

(86)

Here, we used the definition of as the iteration number
in arriving at (82) while (83) used the update in Step 3c) of
Algorithm . Equations (84) and (85) follow from (69) and
(70). In (86), we used the property of that

with equality when . In the derivation of (86),
we also used the fact that

This allows us to conclude that we have equality in (86)
when or when . Thus, we have
shown that satisfies (66) and (65) whenever .
Since we have , , we have
shown that satisfies both (65) and (66). We conclude that
the output satisfies all the constraints in and is thus a
possible solution.

We are now ready to prove that solves the problem .
Consider the relaxed version of the problembelow where the
constraint is dropped.

Minimize subject to

and

We will first show that is a solution to . Since the constraint
set in problem is larger than that in and since satisfies the
constraints of , we have completed the proof of the theorem.

It remains to show that solves the relaxed problem. Our
first step is the observation that the functionbeing minimized
in is concave in and, furthermore, is con-
strained to be in a convex polytope (defined by linear inequali-
ties). Such optimization problems are classical and a complete
characterization of the solution is given by the Kuhn–Tucker
conditions [9, Theorem 28.3]. Define (the Lagrangian)

Consider the following choice of and . Define
for all . For , define

if (87)

(88)

(89)

We set the remaining components of and to be equal
to zero. Observe from this definition that we always have

(90)

(91)

We claim that

(92)

If this is true, then appealing to [9, Theorem 28.3], we have
proved that solves and this completes the proof of the
theorem. We will now verify (92) which can be expanded into

(93)
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Fix . We consider two cases: and .

1) Case 1: . Recall the definition of (from (78)),
with the interpretation that is updated (and set to
zero) in iteration numbered . Here and

. Using (91) and the hypothesis

that , we have , .
Substituting these quantities in (93), we have

and the claim of (92) is shown.
2) Case 2: . Again, recall the definition of from

(78) as the iteration number where is updated. In this
case, (see (79)). From (90), we have

. Substituting these quantities in (93), we have

Thus, (92) is shown in this case as well.

This completes the proof of the claim that solves and the
theorem is proved.

B.4 Proof of Proposition 3.1

We use the notation developed in the proof of Theorem 3.4
in Appendix B.3. Suppose Algorithm concludes in
steps. We denote the pairs as the algorithm runs through
the iterations by and the value
of in Step 3 by . Fix . Now,
it follows that the output of Algorithm has the property, for
every , that

where

Let be any -dimensional orthonormal matrix such
that

has

diagonal entries

Define to be a -dimensional diagonal matrix with
diagonal entries equal to the diagonal values of

Define the matrix defined as

where

and is an orthonormal matrix that diago-
nalizes . Now, for every we have

where

Let be any -dimensional orthonormal
matrix such that

has

diagonal entries

Define to be a -dimensional diagonal
matrix with diagonal entries equal to the diagonal values of

Define the matrix defined as

where

Now define the matrix

and the diagonal matrix with diagonal entries
equal to the st diagonal entry of . Here is
either or the unique number betweenand such that

. It follows from the construction of Section III-B
that the pair is a solution to the dual problem. We
make the observation that the signature sequencesand
are orthogonal wheneverand belong to different intervals
of the form . We are now in a
position to prove the proposition. For any userthat belongs to
the interval for some we have

A similar calculation for users that lie in the interval
shows that . This completes the proof of the
proposition.
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B.5 Proof of Propositions 3.2 and 3.3

Fix a set of SIR requirements such that
. Now, the minimum sum power is

the solution of the optimization problem in (22) which
was rewritten as (64). It is clear that as a function of

is the minimum of a sequence (indexed by
which range over a convex polytope, see (65)

and (66)) of linear functions (given by ). Hence,
it follows that is a concave function of .
Furthermore, is a symmetric function of . We
conclude that is a Schur-concave function of .
This concludes the proof of Proposition 3.2.

Fix the additive colored noise variances
and consider a pair of SIR requirements and

such that

majorizes

Using the transitivity of the majorization relation in the opti-
mization problem (64) (whose value is ), we see that the set
of over which the optimization is carried corre-
sponding to SIR requirements out is contained in
the set corresponding to the SIR requirements .
Thus, we arrive at the inequality

We conclude that is a Schur-convex function of
and is thus convex as well.

B.6 Proof of Proposition 3.4

From Lemma 3.3, we know that the region of that
are achievable with a sum received power constraintis
convex. We will now characterize this convex set (henceforth
denoted by ) by its extreme points. Each extreme
point on this convex set is characterized by
a vector with nonnegative entries with the property that

is the argument of the optimization problem
in the statement of Lemma 3.2. We reformulatebelow, using
Lemma 3.2 and the convexity of the map and the
ordering (as in the beginning of the proof of
Theorem B.3).

Problem

Minimize

subject to a matrix with orthonormal columns and

and

Since the diagonal entries (denoted by, say, ) of
are majorized by the eigenvalues of (denoted

by, say, ) and since satisfy the con-
straints [4, Theorem 4.3.15]

we see that for the optimization problem above, should
always be chosen such that is a diagonal matrix with
diagonal entries . Thus, is reduced to

Problem Minimize

subject to

It is easily verified that the solution to this reduced problem
is where is chosen such that

. This allocation of translates into signature
sequence and powers allocation as follows. Users corresponding
to the weights are assigned powers
and signature sequences equal to the eigenvectors ofcorre-
sponding to the eigenvalues in that order. We can
now verify that the SIRs attained by theseusers (given by the
same ordering as the users corresponding to ) are

, . This completes the proof of the
proposition.

B.7 Proof of Propositions 3.6 and 3.7

We begin with Proposition 3.6. Consider the map

We see that is the unique positive fixed point of. We claim
that is concave and monotonically increasing. Suppose this is
true. Fix and consider that is a dilation of . Now, is
seen to be dilatory-convex in , we have that

The concavity and increasing property of(as a function of
) coupled with the relation above, shows that

. Now fix and consider that is a dilation of
. Again, is seen to be dilatory-convex in and thus

As before, this observation coupled with the concavity and
increasing property of (as a function of ) shows that

. We only need to show that is
concave and increasing monotonically in.

A straightforward calculation shows that

(94)
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Since the first derivative of is strictly positive, we have shown
that is monotonically increasing with. Continuing from (94),
we arrive at

(95)
where we have written

(96)

Using Holder’s inequality

for every -integrable functions and and such that
in (96) (with , ,
, and ) we see that . Using this

in (95), we see that the second derivative ofis negative and
thus conclude that is concave in . This completes the proof
of Proposition 3.6.

We now turn to the proof of Proposition 3.7. Defining the map

we observe that is the inverse of at ( is
strictly monotonically increasing and thus the inverse is well
defined). We also observe that is dilatory-concave as
a function of . This observation coupled with the concavity
(easily verified) and monotonically increasing property ofas
a function of shows that is dilatory-concave in

. The proof is complete.
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