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Optimal Sequences for CDMA Under Colored Noise:

A Schur-Saddle

Function Property
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Abstract—We consider direct sequence code division multiple
access (DS-CDMA), modeling interference from users communi-
cating with neighboring base stations by additive colored noise.
We consider two types of receiver structures: first we consider
the information-theoretically optimal receiver and use the sum
capacity of the channel as our performance measure. Second,
we consider the linear minimum mean square error (LMMSE)
receiver and use the signal-to-interference ratio (SIR) of the
estimate of the symbol transmitted as our performance measure.
Our main result is a constructivecharacterization of the possible
performance in both these scenarios. A central contribution of
this characterization is the derivation of a qualitative feature of
the optimal performance measure in both the scenarios studied.
We show that the sum capacity is asaddle function it is convex
in the additive noise covariances anadoncavein the user received
powers. In the linear receiver case, we show that the minimum
average power required to meet a set of target performance
requirements of the users is asaddlefunction: it is convexin the
additive noise covariances anadtoncavein the set of performance
requirements.

Index Terms—Code division multiple access (CDMA), colored
noise, optimal sequences, saddle functions, sum capacity.

. INTRODUCTION

HIS paper focuses on the uplink of a single base station

wireless system with direct sequence code divisi
multiple access (DS-CDMA) modeling interference fro

USers Falklng.to ne|ghbor|ng ba;e stations by colorgd add'tlff?e users can transmit reliably. It measures the overall spectral
Gaussian noise. This assumption means that the mterfereg
from outside the cell cannot be controlled but can be measur

and estimated statistically. This is different from the mod

in [10], [11] where the authors consider joint processing

neighboring base stations. We restrict ourselves to the ¢
when the users within a base station are symbol synchronogﬁfd
This allows us to represent the signal transmitted by the usergya_

a vector space (by modulating theignature sequencewith

dimension equal to the spreading gain. We refer to the basebﬁﬁg

DS-CDMA channel model as\aector multiple access channel
(VMAC). The VMAC also models space division multiple ac-
cess (SDMA), multiple access channels with multiple antennas
at the receiver.

The choice of the receiver structure at the base station has an
important effect on the performance of the VMAC. In this paper,
we study two types of receiver structures: the information-the-
oretic optimal receiver and the linear receivers that are sepa-
rately optimal for each user. An information-theoretic optimal
receiver is a maximume-likelihood receiver that jointly estimates
the users symbols and thus needs to process the signals of the
users in a nonlinear fashion. In practice, linear receivers are pop-
ular and in this paper we consider the most prominent one: the
optimal linear receiver. This is the linear minimum mean square
(LMMSE) receiver which for each user achieves the minimum
mean squared error among all linear receivers for that user. The
effect of the signature sequences on the performance of these
linear receivers and the role colored additive noise plays is the
problem addressed in this paper. This is done by first defining
appropriate performance measures, then characterizing the ef-
fect precisely, and finally conclude with some qualitative prop-
erties of the physical phenomena involved.

We assess the performance of the information-theoretically

0<§btimal receiver by itsum capacityThis is defined as the max-

imum sum of rates of users per unit degree of freedom at which

ff iency of the communication channel. We assess the perfor-

nce of the LMMSE receiver for each user by the SIR for that
ser. The performance of the receiver as a whole is described
?ﬁ terms of its ability to simultaneously achieve given SIR re-

frements for the individual users. Our aim in this paper is to
y the effect of colored additive noise on the performance of
CDMA in these scenarios. In what follows, we summarize
main findings and place them in the context of previously
wn results.

First, consider the information-theoretic optimal receivers

our
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2) Our characterization allows us to derive some qualitati&R requirementg, ..., Sk are admissible in the system with
properties of the maximum sum capacity. processing gaimV if and only if

a) Maximum sum capacity isonvexin the noise co-
variance matrices antbncaven the vector of re- Z Bi <N )
ceived user powers. In particular, we have the fol-
lowing observations:

i) for a given total noise power, maximum sumrhis allowed us to characterize the admissibility of users via a
capacity is minimized when the additivenotion ofeffective bandwidthf we consider& as the effec-
noise is white: tive bandwidth of a user with SIR requiremghtthen users are

i) for a given total received power of the users@dmissible if and only if the sum of their effective bandwidths is
sum capacity is maximized when the reless than the processing gain of the system. This result captures
ceived user powers are equal. the nature of the interference limitation in CDMA systems. This

is evidenced by the observation that there is no upper bound on
rlﬂe allocated power, and thus (1) remains true when the addi-
tive noise is colored. Thus, in this paper we are interested in
characterizing admissibility of users subject to a constraint on
order makes precise the notion that one vector hgge average transmif[ted power of the individual users. Our mai.n
components “more spread out” than those of arg_esult hereis asolutlo_n to this probl_em for gen_eral noise covari-
other. We show that the maximum sum capacity @nce structures. We first characterize the optimal allocation of

Schur-convein the eigenvalues of the noise covariSignature sequences and powers to the users such that the total

ance matrix an&chur-concavin the received user allocated power of the users is minimized. Our characterization

powers. is constructive in that we desigrombinatorialalgorithms to
construct the optimal allocations. Then, using this characteriza-

3) We compare the sum capacity of DS-CDMA with thgjon of the optimal allocations, we obtain an expression for the
total capacity of parallel Gaussian channels with corrgrser capacity region when there is a constraint on the average
lated noise. The well-known water-filling power allocatransmitted power of the individual users. This characterization

tion is optimal for parallel Gaussian channels. We shogso allows us to make some qualitative observations about the
that in our problem, the structure of the optimal signaturgser capacity region.

sequences and the resulting powers in the directions of the _ _
noise covariance eigenvectors can be viewed as a generl) For any given SIR requirements of the users such that

b) We strengthen the previous statement by worki
with a partial order calleschur majorizatioron
vectors inRY (the definition of Schur majoriza-
tion can be found in Section II-B). This partial

alization of this water-filling allocation policy. the users are admissible, with the optimal allocation of
) _ ) signature sequences and powers to the users, the LMMSE
In previous work, the capacity region of the DS-CDMA receiver of any user is simply the matched filter tuned

channel for a fixed choice of signature sequences and received 4 e background colored noise. Thus, the user capacity
power profile of the users was characterized in [14]. The region with an average power constraint is unchanged if

pDrobCI:eDmMAof r(]:haratl:terlzmg the maXIm”umh sum cfap.aCIty of we restrict the receiver to be tlaeriori inferior matched
S- channels (maximum over all choices of signature filter tuned to the background colored noise.

seguences) witlwhite noise, was first attempted in [7], which
solved the equal user power constraint case. In [16], the generaR) For a given total noise power, the user capacity region
case of unequal user powers was solved, again with additive increases when the eigenvalues of the noise covariance
white noise, and a simple recursive algorithm was provided matrix become “more spread out” (the precise ordering
to construct the corresponding optimal signature sequences. is that of Schur majorization). In particular, the user ca-
In the SDMA model with white additive noise, Suaet pacity region is the smallest when the additive noise is
al.[12] characterized the capacity region and also obtained an  white.
expression for the maximum sum capacity when user powers
are symmetric. The results in [16] are also applicable to the
asymmetric user power constraints case for the SDMA model
(with white additive noise). The contribution of the informa-
tion-theoretic portion of this work is to generalize all of the
above works to the situation wittbloredadditive noise.

We now turn to the linear receivers scenario. In this setting,
we are interested in theser capacityegion of DS-CDMA. We
say that a set of SIR requirements of usesdmissiblef one In [13], the authors consider the SIR achieved by the LMMSE
can allocate signature sequences to the users and control theireeeiver when the signature sequences of the users are inde-
ceived power such that the achieved SIR of each user is at lgashdent and randomly chosen. They show that the SIRs of the
equal to its SIR requirement. In [17], we showed the admissisers in a large system (with large number of users and large
bility region with additive white noise and with no constraintprocessing gain) converges in probability to a constant. The
on the power allocated to the users to be as folldd@sisers with  main observation of [17] was that the user capacity region of

3) For a given sum of effective bandwidths of the users (and
given that the sum is less than the processing gain), the
minimum total power required among all valid allocations
is Schur-concava the effective bandwidths of the users.
In particular, the minimum total power is smallest when
the SIR requirements (and thus the effective bandwidths)
are all equal.
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DS-CDMA using random signature sequences is asymptotically symbols by spreading them using an assigned signature se-
identical to that of the VMAC using optimal chosen signaturguence. The baseband, sampled (discrete-time), received signal
sequences and powers. This holds when there are no aveiagbemth symbol interval at the receiver can be written as
power constraints. Here, we extend the SIR analysis of [13] to X

the additive colored noise case and calculate the admissibility y(m) = Z si:(m) + 2(m) )
region with average power constraints of the users. We show pt o

that unlike the case when the signature sequences are specially

chosen, there is no saddle property of the SIR achieved by a YHi€re 81, ..., sx are the signature sequences of the users,
power user. The SIR of a unit power user in a large systemtfought of as elements d&". We assume that the energy
shown to be convex in the distribution of the colored noise afi €ach signature sequence is unity, igfs; = 1. Here,
convex in the distribution of the received powers of the user& (), - ., x(m) represent the symbols transmitted by the
Analogous to Schur partial order in finite-dimensional vectdfSers at thenth use of the baseband sampled channel. There is

. L . . . i i ? 2
spaces, we use the partial orderdifftion on distributions to & POWer constraint on each user giveny_, z7(m) < mp;
strengthen the saddle property. for user:. Here, z(m) is a sequence of independent and

This paper is in two parts. In Section II, we deal with the inidentically distributed (i.i.d.) Gaussian vectors with zero mean

formation-theoretic optimal receivers and the sum capacity 8fd covariance matrix. We assume thai is positive definite

g 2 5
the VMAC. Section 11l deals with linear receivers and SIR pe/2nd denote its eigenvalues by < of < - < o} We refer

formance of the users. Finally, a few words about our notatidf this channel as a vector multiple access channel (VMAC).
throughout this paper: we use lower case letters for scalars, bgld
face lower case letters for vectors (usually witcomponents),
and upper case letters for matrices. We also denote the transposaX the signal directionsy , ..., sx. The sum capacity of the
by the superscript and reserve the superscripto denote the YMAC in (2) is
solution of an appropriate optimization problem.

Sum Capacity Expression

max I(zy, ..., 2x; ¥)
Il. Sum CAPACITY OF DS-CDMA where the maximum of the mutual information between the
Inthi i h terize th . i irK)uts and the output vectqy is over independent random
n this section, we characterize the maximum sum capacity ol . -1 os 21, .... 2 with variances upper-bounded by

DS-CDMA, the maximum being over the signature sequences

f th Secti . brief . £ thdl ..., PK, respectively. Proceeding as in [7], we see that this
of the users. In Section II-A, we give a brief overview of t aximum is achieved when the distributions of all the random

DS-CDMA baseband model as a VMAC and Section II-Biapjes are Gaussian and thus we arrive at the following
provides an expression for the sum capacity of this channgl,qrajization of the result of [14] for colored additive noise.
along with a “sphere-packing” interpretation for the Sumne sum capacity, in nats per unit degree of freedom, of the
capaqlty expression. This mterprgtatlon se_ts the stage for Miltiple access channel in (2) is given by

techniques which are used to find the signature sequences

that achieve.the mgximum sum capacity. The c'haracteriza.tion Cowm(S, D, ¥) = 1 log det(] + X1 DS?) 3)

of these optimal signature sequences along with a combina- 2N

torial algorithm to construct them is given in Section I-Cyhere we have written

Section 1I-D studies some properties of the optimal signature

sequences and some features of the combinatorial algorithm S = s, ..., sx] and D =diag{ps, ..., px}

that generates them. Section II-E brings forth the central ] o o ) ]
contribution of the maximum sum capacity characterizatiour main fgcus in this section is to characterize the maximum
qualitative properties of maximum sum capacity as a functiciymM capacity

of the received user powers and colored noise variances. dof

Section II-F summarizes our construction of the optimal sig- Copt(D, B) = 1nax Coun(5, D, X) )
nature sequences. In Section II-G, we compare the maximum ) ) )

sum capacity of the DS-CDMA channel with that of paralle\the.re‘s Is the set of allv x K real mairices V\.”th each.column
Gaussian channels with an appropriate total transmit pO\i\f ving!l; norm equal tal. Observe thaCs.s, is a continuous

constraint. This comparison allows us to interpret the constr g_ncttl)on dfaﬁ.ne(tj.f.ondasc_omé:);ct ?Sﬁiandhthus tge u‘ssef ofiax in
tion of the optimal signature sequences as a generalization(%)fa OVe IS justiied. SINCeo € o, we aves € orevery
rthonormal matrix?, it follows from the structure of’,,.,, in

the We_ll-known water-pouring power allocation over para”e?t) that C, e (D, ) depends only on the eigenvalues3af A
Gaussian channels. We relegate the proofs of the main resUlts . g . . .
) . . matrix of signature sequences that achieves the maximum in (4)
of this section to Appendix A. . : L . hti .
is called a matrix of “optimal signature sequences.” This notion
of optimality is specific to the user received power constraints
A. DS-CDMA Model and the VMAC represented by the matri?.
There areK users in the channel an denotes the pro- Prior to attempting to characteriz€,;,, and the optimal
cessing gain (number of chips per symbd{).and NV will be signature sequences, we provide a “sphere-packing” interpre-

fixed throughout this paper. In DS-CDMA, each user transmitation of the expression for sum capacity in (3). Fix signature
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sequencess. Then, our baseband channel model at tile (3) for the sum capacity with signhature sequengethus, max-

instant can be rewritten from (2) as imum sum capacity is achieved by choosihgo as to maximize

1 1 the volume of the eIIipsoicEél). Now, the lengths of the axes
y(n) = SD2x(n) + L2w(n) of the ellipsoidES™ are given by the eigenvalues 8DS* + %

wherew(n) is a sequence of vectors with components i.i.@nd thus, for any signature sequensgshe sum of the lengths

Gaussian zero mean unit variance vectors. Herép), ..., ©Of the axes is a constant equal to

zk(n) are the symbols transmitted by usérs .., K at time + _

instantn and are subject to a unit average power constraint. In u[SDS" + 3] = D] + tx[X]

generalz(m) is chosen from an appropriately designed codghere we used the fact that the energy of each signature se-
book. But the random coding argument uses a codebook that §3s e is unity. Given this constraint, the volume is maximized
entries generated from i.i.d. Gaussian zero mean unit variance

en the ellipsoids'! is a s here, that is, when all the eigen-
random variables. We will choose this random codebook for oWies ofSDiSE)t—i-IE ;re quualp However ;hevg:ondition thatlgach
z(n). Fixing a blocklengthn (number of symbols jointly de- ‘ '

ded ‘te the total ived sianal of the signature sequences has to have unit energy imposes extra
coded), we can write the total received signal as conditions that might rule out the possibility of making all the
) " : . :
(m) _ ( L ) (m) ( 1 ) (m) eigenvalues o6 DS* + X equal. We make this precise by intro-
y SD2 @ I & 4 (22 @ I Jw ducing the following partial order ahajorizationon the vector
wherel,,, denotes am: x m identity matrix and® denotes the of eigenvalues off DSt + 3. Majorization makes precise the

tensor (or Kronecker) product between matrices. We have us&@gue notion that the components of a veatare “less spread
the notation out” or “more nearly equal” than are the components of a vector

y by the statement is majorized byy.

y(1) z(1) w(l) . L
(2) Definition 2.1: Forz, y € R", say thate is majorized byy
def y def (2) w(2 (or y majorizese) if
y(nl) — . , m(nl) — , and w(nl)
=1 i=1

Define the ellipsoids

Zx[il = Z Ya)-
=1 =1

E(m 99y e RN™: g ((SDS' +5) "L @1, )y <m(N+c)}

E’(rn, €) déf R]\‘rrn: t E_l Irn < N
v {we w( @ InJw = m(N +6)} In the above we used the following definition.

and consider the following claims. For every- 0 Definition 2.2: For anyz = (z1, ..., zn) € R", let

(m) (m,€)
P(y GEy )_>17 as m — oo (5) .7;[1122.7}[”1

L (m) (m,€)
P ((22 ® Im) w € B, ) -1 asm — co. (6) denote the components®fn decreasing order, called tbeder

The claim of (5) is that the received signal oveblocks is con- statisticsof .

tained within the eIIipsoi(Eém) and (6) claims that the colored A comprehensive reference on majorization and its applica-
noise is contained in the eIIipsoildz(,f"). These claims are ele-tions is [6]. A simple (trivial, but important) example of ma-
mentary to verify, and an argument analogous to the classigization between two vectors is the following.
sphere-packing interpretation for the capacity of the GaussiarE ) n n .

. o xample 2.1: For ever R™ such tha . ;=1
channel (in [2, Sec. 10.1]) shows that the sum capacity in nats P ya < D iny @

per channel use is upper-bounded by

vqume(EZSm’ 0))
C = liminf — log = @)

m—oo M vqume(E,l(,,"” °>) ' Continuing this digression, we present some definitions and
facts that form a key part of the discussion ahead. It is well
Continuing from (7), the volumes of the ellipsoids are giveknown that the sum of the diagonal elements of a matrix is equal
by to the sum of its eigenvalues. When the matrix is symmetric, the
relationship between the diagonal elements and the eigenvalues
is precisely characterized by majorization.

. 11 1
(a1, ..., a,) majorizes | —, —, ..., —=].
n n n

m
2

vqume(EZS’"’ 0)) =a(det(SDS' + X))

and Lemma 2.1 ([6, Theorems 9.B.1 and 9.B.2let H be a
vqume(E,L(Um’O)) = a(det(T)) % symmetric matrix with diagonal elements,, ..., h,, and
eigenvalues\, ..., A,. We have

whereq is a scaling constant independent%fD, andX. Sub-
stituting these expressions into (7) we arrive at the expression in (M, ..., An) majorizes (hq, ..., hy).
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Further, ifhy > --- > h, and)y > --- ), are2n num- that the subspace they span (of dimension at mAsshould
bers such thax majorizesh, then there exists a real symmetrimot contain the eigenvectors &f corresponding to the largest
matrix H with diagonal elements,, ..., h,, and eigenvalues N — K eigenvalues. Hence, without loss of generality, we
AL, ey Ap. assume thakl' > N. Let us denote the vector of eigenvalues
of SDS* + ¥ by pu(S).

7 (:\I/:\)/e; a}/( t;]?/f/haer:lejzcg?o%éﬁrize: S;I:azgh:;c%?;;)g The following result from the proof of [16, Theorem 3.1]
v maj Y- Y characterizes the map — A(S5).

Schur-concavé — f is Schur-convex. We observe that (as in

[16]) logdet(SDS* + %) is a Schur-concave function of the Lemma 2.3:

vector of eigenvalues df DS* + = (which we will denote by ~
1(S)). This allows us to conclude that if we can show that there £} = {)\(5)1 Se 5}

is anS* € S such thatu(S*) is majorized byu(S) for every — () Ax RN \ An 0
Ses (for some set5 C S such that for everys € S there { lf N) € (A, A -+ 0)
existsS € S with the property thalsy,(S) < Caun(S)), majonzes(pl, s PE)} 9)

then we have identified™ to be an optimal signature sequence
matrix. We call this vectop:(S*) a “Schur-minimal” vector of ~ The proof of this result also provides an algorithm which,
eigenvalues and its existence is the central focus of the ngiten\ € £/, constructsS such that\(S) = A. Now, recalling
section where we also develop a combinatorial algorithm thihiat the noise variances are orderedrds< o3 < --- < 0%,
constructs the optima*. This explains our introduction of the we make an elementary observation that based on this ordering.
majorization partial order into the discussion.

Lemma 2.4:For any vectot\ = (A, ..., Ay) in the posi-
C. Maximum Sum Capacity Characterization tive orthant ofRR™
Our main result in this subsection is the solution of the optb\1 +o2 . Ay +0d)
mization problem in (4) and thus the characterizatiolgf; . ’ majorizes ()\ g Anr 4 02 )
[1] 17 =) A[N] NJ -

Our solution completely characterizes the structure ofahe
timal signal directions (the& that achieve the maximum in (4))
and we also provide a combinatorial algorithm that explicitly We summarize Lemmas 2.3 and 2.4 as the following formal
constructs the optimal signature sequences. To keep the flowesult.
our argument smooth, we relegate the proofs of all the claims in
this subsection to Appendix A.

Our first observation is that in the context of the opt|m|zat|on
problem (4), it suffices to consider only thoSec S with the

Lemma 2.5: Define the polyhedroi in the positive orthant
of RY as shown by the expression at the bottom of the page.

1) For everyu € £ there existsS € S such thap(S) = p.

property thats DS* andX commute. 2) For everyS ¢ S, there existy: € £ such that(S)
- - majorizesy:.
Lemma 2.2:¥S € 8, 35 € 8 such thalClum($) < Caum(S) Jorizesy:
andSDSt commutes withe. Consider the following combinatorial algorithm (denoted by

A) that has its output a vectar* € £. Our main result is that
¥ is a Schur-minimal element of thereby completing our
identification of the optimal signature sequences.

Define the se& as the subset @ containings € S with the
property thatsDS* commutes with>. Then, we can restrict
the optimization in (8) ovef € S. Writing the vector of eigen-
values ofSDS* by A\(S), Lemma 2.2 (along with the classical Theorem 2.6:Output . of the combinatorial algorithrd
result that two matrices commute if and only if they have this a Schur-minimal element d, i.e., » majorizesy™ for every
same eigenvectors) allows us to write (4) in the simplified form € £.

S) Algorithm A:
Copt(D, L) Inax— Zl < ) . (8 Input K, N (p1, ..., px) ando? < o3 ... < o3,
se& 2N o} def .
Output p* = (uf, ..., u%) € L.

Observe that the rank ofSDS! is upper-bounded by Update
min(K, N) and hence onlymin(K, N) of the eigenvalues 1. Initialization:i =1, j = N andu}, =0,Yk=0...N.

A(S), ..., An(S) are positive. Thus, i < N, we see from 2. Termination: If{ > j stop and output the vector
(8) that the optimal sequences will always have the property  (uf, ..., uk ). Else, go to Step 3.
pi > o2, Vi=1...N
Do Mp > Y py+oi, Vi=1...N—-1
L=q (1, .., pN): =1 i=1
N K
4 E  + Z o}
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3. Let Itfollows thatif & € XC; then every usdrwith power con-
X i straintp; > p; also belongs tdC;. The optimal solution
J o .
> o+ X o5 p' is simply
k=i m=i *
77 = max 0]2», P , W =pi+o’, le Ky
) and
K—|Kq]
l > pi
* =1 2 .
1 . . By = =7 T 07, Jjé¢ K.
mZ(p[k]+Uz),ZSZ<J ) TN - K
k=i The physical intuition is that for every € K1, the user

k is oversizedi.e., its power is largeelativeto the power
constraints of the other users and the degrees of freedom.

— 2 * . 2 g oe— 4 . . . .
a) Ifn = o7 then seyj := o7 andj == j — 1. Goto Every oversized user is given an independent channel. (In

b I?tep 2. the DS-CDMA context, this is done by allocating over-
) sized users signature sequences that are orthogonal to all
K N the other signature sequences.)
Yoot X R - X [T 5) In the special case whell = pl, again, Algorithm.4
n= k=1 m=1 m@{i, ..., j} has a simple structure. Observe that in this case, Case 3c)
j—1+1 of the algorithm will never be reached and this makes the
. . . . algorithm have the following simple form. Define the set
then set’, == n,Vm =+i...,jand: .= j+ 1.
m K5 to be
Go to Step 2. l N
) It n = =i Ywmilpp) + of) for somel € Kp+ S 021
{i, ..., j} thensew’, :=n,Vm =14, ..., 1 and P ]21 et

. 2
i :=1+1.Goto Step 2. ke o > N
N= 2 oz
D. Properties of Algorithm4 =

1) The optimization problem in (8) can be rewritten, in view
of Lemma 2.5, as follows:

Observe that ifc € K, then everyl such thats? > o3
also belongs té&C,. Thus,/XC; is of the form{k, ..., N}
for somel < k£ < N + 1 (by conventionk = N + 1

LN » indicatesC, is empty). AlgorithmA simply outputs
Copt(D, ¥) = max 5 ;::llog <;) =0, k<I<N
and
The function =
Kp+ X o?
pp=— s 1<j<k (11

N
(B1s -5 pin) = Zlogﬁ—;
i=1 ! The physical intuition is that for everg € K5, the
“channel” (the direction specified by the eigenvector of
¥ corresponding to the eigenvalag) % is oversizedand
has noise varianceg; largerelativeto the other noise vari-
ances and the number of users and the processing gain.
Hence, the transmit signals do not have any energy in the
direction of these oversized “channels.”

is concave and the optimization is ov&a convex set that
has a Schur-minimal elememt (Theorem 2.6). Thus, the
solution to the optimization problem (8) is".

2) The algorithm stops after at mabt steps.

3) The updates of the components;of by .4 are in non-
increasing order. Hence4 is agreedyalgorithm in the
sense that the algorithm first sets the largest componént Properties o0, (D, %)

Of u to the smallest value it can attain and then reduceSConsider a VMAC with additive white noise and variance

the problem to one lesser dimension. This claim is prov@uppose we make one of the noise variances,s&aymuch

gwéppendm A5 whereitis used in the proof of Theorenl]arger than the rest while keeping the average of the variances

5 S2 : S
4) The special case af = 0?1 was addressed in [16] ar]dequal too?. The users can avoid using signals in the direction of

; : . the eigenvector oE corresponding to the large eigenvakig
Algorithm A reduces to the following simple form [16’and benefit from a reduced average noise variance (since the
Sec. 3]. Define the sé¢; C {1, ..., N} tobe . . N

: : overall average noise variance is stifl). Thus, we expect that
K the maximal sum capacity of the latter channel will be more than
> Pil{pi>p; the maximal sum capacity of the additive white noise channel.
E: pr > J=1 ) We make this intuitive idea precise in the following proposition

N K 1 using the notion of majorization to characterize when a vector
o Zl {r;zprw}
j=

has components more spread out than others.
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Proposition 2.1: Fix D, the diagonal matrix of user powers.
ThenCop,: (D, X) is convex inX. Also,

Copt(Dv E) 2 Copt(Dv i:)

for every ¥ and ¥ such that (¢2, ..
2

(3, ...,6%).

Thus, Proposition 2.1 says that for fixed user power con-
straints,C,y¢ increases if the noise variance becomes “more
colored” while keeping the total noise variangeX) constant.

On the other hand, keeping the additive noise variances fixed,
if the user power constraints are asymmetric, keeping the total
user power fixed, it is intuitive that there is lesser flexibility in
choosingi:.. We make this precise in the following.

., 0%) majorizes

Proposition 2.2: For fixed %, COPt(D, %) is concave inD
and, furthermore, for everyp # D such that(py, ..., px)
majorizes(ps, - .., px) we have

Copt(D, T) > Copt(D, X).

We conclude tha€, (X, D) is a concave (and Schur-con-
cave) function inD and convex (and Schur-convex)ih Thus,
Copt is asaddle functiorin D and X (in fact, C, is also a
“Schur-saddle function” in the sense of the results of Proposi-
tions 2.1 and 2.2). This saddle function property is reminiscent
of the famous Shannon saddle function property of mutual in-
formation

I(Xg; SXg+2) 21 (X g SX,4+W)
ZI(X; SX-FW)

where X is a K-dimensional random vector with covariance
matrix D andX , is a K -dimensional Gaussian random vector
with the same covariance matri®. Also, Z is an N-dimen-
sional noise vector with covariance matix and W is an
N-dimensional Gaussian noise vector with the same covariance
matrix ¥. Our result says that’,;;, the maximum value of
I(X; SX + W) (maximum overS € S and independent
distributions onX subject to a variance constraint), is a saddle
function in D and>.. The formal proofs of Propositions 2.1 and
2.2 are in Appendix A.6.

F. Construction of Optimal Signature Sequences

The general scheme to construct the optimal signature se-
quencesis contained inthe proofs of our mainresults: Lemma 2.5
and Theorem 2.6. In what follows, we summarize this construc-
tion. Let Qdéf [q1, ---, qy] be an orthonormal matrix that
has the property th@@*>(Q is a diagonal matrix with diagonal
entries{o?, ..., o3 }. Furthermore, we assume that we first
use algorithmA to generate.* and construct the vector =
(uf—o?, ..., i —o%). Wethen use the recursive algorithmin
[16, Sec. 4]to constru € S such that the matrig DSt is the
diagonal matrixiag{ A}, ..., A& }. Then the optimal signal di-
rectionsS* are given byQ.S. However, the structure of yields
more insight into the nature of the optimal signal directiétis
and this allows the following more succinct characterization
and construction of the optimal signal directions.

1) We begin with the first iteration ofd. If Step 3a) is
reached, then we setj, = 0. This means that the

1301

optimal signal directions are orthogonalgg. Thus, this
allows us to recursively reduce the problem to one with
only N — 1 degrees of freedom.

2) If Step 3b) is reached, then we set

LD+ tr2 2 )

)‘jT_O—jv 1<j<N.

We use the recursive algorithm of [16, Sec. 4] to construct
S € S such thatSDS? = diag{A}, ..., A% }. Then,
the optimal signal directions ar8* = QS. This step

terminates the algorithm and completes the construction.

3) If Step 3c) is reached fdr < I < N, then we have

l
> (i +03)
* )\* _ =1 _ 0_2

m=XN=—""7 "9 1=j=i

For expository ease, we assume that the users are ordered
according to their power constraints, i.e;, > p» >
--- > pg. By the hypothesis that Step 3c) is reached for
[, and by constructior{A, ..., A}) majorizes the vector
(p1, ..., pt). Thus, we can use the procedure in [16, Sec.
4] to construct ad x I matrix.S; such that
Sidiag{p, ..., pi}S; = diag{A], ... A[}.

We construct the optimal signal directions for the first
users (these have the largest power constraints) as

aQI]Sl-

The following is a key observation: recall that the output

[s1, - 8l =g -

p* of Aisin £ and hencéXy, ..., A%, 0, ..., 0) must

majorize(p1, ..., px). By construction of)\’[*ﬂ = A,

1 < ¢ <[ above, we must have

(Alg1> ---» AN, 0...,0) majorizes (pi41, -- -, Pi)-
(12)

Recalling the construction &8* € S from A* from the
proof of Lemma 2.3, we see from (12) that we can con-
struct theN — I x K — I matrix S; such that

) pl\'}Sjt = dlag{)\}k—l—l? LR >lk\’}

We then let the optimal signal directions for the remaining
K — [ users be

Sidiag{pit1, - -

[37-1-17 N [QI+17 e QN]ST-

We emphasize the point that each of the optimal signal
directions of the first users is orthogonal to each one
of the optimal signal directions of the remainihg — [
users. Furthermore, the firstiser signal directions span
the I-dimensional subspacpan{q,, ..., ¢;} while the
signal directions of the remaininf — ! users span the
orthogonal complement of this subspace. Thus, if Step
3c) is reached in the first iteration of, this observation
allows us to identify the user signal directions for the first
[ users and recursively reduce the problem to oné of
fewer users andfewer degrees of freedom.
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4) We summarize below some physical insights gained from< £ < N 41 (if £ = N + 1, then by convention we tak€,,
the observations made in Section II-D and from the protd be empty). The water-filling policy is simply
of Theorem 2.6.

a) Consider the first iteration od. Step 3a) is reached
if the largest noise variance?; is “much larger” and

n =0, E<I<N

than the other noise variances (in a sense made pre- P+ kil o2
cise in the algorithm). Our optimal signal directions . _ =" _ g2 1< i<k (14)
are chosen in this case to be orthogonaj toand A 7 =7 '

thus they avoid “directions” of high noise varianceT

) . . ) 13) b
We emphasize that this step is never reached if aJ‘e” (13) becomes

the noise variances are equal. » k=L
b) Suppose Step 3c) is reached for samg [ < N. I + El i
This means that the average of the largesser Cp(P. %) = 5 jz::llog - 1)o?

power constraints is “much larger” than other av-

erages of user powers in a sense that depends on

the noise variances as well (made precise in the @n the other hand, for every € S, the sum capacity of the
gorithm) and the optimal signal directions are asmultiaccess vector channel (2) is

signed to theséusers so that they span a subspace

(of dimensior) given byspan{q; , ..., g;}. Thus,  Csum(S; D, ¥)

thgse signal directions lie in the subspac_e with I.east _ 1 log det(I + X1 DS?)
noise and, furthermore, the other user signal direc- 2N
tipns are or_thogongl to this subspacg. We empha- _ 1 log det(] + diag{o72, ..., ox2}QSDS'QY),
size that this step is never reached if all the user N ' '
powers are equal. for some orthogonal)
N
1 d;
G. Parallel Gaussian Channels S SN > log <1 + ?)
=1 i
Consider the following system of parallel Gaussian channels ) )
(our notation is from [2, Sec. 10.4]): where we have denoted the diagonal entriesQfDS*Q*
by di, ..., d, and used the Hadamard inequality [4, Sec.
Y =x;+ 2z, 2 ~N(0,07), j=1...N 4.3, Problem 11] in the derivation of the last step. Since

>V | di = trSDS'tr D, comparing with (13) we arrive at the
where the Gaussian noise is independent from chann‘@[lowing simple upper bound tG,,. (D, 3):
to channel. The total power constraint on the input is
E[>_/_; #?] < P. Denoting the sum capacity (the maximum Copt(D, X)) < Cp(trD, %).
sum of rates per unit channel at which all information can
transmitted in each of the channels reliably) of this channel
Cp(P, ¥) we have

ough this upper bound is to be expected, our characterization
of the sum capacity’,,. (D, X) shows that if the user powers
are not too “spread apart” (in a sense that depends on the size

1 of the problem and’) the upper bound can actually be attained.
Cp(Pr %) = (o UN)Cgf?f(ZN ep) 2N In fact, we recognize that the simple form dfin (11) in Sec-
o = tion 1I-D coincides with the water-filling policy in (14). Thus,
N 7; the case of symmetric user powéI3 = pI) is a sufficient con-
) Zl log | 1+ a_]z ’ (13) " gition for the sum capacit¢,,; to be equal to the corresponding
j=

parallel Gaussian channels sum capacity Our claim is that
It is very well known that the optimal allocation of powers fol-2 Necessary and sufficient for equality @f,, andC, is Step
lows the water-filling policyE[z2] = n* = (8— o2)* for some 3¢) of Algorithm A being never reached. This follows the fact
S e ) that when Step 3c) is never reachetisimply reduces to the

3 > 0 such thay ¥ n* = P. A further explicit expression 1€ )
f 21—1 i p P water-filling allocation of (14).

for the water-filling policy is as follows. Define the s&t,; to

be
[ll. LINEAR RECEIVERS ANDUSERCAPACITY
N
P+ 0?1{0502} Linear receivers are popular and practical choices in wire-
¢ ke ] . . .
k- Uz > J=1 ’ ) less communication systems. For instance, 1S-95 uses RAKE
N receivers which are matched filters tuned to the multiple paths

N - ];1 o220t of the received signal [18], and the LMMSE receiver is con-

sidered a promising candidate in the 3G implementation. It is
Observe that it € K, then everyl such thatcrl2 > o,% also important to characterize the performance of these receivers in
belongs toX ;. Since we have ordered the varianegs < anetwork-centriavay. In this section, we consider a set of users
o5 < - < 012\,, the set,,; is of the form{%, ... N} for some trying to communicate reliably with a single base station. The
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users have SIR requirements to be met for reliable communi¢a?, Sec. 2.2] shows that the (unnormalized) LMMSE receiver
tion and we are focusing on DS-CDMA as the multiple-acce$ar user: is given by
scheme. The problem of determining when the requirements of

t -1
the users can be satisfied (i.e., they are admissible) and char- ¢ =(SDS" +2)"s; (17)
acterizing theoptimal allocations of signature sequences andhere we have writtenS for [sy, ..., sx] and D for
powers (optimal in the sense that the average powers of the uskeg{p1, ..., px } as in Section II-B. The corresponding SIR
are minimized among all allocations that let the users meet thagthieved by user is
SIR_requirements) is the central ch_us of [17]. In thjs section, we sL(SDS* + %) Ls;p;
are interested in the effect of additive colored noise on the ad- SIR; = 1= 8/(SDS' + %) Lsip;’ (18)

missibility region with average power constraints on the users. )
Our main result is a precise characterization that quantifies the>UPPOSe thei” users have SIR requirements, ..., .

effect of additive colored noise and also allows us to derive in}[€ USer capacity region is defined to be the seidrhissible
portant qualitative properties of the solution. SIR requirements, i.e., those for which there exist an allocation

We have organized the material in this section as follows. fff Signature sequences and powers such that the SIR of the users

Section I1I-A, we briefly describe the model and precisely stafiéith LMMSE receivers are at least equal to the requirements. In
the problem of interest. Section I11-B contains our main resukd/]» We showed that the user capacity region is precisely given

a complete characterization of the optimal allocation of signQy

ture sequences and powers that minimize the average transmit K T

powers of the users. Section 1I-C uses the characterization {f(ﬁl, s B Z e(Bi) < N} . Wheree(z) = Ttz
optimal allocations to derive some important qualitative proper

ties of the solution. In Section I1I-D, we use the characterizatidviotivated by this admissibility result, we call3;) the effective

of the optimal allocations to determine the precise region of abandwidth of usei. This is because the user capacity region can
missible SIRs given an average power constraint. Section IlIithen be described as the region where the sum of the effective
studies the effect of additive colored noise when the signaturandwidths of the users does not exceed the processing gain.
sequences are random, extends the results of [13], and allows uBhis result assumes that there is no constraint on the user
to compare the penalty paid on the average power transmitteddmyver allocated and thus the scenario of colored additive noise
choosing the signature sequences randomly. Section llI-F ctrs no affect on this user capacity region. Thus, to sharpen

=1

cludes the exposition with some discussion. our understanding of the effect of colored noise and the cor-
responding optimal sequences, we impose a power constraint
A. Model and Problem Statement on the users. Since it is clear that there cannot be a componen-
We begin by recalling the baseband model of DS-CDMA d4ise minimal power solution to achieve a set of target SIRs,
a VMAC in (2) we choose, as in [17, Sects. 4 and 5], to impose a sum received

p poyve(rj constrair}t. rf)ne way 'to justif)é this constraint on thg re-
ceived power of the users is consideringarerage tansmit
y(m) = Z sizi(m) + 2(m). (15) powercgnstraint onthe users. If one is ab%e to adgopt a model of

=t fading for the users that is ergodic (with the same mean fading)
Here,s; is the signature sequence of usend is an element of and independent, an average transmit power constraint on the
R™ with unit energy (i.e.s!s; = 1). The symbol transmitted by users translates into a received power constraint. Another justi-
user: in the mth symbol interval is denoted by;(m) and the fication is the following. The total transmit power decides the
receivedpower of uset is denoted by;. Suppose the symbol total interference caused to neighboring cells and the total re-
of user: is decoded using a linear receiver, characterized; by ceived power captures this quantity as a rough estimate. For
(a vector inR™), then the SIR of user(SIR;) is more remarks regarding our focus on the sum received power
constraint, see the discussion section, Section IlI-F.

(Ci, Si)Qpi (16)

SIR; = .
o?(e;, i) + Z#: (ci; 8;)%p; B. Main Result: Optimal Allocation
Ve

o ) ) Fix a set of SIR requirements,, ..., Ak that are admis-

We say that” users ar@dmissiblen the system if there is an gjp|e yith no average received power constraint (thus, the sum
allocation of positive pov;/rerp.l, o PR signature SEQUENCESyt the effective bandwidths is less thaf). In this subsection,
81, .- 8K (vectorse R™ with unit I norm), and linear re- \ye \yij| address the user capacity problem section in a “dual”
ceiver structuresy, ..., ex such that senseminimize the sum of allocated powers among all valid

SIR; > /3, Vi=1. K. a}llocatior)s The main result of this seqtion is a complete solu-

tion to this “dual” problem. Mathematically, the dual problem

Here3; > 0 is some fixed SIR requirement of usethat has can be stated as below (using the expression (18) for the SIR
to be met for each user for satisfactory performance. Suclaehieved by the LMMSE receiver).
choice of powers and signature sequences is caledicallo-

. ; ) L Dual Probl :
cation. Our focus here is on the LMMSE receiver. This is the op- uatro e;rﬂ: . el . )
timal linear receiver, optimal in the sense of maximizing the SIR D= S*(SDS* +¥)7SD* has diagonal entries
among all linear receivers. A computation analogous to that in greater than or equal (j3), ..., e(8k). (19)

Minimize tx[D] subject to the condition
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HereD varies over the positive diagonal matrices &S and From Lemma 3.1, we have equation
the condition in (19) represents the constraint that the users’s
SIR targets are met. Any paiD, S) that solves Probler® is [SDS*, x]'=
anoptimal allocation

We begin with a preliminary lemma that characterizes an i
portant property of all optimal allocations.

Efopsts - SDSt = 0.

r§|nce two symmetric matrices commute if and only if they are
Jointly diagonalizable[/AT/t 4 % can be written as

Lemma 3.1:If the pair(D, S) is an optimal allocation, then U(A + diag{of, ..., oX HU".
SDSt andX commute.

Proof: As an aid to prove this result, we continue with the Jhis result allows us to rewrite the condition (20) as

following series of lemmas. VA(A + diag{o?, ..., o3 })" V" has diagonal entries
Lemma 3.2:Consider the optimization problef® as fol- equal toe(fy), ..., e(Br). (21)
lows.

. o Appealing to Lemma 2.1, we can rewrite (21) using the notation
ProblemP: Maximize A = diag{\1, ..., A} as

tr [WD%st(SDSt + 2)*151)%} subject totr[D] < P.

. o . ( A AN ,0,...,0)
Here, W is a fixed nonnegative diagonal matrix and the opti\ A\; + o7 AN + 0%
mization is asD varies over diagonal matrices with nonnega- majorizes(e(f1), ..., e(Bk)).
tive entries andS ranges ovetS. Then, any pai(D, S) that
achieves the maximum above has the property $qa6* and This allows us to rewrite the dual problefusing (21) as fol-
¥ commute. O lows:

N
ual ProblemP: Minimize ) A; subject to the condition

With no user received power constraint, we know that the us?
i=1

capacity region is the region of the positive orthant bounde

above byzfil e(3;) = N. This is a hyperplane, when the AL AN

coordinates of the user capacity region are measured in termg ), | 52° """ X 4 03’ CRERE 0)

of the effective bandwidths rather than the SIR requirements. majorizes(e(3), - .., e(fx)) andA > 0, ¥i=1...N.
Under this simple coordinate transformation, the user capacity -

region is thus convex. Our next lemma shows that the user ca- (22)
pacity region with any given sum received power constr&int Supposer” dzef()\L ..., M%) is a solution to the problem

continues to be convex with these new coordinates. above. The optimal allocations are formed as follows. We

Lemma 3.3: Fix a positive sum received power constrafht use the combinatorial algorithm of [16, Sec. 4] to generate a
Then the set (denoted 1) of K x K symmetric matrixd with eigenvalues\i, ..., A} and
) the eigenvalu® with multiplicity X — N and diagonal entries
(e - ex): 0 e <1, Vi} e(f1), ..., e(Bx). Then there exists aiW x K matrix V*
such thatusers with SIR™—, ..., 15— are admissible when with orthonormal rows such that
sum received power constraifitis convex. It At
Vdiag{)\* L .. = }V’

T yk 2
AN +ox

Since any convex set is precisely the intersection of all closed
half-spaces that contain it [9, Theorem 11.5], Lemmas 3.3 a
3.2 complete the proof of Lemma 3.1. We provide the proofs o
Lemmas 3.3 and 3.2 in Appendixes B.2 and B.1, respectidely,

Hrg\s diagonal entrieg(f3;), ..., ¢(8x). We now allocate the

user powerstobg, ..., px as the diagonal entries of the ma-

trix VA*V*. Writing the matrixD = diag{p1, ..., pr}, we
Suppose the pafD, S) is a solution to the dual problefin  allocate the signature sequences to the users (denoted by the ma-

(19) and let a singular value decompositiorsa@@s belUA2 V't  trix S) to bel/*A*2 ViD= . Here, we have takefi* to be any

wherel/ is an N x N orthonormal matrix,A is anN x N  orthonormal matrix that diagonaliz8s It is straightforward to

diagonal matrix with diagonal entries equal to the eigenvalugsrify that S has unit norm columns and that the péfp, 5)

of SDSt, andVtis an/N x K matrix with orthonormal rows. is a valid allocation. Thus, it suffices to solve the optimization

Sincetr[D] = tr[SDS?], we can rewrite the dual problefdas problem (22) above.

below. We also observe that the optimal allocation has equalityConsider the followingombinatorialAlgorithm 3. It termi-

in the diagonal elements of (19). nates in at mosiV steps.
Dual Problent?:  Minimize tr[A] subject to the condition Algorithm B:
VATUYUUAU' + £)"*UA? V' has diagonal entries Ionput K/’\N’ /31( Z 2/3)’\" >) 0and0<of<o3---<o}.
utput X* = (A%, L, A%,
equal toe(31), ..., e(Br). (20) Update 1 N

Herel/ is any N x N orthogonal matrixA is any nonnegative 1. Initialization:¢ =1, j = N andA; =0, Vk=1...N.
diagonal matrix, and” is any N x K matrix with orthonormal 2. Termination: Ifi > j stop and output the vectdf. Else,
rows. go to Step 3.



VISWANATH AND ANANTHARAM: OPTIMAL SEQUENCES FOR CDMA UNDER COLORED NOISE

3. Let
J
> Om

m=1

71 = max { oy, e ,

i—i+1— > e(Bm)

m=t

t
E Im
m=t
,

t
t—i+1-— > e(Bm)
a) Ifn = o,then set\} := 0 andj := j — 1. Go to
Step 2.
b) If

j
> Om
n= K
j —t+1- Z‘e(ﬁm)
then set\, := o, (n — o), Ym = i..., j and
i1 := N +1. Goto Step 2.
c) If

t
> Om
77: m=1 l
t—i+1— > e(Bm)
for somei < ¢ < j, then set\’, = o0,,(n — o),
Ym=4¢,...,landi :=t+ 1. Go to Step 2.

Our next main result is the following.

Theorem 3.4:Output A* of the combinatorial algorithn8
solves the dual problerR in (22).

1305

We also assume that the SIR requirements are such that the
users are admissible, i.@f;l e(f3;) < N. The proofs of the
assertions of this section are in Appendix B.5.

We would like to study the effect of colored noise on the
minimal sum power required to meet a given set of SIR re-
quirements. Suppose the largest of the noise varianggsvas
very large, then the allocation could potentially avoid the direc-
tion with this noise component and thereby communicate on the
“cleaner” directions. We make this observation precise in what
follows.

Proposition 3.2: Fix a set of SIR requirement§s,, ...,

Bx). Then, P* is a concave function ofo?, ..., #3;) and
furthermore P* is a Schur-concave function 652, ..., o3%,),
ie.,
P*((Brs -, Br), (o, .., 0%)

2 P*((ﬁla LR /31()a (5]?a LR 5]2\’))

. 0%).

In particular, Proposition 3.2 says that for a fixed set of SIR
requirements, additive white noise requires the most sum power
allocation among all additive colored noises with the same total
power. On the other hand, keeping the additive colored noise
covariances fixed, we have the following behaviotf.

whenever(5?, ..., 5%) majorizes(c?, ..

Proposition 3.3: Fix the additive noise variancés?, ...,

o%;). Then,P* is a convex function ofe(/3:), ..., e(Bx)) and
furthermore,
P((Br, ..., Br), (01, ... o))

> P* ((/;1, e /;K) , (o1, ., UIQ\r))
wheneverc(3,), ..., ¢(Bx)) majorizes(e(31), ..., e(Br)).

The proof is relegated to Appendix B.3. Further, for both the Thus, Proposition 3.3 says th&f is a Schur-convex func-

special cases of; = o,i=1---Nandp, =3, =1--- K,

tion of (e(51), - .., e(BK)) for fixed additive noise variances.

the algorithm simplifies substantially. This is analogous to thg particular, this means that among all SIR requirements with
simplification mentioned in Section II-D. We now derive SOM@,a same sum of effective bandwidths. the minimal sum power

properties o_f the_optimal allocation of signature sequences ar'é‘é]uired to meet them is the one corresponding to all SIR re-
powers, optimal in the sense of the dual probBmOur main quirements being equal.

result is the following.

Proposition 3.1: Let 5* and D* be a solution to the dual D- Admissibility Region
problem? (defined in (19)). Then, the LMMSE receiver for In Section l1I-B, we characterized the allocations that achieve
each usef (as in (17)) is given by a given set of SIR requirements while minimizing the sum of re-
w def ok e it R ceived power among such allocations. Now, we will fix an
¢ = (DTSN A+ X) s = il v upper bound on sum received power that can be allocated and
for some constant;. characterize the region of SIRs admissible with this constraint.

In Lemma 3.3, we have already shown that the region of ad-

We conclude that the LMMSE receiver with the optima SIRith the power constraint is convex. We now

choice of signature sequences and powers simplifies to ﬁéssible 1_+SIRh_ h fisi di
matched filtey matched to the background noise. The proof aracterize this convex set. The proof is in Appendix B.6.
Proposition 3.1 is in Appendix B.4.

[MEg

Proposition 3.4: SIRs (3., ..., k) are achievable with a
sum received power constraift if and only if (e(81), ...,
e(fk)) is contained in the convex hull ¢ P, ) as shown at

We now study properties of the optimal allocation identhe top of the following page. Here ranges over all permuta-
tified in the previous section and derive some qualitativions on the sefl, ..., K} andn, is a positive number chosen
features of the solution to the user admissibility problem. Latich that
P*((B1, ---, Br), (63, ..., %)) denote the minimum sum
power required to achieve the SIR requiremépts ..., k)
when the colored additive noise variances &¢. .., o3,).

C. Qualitative Properties of Admissibility

N
Z 07;(77",,, /wm — 07;)+ =P
i=1
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+
7i .
e 0<e; £ |1— ——— , 1<:<N
C(P, E)dIfU U (Gw(l),---,ew(K))i = < wa/w[ﬂ) L

T N 20 ¢; =0, N+1<j<K

Observe that Section IlI-B contains the recipe to construct Proposition 3.5: Let /Ji(N) denote the (random) SIR of the
allocations(S, D) that achieve any set qf% requirements LMMSE estimate of usef. Then
con}amed irC(P, 2) earlier. SI.nC(é’(P, Y)is convex, any point /3£A’) p—rﬂ;/}*pl, asN — oo and K = |aNN |
on its boundary is characterized by a vecaoith nonnega- L i N ] . .
tive entries. We can then use the constructive approach of S&&ere/3 is the unique positive solution fgt in the equation

tion 111-B to construct the corresponding allocation pait D). Y dF,(z)
. ) . . 8= _— (23)
In the special case when all the SIR requirements are identical 0o z+af pdE, (g)

there is a simple characterization of achievability (akin to [17, L

Theorem 4.1]). First, we find a positive constarguch that The proof in [13, Sec. 4] extends directly to prove the propo-
N sition above with the use of the general result in [1]. We omit a
Z oi(n— o))t =P discussion of this extension and focus our attention on qualita-
! o ' tive features of3*, the limiting SIR of the LMMSE estimate of

a unit power user.
Then, it follows that the largest achievable common SIR, de-\We would like to study the behavior 8f as a function off;,

noted byg, satisfies andF,, and to this end we introduce the following partial order
N on such distributions. This partial order, knowndikation, is
(n—ao)t one way of generalizing the partial order of majorization from
e(f) < =1 finite vector spaces to infinite dimensional spaces (with a locally
Kn convex topology). In our context, the distributiafisand/, are

probability distributions on the nonnegative reals, so we focus
on the space of such distributions. Foy and F5, two prob-

ability distributions on the nonnegative reals, we say tHat “

Inmany communication systems employing DS-CDMA, Sigg 4 dilation of F,” if for every integrable nonnegative convex
nature sequences cannot be chosen optimally as a fU”Ct'O’?metion¢ on the positive reals we have

the loading (number of users in the system). In such situations, .00 00

it is reasonable to model the signature sequences as random, / P(x) dFy(x) > / P(x) dIs(z).

but fixed once chosen. This model is used in [13] where the au- 0 70 _

thors derived substantial insight into the performance of lineAf@logous to Schur convexity, we say that a functibrhat
receivers (in terms of the SIR of the estimate) using results BiPS Probability distributions on nonnegative reals to the
the limiting distribution of the eigenvalues of large random ma€@ls dilatory-convexif for every pair of probability distri-
trices. One of the important results was the derivation of tHg!tions (F1, F») such thatF) is a dilation of £5, we have
limiting behavior of the SIR of the LMMSE estimate of a unit/ (£2) < f(I1). We say f is dilatory-concaveif —f is
power user in a large system (lareand largeN keeping the dllatqry-convex. We refer the m_ter_ested reade_zr to [8] for_ further
ratio of K to NV fixed, which we denote to be). We now present details on the partial order of dilation _and for its pro_pertles_. We
this result extended to our scenario of interest: colored additi?ee NOW ready to state one of the main results of this section.

E. Random Signature Sequences and Admissibility

noise. Let us recall the channel model from (15) Proposition 3.6:
K 1) p*(F,, Fy) is dilatory-convex inF,, for fixed F,.
y(m) = Z s;x;(m) + 2(m). 2) B*(F,, F,) is dilatory-convex inF,, for fixed F,.
i=1

The proofis in Appendix B.7. The result says that for a fixed

We assume that the entries of the signature sequenees in- received power profile, as the noise becomes more colored
dependent with zero mean and variarieeThis normalization (keeping the same average noise level constant), the SIR of the
ensures that the signature sequences have unit expected eneMMSE estimate of a unit power user increases. Also, for fixed

We assume that the empirical distribution of the eigenvaluesmdise covariance, the SIR of the LMMSE estimate of a unit

the covariance matrix of (denoted by:) converges weakly (as power user increases when the received power profile becomes
N — o0) to a distribution which we denotg, . We also assume “more spread out” (all users received at the same power is “least
that the support oF;, is strictly positive and thus bounded awayspread”) while keeping the average received power constant. In
from zero. We denote the received power of usey p; and the context of specific design of signature sequences, we saw
assume that the empirical distribution of user received powensSection IlI-C that performance is better when the noise gets

converges weakly to a distribution (& — o) which we de- more colored keeping the average noise power constant. The
note£},. We are now ready to present the extension of the maoptimal signature sequences utilized the particular structure of
result of [13]: limiting behavior of the SIR of the LMMSE esti-the noise covariance and we attributed the gain in performance
mate. to this. However, in the current context, the signature sequences
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are chosen randomly and independent of the noise covariatfoe users is admissible if there exists a choice of signature se-
and still the performance improves when the noise gets mayeences such that with these powers and signature sequences the
colored. The reason is that even though the signature sequergigsof the LMMSE estimate is at least equal to the requirement.
were chosen independently, the LMMSE receiver uses tliée leave this characterization as an interesting open problem.
information about the color of the noise to obtain the estimate We studied the impact of optimal signature sequence design
of the symbol transmitted and thus the SIR improves. in the presence of colored noise for two different types of
Having characterized the performance of the LMMSE reeceiver structures. Though the two receiver structures are
ceiver, we now turn to the dual questionuder capacityGiven very different, the mathematical techniques used to analyze
a target requirement, under what conditions on the loadingboth the scenarios are very similar. In particular, we found the
« Will there exist positive power allocations to the users armhrtial order of majorization a very appropriate mathematical
random signature sequences such that the SIR of the LMM&I®! for both the problems. Further, the signature sequence
estimate is at least equal to the targét Tse and Hanly [13, design problem was posed as an optimization problem in both
Sec. 5] show that, in the case of white additive noise (with vaigscenarios where we were minimizing a convex function with
ancec?), the requirement i&% < 1 and the minimum re- majorization constraints. We showed that there exist combina-
ceived power required is torial algorithms, such as those i and 3, which solve such
5 optimization problems. This could be of independent interest
04/33' in the optimization literature.
I —ars We motivated the setting of colored additive noise as inter-
Colored noise does not chan o . fe{ence from mobiles communicating with other base stations.
ge the admissibility requirem {1 . . . L .
E Is interesting to study the behavior of distributed signature

a—— < 1 since there is no upper limit on the power allocate . ; .
Hé(/r\'/%ver the minimum power that needs to be allocated is nGauence adaptation, independently by each base station. The

. . . ize thQnvergence properties of such asynchronous distributed adap-
a function of the colored noise covariance. We characterize t 5 S :
quantity below. tation will, in general, depend on the propagation model across

base stations. A study of this dependence and the corresponding
Proposition 3.7: Fix £ such thata% < 1 and let convergence properties is a natural step motivated by this paper
Poin(3, I,) denote the minimum received power of everand the qualitative properties derived from the saddle function
user such that with random signature sequences the SIRpafperty of the optimal capacity.
the LMMSE estimate is at leagt. Then, P,,in (3, F,) is the

unigue positive solution to the equation (for APPENDIX A
dF, (2) PROOFSFROM SECTION Il
/ zy _a p- (24) A1 Proof of Lemma 2.2
p 148

This result follows directly from [6, Lemma 9.G.4], which
says the following. For any positive definite and H

The proof is in Appendix B.7. Our result shows that the min- det(G + HY) < II" -« (A (G + A (H o5
imum power (for fixed target SIR of) required decreases as G+ H) < Uiy ( 1(G) + Ay )) ' (25)

Furthermore P.in (3, F,,) is dilatory-concave i, .

o def

the noise becomes more colored. We substituteSDS* for G andY. for H and defineS = QS
. _ where@ is any orthonormal matrix such thgSDS*Q* and
F. Discussion 3} commute and, furthermore, has the following property. The

In this subsection, we have characterized the user capadigenvalues oQSDS'Q" + X are given by\;(SDS*) + o7,
region—the tuples of SIRs of the users that can be jointly=1.../N. The claim now directly follows from (25).
attained—when using the LMMSE receiver. This problem
was addressed in both the case when the signature sequeﬁc%
are chosen optimally and in the case when they are randomhRecall Lemma 2.1 which states that for any symmetric
chosen. Our main result is a complete characterization of thgtrix, the precise relationship between the diagonal ele-
region and this allowed us to derive some qualitative propertigeents and the eigenvalues is that of majorization. Thus, if
of the user capacity region. In particular, we showed that tig&;, ..., Ax, 0, ..., 0) majorizes(py, ..., px), then there
minimum average transmit power required to attain a given sstists a symmetric matri¥{ with eigenvalues\y, ..., Ay,
of SIRs is a saddle function: it is convex in the tuple of SIRS, ..., 0and diagonal elements, ..., px.Letyy, ..., vn €
and concave in the eigenvalues of the covariance matrix of tR&€ be the normalized eigenvectors & corresponding to
colored noise. One context in which to place our results in thise eigenvalues\y, ..., Ay. Let V! = [v1ws...wy]. If we
section is as an extension of the results of [17] and [13] to tlhet A be the diagonal matrix with entries;, ..., Ay, then
case of colored additive noise. H = V'AV. Now defineS = AzVD~3. Then, we verify

In our study of the user capacity region, we have focuséidatS'S = D~z HD~ = has unit diagonal entries, concluding
on the constraint of sum of allocated powers of the users.that S € S. Further,SDS! = ATVV'AL has eigenvalues
more general formulation is to addressthmlproblem: givena (A, ..., Ay). Now, definingS = QS whereQ is a or-
tuple of SIR requirements, characterize the regicadvhissible thonormal matrix chosen such thas DS*Qt commutes with
power allocations of the users. A tuple of power allocations  we have foundS € S with eigenvalues inC}. Conversely,

groof of Lemma 2.3
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if S € & is such thatSDS? has eigenvalue$\;, ..., Ay) by every element of and is thus the Schur-minimal element
then DzS'SD? has eigenvalueg )y, ..., Ay, 0, ...,0). of L.
But it also has diagonal entrie®;, ..., px) and so, by  We begin with some preliminary observations about Algo-
Lemma 2.1, we must hav@, ..., Ay, 0 0) majorizing rithm A.
(pla "'aplf)- 1) If
K N

A.3 Proof of Lemma 2.4 S pi 4 S o2

If \; = A foralli = 1---N, then the assertion is trivial. i=1 i=1
Suppose there exits at least one pair of indéxeg) such that N
i > j,andA; > ;. Define the vectoa that differs fromA only L
. . . . T ¥ E(p[z +0; )
in the components indexed byandj asA; = A; andi; = A;. S 5 i1 =1 N_1
It is seen that < IHax§ oN, AT

Xi+0f =a(Xi+07) + (L= a)(N; +07)

and
A tol=(1—a)\+ol)+ ol +03)
where
o2 — 52
a= - €0, 1).

A +o2—Aj— 0]2»
By definition of majorization, it follows that
(AL 401, .oy An + o)
majorizes (5\1 +o2 AN+ 012\) )

By repeatedly interchanging every péir j) with the property
that: > 5 andA; > X; and using the associative property of
majorization, the proof is complete. O

A.4 Proof of Lemma 2.5

Fix s € £. We first show that there exist$ € S such that
1(S) = p. Define X = (A1, ..., Ay) by N\ & — 02, By
definition of . € £ we see that € £]. An appeal to Lemma
2.3 confirms the existence of thfe € S with the property that

w(S) = p.
Fix S € S. Thusu(S) can be written as

MSDSYH + (02, ..., o%)
for a particular ordering OX(SDSt). Appealing to Lemma 2.4,
the vectori < (ji, -+, fiy) defined byji; = A (SDS?)+0?
is majorized byu(S). Appealing to Lemma 2.3, we verify that
i € L. This completes the proof. O
A.5 Proof of Theorem 2.6
Consider the following optimization problem:

gt 1 o fhi
Hé]\)(/vblv ey /vLN) = g _;
—1 a;

2N £
(26)

max
(1, -, pN)EL

and denote it by

7)g = (.97 K7 N7 (p17 ---7]71()7 (O—%v LR 0—12\7))'

Here,g is any real continuous, increasing, strictly concave func-

tion. We show below that the output of Algorithsachieves the

maximum in (26) for every real, continuous, increasing, strictly

concave functio. Appealing to [6, Proposition 4.B.2], and ob-
serving that the sums of the components of every vectrare
equal, we conclude that the output of Algorithnis majorized

2)

l 7

then Algorithm.A outputp* has all equal components.
Hence, we have that* is majorized by for anyu € £
(see Example 2.1). This will complete the claim tlét

is indeed the optimizing argument. We henceforth assume
that this case does not occur.

We claimed in Section II-D that the updates.6fby al-
gorithm A4 are in nonincreasing order without a proof.
We develop some notation and give a formal proof of
this statement. In Algorithr, the termination condition
is< > j and since eithef is incremented (at least by
1) or j is decremented by at every iteration, the algo-
rithm has to stop im < N iterations. Denote the pairs
(i, ) as the algorithm runs through theiterations by
(i1, 71), -- -, (in, 7») @nd the value of; in Step 3 by
m, ..., nn—1. Observe that the algorithm always termi-

nates in Step 2 (and, by definition, terminates atritte

iteration). Let us define,, 400, 1t suffices to show that

m="mn2 2 M1 > 0.

Fix 1 < I < n — 2. In thelth iteration, eitherj; gets
decremented aj; gets incremented and we consider each
case separately.

a) Case 1341 = ji — 1. By hypothesisy; = o7, and
n >a}l 1= 0121+1 (27)
Ji—1
Zp[k‘i‘sz Zp[k-i-sz
> k=1, m=i; k=1, m=i;
- g—t+1 Ji—
(28)
t
kZ (ppy +7)
i i <t <. 29
A ust<jg (29)

We used the fact that
K Ji
Yoot X on
k=1, m=1;
Ji—u+1
in the derivation of (28). Combining (27)—(29) we
have shown tha#; > 741.

2
oG 2

b) Case 24,41 > i;. By hypothesis we have

t41—1

> (ppg+o7)

k=i,

m= (30)

ty1 — U
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By hypothesis, we have 1) Supposeu; = pf; - By the earlier observation that the
m> O, _ 0121 . (31) updates of.* by A gonthmA are in nonincreasing order,
* . we see that
We also have for every1 < t < ji, by substi- N
tuting for n; from (30) E g+ X o
% m=1
t Hr = max OJQV )
2 (pw + %) . N
S k=i
e T l
et > (ppg + 7)
(t—iz+1)<z (P[kﬁff@) B =1, N-1
k=il
t
> (141 — 1) <Z (P +0'1%)> . . . BN
= a) If upyy = o3, then (Kfays -+ B{n) is the output

Rearranging the terms above leads us to conclude of A with parameters, N — 1, (p1. ..., pk),

that (0f, ..., o%_1)- By hypothesisy ;) = = o3
' and thus(us, ..., pn—1) € L for these parame-
> (p[k} + a,%) ters. By the induction hypothesis, we have
k=i1+1 T__ * * S —
L P (32) HN Dty opifn) 2 HS Y (s ).
We also have Sincepy;) # uf; for somej € {2,..., N} we
have by the strict concavity df; (M) that
E i+ 3 o (V) (V)
m > k=i, m=i; Hg (u ) > Hg (/J)
- Ji—t+1

‘ Thus, we arrive at a contradiction to the hypothesis
tp1—1 . . . .
) that . is the optimal argument in (26) completing

(i — i +1) < Z (ppy + o7)

the proof.
k=1,
I i b) If
> (G141 — 41) <Z P+ Z 0’3,;)- l
k=i, m=i, E (p[z] + o7 )
Rearrangement of the terms above leads us to con- /j[kﬂ %
clude that
K i forsomel € {1, ..., N —1} then fromA4 we have
X ot X oon phy = ni = --- = pj’. Using the fact that: € £
L N (33) we arrive alfy; = ppy = ju = - = u. Thus,
Ji—tp1+1 (H5i1s - in) @nd (g, - .., py) belong tol
Combining (31)—(33) we have shown that > with parameterdX’ — I, N — I, (pi41, ---, PK),
M1 (6f11, ..., 0%). By the induction hypothesis,
3) For anyu € £ we haveuLl < ppy- This observation (“gf\r,ylij" ’“L'J*"_) is the optimal argument of
follows from the fact thaj:?,; is updated in the first step Hg" " in £ with these reduced number of param-
of A and#n in Step 3 ofA is always less than or equal to eters and hence
1) for everyu € L. Hg(JN_l) (/jlk-f—lv RS /j]k\’) > Hg(JN_l) (IM+17 toe 7NA’)
Our proof that the output of Algorithrd is optimal is by contradicts the hypothesis that is the op-
induction. First consider the cagé = 2 and arbitraryk’ > 2. timal argument ofHS" in £ with parameters
Since for every: € £ we havey;) < juqy andpi 445 = i+, K, N, (p1, ..., px), (61, ..., 0%). This com-
we conclude thag* is majorized byy and thusHS™ (u*) > pletes the proof.
HQ(M(M). This completes the proof. We now make the induction c) As observed earlier, we do not need to consider the
hypothesis that the output of is optimal for allV < » and all case when
K > N.We show that the output of is optimal forN = n+1 )
and anyK > n + 1. Supposeg: € £ is the optimal argument to ;1 pi + ;1 7
the optimization problem in (26) and the outpiitof A is such /f[kl} = %
that

since in this casg* is the optimal argument.

(Nﬁp EE me) # (bl -5 BIND)- 2) Henceforth, we takg;; > ME]. Letl < j < N be the

We now proceed to get a contradiction to the hypothesis;that largest index such thak,) = ;. Observe that we have

is the optimal solution to (26). 1 = ) > phy > o5 (34)
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a) Supposg = N.We have and thus that,; is Schur-concave i for fixed . To see
X N concavity, fixD; and D-. From (8), (9), and Lemma 2.4, we
S+ o can write forj = 1, 2
* =1 =1
PN = R[] > P 2 1 N A
N Copt(D;, X) = =— max Z log <1 + —;) (36)
and thus there exisis< [ < N suchthajy; < py. 2N MeL!(K,N,D;) 7;

We can now define a vectgrdiffering fromponly |\ 1hare

in components indexed by and! as follows: def
[’/(Ka Nv D) :e [’ll(Kv Nv D)ﬂ{)‘lz)\QZZ)\]\’ZO}

AN = N — € P =+ e '
Observe now that iNY) € £/(K, N, D;) for j = 1, 2, then
where for everya € (0, 1)
2
¢ = min{’“”" 5 ON o } . oA + (1 - a)A® € L'(K, N, aDy + (1 — a)Dy). (37)

Using the concavity of the logarithm, we have for everye

Using (34) we observe that> 0. It is clear that (0, 1), from (36)

g € L(P) and thati is majorized bypu. Thus,

Hg(N)(/l) < HéN)(u) and we arrive at a contradic- aCopt (D1, ) + (1 — @)Copi (D2, )

tion to our hypothesis that was optimal orZ(P). < A 1
b) Supposg # N. By definition we haveu; . < ji; T DL (KN.D;y), j=1,2} 2N

and by hypothesis that N AD L1 @

. -Zlog(l—i—al =)k )
J py O'i
JHj = IR > JRp) 2 Z(p[i] +07). N
=1 )\z
<, . . max Zlog <1—|——2>

We define a vectof (strictly) differing fromy: only {ACLI(KG N, a4 (1=e) Do)} T i

in componentg andj + 1 by = Copt(aD1 + (1 — a)Ds, L)

fij = pij — ¢, fjr1 = pjp1 + 6 where We_used (37) in the second step. This shows Proposition

2.2. Now fix D, ¥ andX. HereX andX are such that the vector
where of their eigenvalues (arranged in nondecreasing order)
2 ~
¢ — min { 1y —2uj+1’ My ;%' ’ cig(X) (o2, ..., 0%) majorizeseig() = (52, ..., 52).
) We will show that
J
ni = 3 (o +07) } Copt(D, X) = Copn(D, eig(2)) = Cope (D, eig (2))
= > 0. _
2 = Cope (D, 2) .

Using (34), observe that > 0. It is clear that Recall the characterization @, as in (36). Using the con-
/o € £(P) and thati is majorized by, and we  vexity of the mapr — log (1 + ) with a > 0, for every fixed

arrive at a contradiction as before. A € L'(K, N, D), we have that the function

This exhausts all the cases and completes the proof of The- 1 X \,
orem 2.6. O (02, ..., 0%)— o ;log <1 + O_—%)
A.6 Proof of Propositions 2.1 and 2.2 is convex. Since a pointwise supremum of convex functions is

Fix ¥ and conside and D such that(jy, ..., x) ma- also convex we have shown th@,, is convex ireig(X). Since
jorizes(py, ..., pr). Using the transitivity of the partial order Cop is also symmetric irig(>:) (that is, it is invariant to per-
of majorization we have mutations of the elements efg(X)), we have shown that,,,;

3 is Schur-convex irig(2). In our notation, we have shown that
[’/1 (Ka Na D) g’C’ll(Ka N’ D) (35) Copt(Dv E) 2 Copt(Dv E)

To see the convexity of’,,; in the covariance matrix, fix

Now, observe the following one to one relationship bey,y two noise covariance matricBsand 5. We use the fol-
tween L{(K, N, D) and L(K,N,D,X): For every lowing result [6, Theorem 9.G.1].

A € LYK, N, D), we havep € L(K, N, D,>) where
i = A; + o2. Conversely, for every, € £L(K, N, D, %), we Lemma A.1:For any two symmetric matricgs andB, with
have\ € £/ (K, N, D) where\; = . — o2. This allows us to Vectors of eigenvalue¥(A) andA(B), respectively,
conclude from (35) that (M (A+ B), ..., \,A+ B) is majorized by

t

L(K,N,D,¥)C L(K, N, D, %) (A (A) + A (B), - Ap(A) + A (B))
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Continuing from (36) we have, using the convexity of the mapubstituting (41) in (40) and using (42), we obtain
xlog(l+%);a>0

i r [v;WVoAéA;l(HBSAgl)—lBSAo—lAé} >0. (43)
aCope(D, ) + (1 — @) Cope (D 2)

Also, we have

> ! max Zlg( +> B, —0 ass— 0 (44)
2N AcL/(K.N,D) 24+ (1 —a)s? B ’
e = S UNU,H - HUIXU,, ass— 0. (45)
= Copt (D, aeig(X) + (1 — a)eig (Z)) s
) - Dividing throughout bys > 0 in (43), and lettings | 0, we
2 Copt (Dv elg (O‘E +(1 - O‘)E» obtain (using (44) and (45))
= Copi (D, a3 + (1= )) - [V;WVOA(% AZYUIS U, H — HUjEUO)AglAé} >0
where we used Lemma A.1 in conjunction with the earlier proof (46)

of the Schur-convexity of’,,; for fixed D in arriving at the
last but one step. This shows the convexity(f,. in ¥ and Similarly, dividing bys < 0in (43), and lettings T 0, we obtain

completes the proof of Proposition 2.1. O i [VtWVAZA— (UISULH — HUSU. )A—lAZ} <0

APPENDIX B 47)

PROOFSFROM SeCTION Il From (46) and (47), we conclude that for every skew-symmetric

B.1 Proof of Lemma 3.2 matrix H we have
We begin with some relabeling. For ady and.S, let a sin- tr [VtWV AglA—l(UtEU H— HU'SU )A—IA(%:| -0
gular value decomposition cf Dz be UAz V't whereU is an o O Ameme o
N x N orthonormal matrixA is anN x N diagonal matrix which can be rewritten as
with diagonal entries equal to the eigenvalue$s 61St, andV'*
is anN x K matrix with orthonormal rows. Then, the problem
‘P can be written as follows.
Maximize tr [thVA% (A + UtzU)—lA%]
def r 41 A5yt 5 oa—1 gyt
subject totr[A] < P. H=H, =[A; ASVoWVAS A, UsEU]

tr [H[A;lAé VIWV,AZ AL, UisU| =0 (48)

where[A, B] " AB — BA s the Lie bracket. Choosing

HereU is anyN x N orthonormal matrix and’ is any N x  we conclude from (48) that[H?2] = 0 and thus
K matrix with orthonormal rows. Supposé/,, V,, A,) is a

- [ a—1Azt T a1 gt _
solution to?. Then we will show that H, = [Ao AGVEWVOAS AL, UOEUo} =0. (49)

[UIXU,, A,] =0 (38) We can perturld/, to V, exp(sH) and by analogous argu-
and ments, conclude that

[VIWV,, A,] =0. (39) viwv., AZAZIAZ | =o. (50)
We will show these two claims by a perturbation argument and et
this will complete the proof of the lemma. Let us defineC, = £~z U, A . Then

Let H be anN xN skew-symmetric matrix (i.eF/*+H =0.)

5 A-lps _ ot t\—1
Then,exp(sH) is an orthonormal matrix, for any real By ASATAS =Co(T+ CoCo) o,

hypothesis, we have =CLI = Co(I1+ CLC,) )T,
_ it t t —1
tr |:V:WV;A§ (Ao + U;EUO)_IA(%} = COCO - Coco(I + COCO) COCO. (51)
R From (50) and (51) we conclude thHdf WV, andC:C, have a
2 [ o ofte common set of eigenvectors and thus
(Ao + exp(—sH)UZEU, eXp(sH))’lAg} . (40) [VIWV,, CtC,] = 0. (52)
Now exp(sH) = I + sH + o(s) and thus Now, continuing from (49), we have
A, —sHYU'SU, H)=A,+ B, 41 1 1
+ exp(—sH)U. exp(sH) + B, (41) [UOAJIA(% V:WVOA(%AO_IUL E} —0
where ) )
A, U, + A, [E%U(,AglAEVjWVOAEA;lUjE%, E} =0
and (C.CL + D)™ CVIWV,C(C,OL+ )7 5] =0 (53)
def
s(USULH — HUISU,) + os). [C,C!, X] =0. (54)
Now, by the matrix inversion lemma Here we used (52) and (53) in the derivation of (54):

(A, +B,) ' = A7 — A + B, A7) 'B,ATY. (42) CLVIWV,CE and C,C? have a common set of eigenvectors.
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Recalling the definition of”, as¥~z1/,A%, we see that (52) AP A
and (54) are the same as (38) and (39). This completes the @) 27 T () 2 (59)
A+ oy AN +ox
proof. O
36 30
B.2 Proof of Lemma 3.3 - 1 > > 3 N (60)
DefineF; to be the set ofey, . . elg) such that < e; < 1, A7+ ot )\ +oy
Vi=1---Kandsuchthaty=—, ..., t%5) SIRs are achiev- S
able with the following constraints on the allocation of signature Y A <p (61)
sequences and powersD. j=1

Equatlons (59) and (60) follow directly from (57) and (58). To

1) The sum of powers meets the average sum constraint, i.€ e (61), it suffices to see that, for 1, 2

tr[D] < P.

2) S andD satisfy the conditionsDS?, 3] = 0. P> Z )\](;)

From Lemma 3.2, we know that
convex hull of 71 = convex hull of F. _ Z o2 (Z)

SinceF; C F, it follows thatF is convex if we can show that j=1 T1- U(Z)
JF itself is convex. The rest of this proof shows tttis indeed N (2)
convex. ‘ P it ol

Consider a paife® % (" .. ¢{)),i =1, 2}. Then there = L=y
exist a two pairs of aIIocation@{S(Z), D;y),i =1, 2} suchthat N
[StyDiySty, ¥ = 0 andtx[Dy)] < Pfori = 1, 2 with the =30
property that the SIRs achieved by allocati¢i;, D;)) are j=1

( ; the second step follows from (57), the third step used the con-
vexity of the mapr — %, = € [0, 1), and the last step used
There exists a singular  value  decompositio(&8).

RO e The first step used the hypothesis thet\ ;)] < P, i = 1, 2,
;(), ;T fori=1,2
1 T

5(7)D( )U@A( y Vi, with the property that Fix e € [0, 1] and define
. 3) def 1 2 .
<)EU(,<) = diag{o?, ..., 0%}, fore=1,2. (55) )\,(» ) 204)\5» )—i—(l—a))\E» ), j=1...,N.
From the expression for SIR for the LMMSE receiver (18), Wgefine )\( ) j=1...NintermsofA?,j = 1..., Nasin
also have, foi = 1, 2 (57) and (58). From (59), (60), and (56), it now follows that
_ AP A 33 Q.
V(i)dlag{ (i)l PN (i)]\ > Vi ., 3 ,0,...,0] majorizes
A’ +oi Ay +oy AP 4 o2 AP 462
i iad) (i)
has diagonal entrleé e (aegl) (1- a)eg ) aeg) 4 a)cg))' (62)
Inarriving at thIS expressmn we have used (55) and have wrlttgn pealing to Lemma 2.1, (62) allows us to conclude that there
Agy = d1ag{)\1 ) }fOI’L =1, 2. Appealing to Lemma : :
exists ak' x N matrix V{3, with orthonormal columns such that
2.1, we also have, far_ 1,2
(i) @) _ A® A , _
(5\1 L (i))w 0.0 Wg)dlag{j\(g) ARESC V3 has diagonal
A+ o2 AN + 0% 1 toi +od
majorizes(ey, ..., ex). (56) entriesngl) +(1- oc)eg?) oee(,}) +(1- a)e(,?). (63)
Let us define, fori = 1, 2 DefineUs) & Uy and the diagonal matrix
3 de A 3 3
e d:*fﬁ, j=1,....N (57) Ag EdiagN?, AP
J +(O; Now consider the following allocation of signature sequences
500 der 2 h P N cg S3) _and_ povyersD(g): D(_g) is defined to b_e the diagqnal
i =9 1— @ J=4 (58)  matrix with diagonal entries equal to the diagonal entries of
u: VoAV and
where we used the notation of order statistics from Defini- R
tion 2.2. Consider the following claims, fér= 1, 2: S(g) U(g)A(g)V(g)D(g)z.
< 5\?) 5\5\"’,) ) We let the reader verify, using (63) and (61), the following.
5\?) —i-af7 ’ 5\5\? + 0% 1) The allocation pai(S(), D)) is valid, i.e., S5 € S

is a reordering of andtr[D(3)] < P.
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2) The allocation paifS(sy, Ds)) achieves SIRs equal to

aegl) +(1- oz)c§2) Ocei%) +(1- a)cg)
1- aegl) -(1- a)c?)’ T1- Oécg}) -(1- a)cg)

A similar verification is done in [17, Sec. 5]. This shows that

ae) + (1 — a)et? € F, for a € [0, 1]. Sincee®™, i = 1, 2

are arbitrary points itF;, we have shown thak; is convex thus

completing the proof. O

B.3 Proof of Theorem 3.4

We begin with some relabeling. Writingg = # the
optimization problen® in (22) becomes 7
R det X 5 i -
P: Minimize f(y) = > o; 1w subject to
i=1 — Y
(y17 - YN, 07 A 70) majorizes(e(ﬁlv )7 (RS 6([3[{)). (64)

Since we have the ordering < --- < 0%, we get the simple

inequality

fly, oooyn) 2 f(y[l]7 tees y[N})-

1313

a) Ify = ao;thensey} :=1- 7 =0andj := j - 1.
Go to Step 2.
b) If

j
> Om

m=1

n= I )
J—i+1—= 23 c(Bm)

m=t

then sety;, = 1—‘77”,\v’m =4...,jand¢ ;=

N + 1. Go to Step 2.
c) If

t
E‘ Im
m=u

n= . ;
t—it1— 3 elfm)

m=t

for somei < ¢t < jthen sety;, = 1 — 2=,
Ym =14, ...,landi :=t+ 1. Go to Step 2.

We now show that the outpgt® of the combinatorial algo-

Above, we used the definition and notation of order statisti¢ghm 5 solves the probler.

from Definition 2.2. We thus conclude that the optingélthat
solves the probler® above has the structugg > --- > y%.

Since the termination condition is> j and either: is in-
cremented (at least by) or j is decremented by at every

This observation allows us (from the definition of majorizationeration, the algorithm has to stop in < N iterations. De-

Definition 2.1) to rewriteP as follows:

N

P : Minimize f(y) < > 031 -
: — i
t=1

1>y 2p>---2yn 20

subject to

and
l l
um=d eB), I=1,...,.N-1 (65)
m=1 m=1
N K
Ym = Z C(ﬁl) (66)
m=1 m=1

We now rewrite the combinatorial algorithBin this new no-
tation as follows.

Algorithm 1:

Input K, N, (8, > -+ > k) andof < o3+ < o3

OUtpUt y* = (y]Tv st y;\’)

Update

1. Initialization:¢ =1, j = Nandy; =0, VE=1... V.

2. Termination: Ifi > j stop and output the vectg¥. Else,
go to Step 3.

3. Let

j
> Om

m=1

71 = max § 7, e ,

J—t+1=> elBn)

m=t

t
> Om

m=t

. t=i...j—1%. (67)

t—i+1—= > e(Bm)

m=t

note the pairgé, j) as the algorithm runs through theitera-
tions by (i1, j1), ..., (i¢n, j») and the value ofy in Step 3 by
m, ..., nmn_1. Observe that the algorithm always terminates in
Step 2 (and, by definition, terminates at thih iteration). Let
us definey, <. we begin with some simple observations.

1) ilzl,jlzN,and

J12 i1 2 g1 2 i, 1<l<n—-1. (68)
Furthermore, we claim that in iteratign — 1) (this is the
final iteration in which Step 3 is reached), the algorithm
must have visited Step 3b). Since the condition for termi-
nation<,, > 7, is satisfied, this rules out Step 3c) being
visited in the(n — 1)th iteration. Suppose Step 3a) was
visited in the(n — 1)th iteration. Then it must be the case

thats,,_1 = 7,1 (sincei,, > j,). Thus, we have

Tjn_1

— >0
1—6(/3jnl)} "

Thus, a contradiction to the hypothesis that Step 3a) is
reached in thén — 1)th iteration is derived. We conclude
that Step 3b) must have been reached in(the- 1)th
iteration and thus that, = N + 1 andj,,_1 = jx.

2 Fori<l<n-1

h—1 = mMax {O’jnl,

Tjis Ji > Jix
il%—l
O—nl
= —. 69
n il . else (69)
. . Zl+1_1
Gipr — i — > e(Bm)

m=ig
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and in the final iteration which implies
Jn—1
R Urn t i1+171
1 = m=i,_1 - . (70) t—tp1+1— Z c(ﬁm) Z Om
jn—l - in—l + 1-— E G(ﬁrn) m=iie m=i
M=ty _1 tr1—1 t
3) Our next observation is that the valueadecreases. For- > <il+1 — i = Z e(ﬁm)> Z TIm
ma”y m=ig m=t;41
t
M= 2 > 0. (71) 2 om
. . . . . m2> — . (76)
This observation is a bit more involved and we provide a ) t
detailed proof. t—tp+1l= 3 c(fm)
Proof: Fix1 <1 < n—2.Inthelth iteration eitheyj; gets ) _ o
decremented of; gets incremented and we consider each case  Again by hypothesis, we have
separately. t
a) Case 1,41 = ji — 1. By hypothesisy;, = ;, and m;l om
m > e
m 2 O4—1= O—‘?'z+1 (72) /l - il + 1-— Z e(ﬁnl)
Ji m=t
> Om which implies
> m=uy
2 R
jl - il + 1- Z e(ﬂrn) K g1 —1
_— m=n jl - il—l—l +1- Z 6(/3771,) Z Om
Ji— . )
O,rn mMm=t;41 m=i;
S mzzjil ’ 73) i1 —1 "
=T K 2 |l — b — Z C(ﬁm)) Z Tm
Ji—tu— E e(ﬁrn) < m=iy m=i; 41
trn—zl it
E Om Z Om
—~. mMm=1t;41
> mei__ . Ya<t<ji—1 (74) mz — : (77
t—i+1-= 3 e(Bn) <jl R DY 6(/3m)>
m=1 m=i;4+1

We used the fact that

Combining (75)—(77) with the hypothesis ©f.; > i,

gi—1 we have from the definition af in (67) thaty; > 741.
mz_:i Im This completes the proof of the observation that> --- >
T 2 — % M—1- U
Ji—wt+l- mz_:i e(fm) 4) We can also express the outgyit in terms of the pairs
o o _ (i1, j1); -+ » (in, jn). Fix 1 < k < N. Define
in arriving at (73). Combining (72)—(74) and using the . . ) .
definition of 7 in (67) we have shown thag > 7. J (k) def { 1St <nii <k <dpr}. itk < jn
b) Case 24,41 > . In this case we have, from (69) {1<t<n—1:50 > k> jigal}, if k&> jp.
— (78)
L+1
2 Tm Observe that™®) is well defined and has the interpretation
m= o thaty; is updated in iteratiof®.

iy — G — >, e(Bm)

m=i;
By hypothesis, we have
m2 o = Ojiga- (75)
Also by hypothesis, for everyj,; <t < 5 —1

t
> Om

m=i,;

m 2 7

t—il + 1- E C(ﬁrn)

m=i;

* Suppose: > j,. In this casey;, = 0.

* Supposé: < j,. In this case

* Tk

Yp=1-

. (79)
Thae

We havek < j, < g and thusy,y > Tjay 2 Ok
This shows that, forall < k< N
1>y >0. (80)

It also follows from the definition of(*) (in (78)) and
(68) that whenevekt < k < j,, we havel®) > [(%),
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5) We now show thag* satisfies (65) and (66). Fix any <

Combining this with the ordering; > o3, and (71), We are now ready to prove thgt solves the problen®.

we have, foralll < k< k< N Consider the relaxed version of the probl&hibelow where the
- o constrainty; > ¥ > --- > yy is dropped.
y?i:l—nkzl—n’f:y}:- (81) o s L v _
() 15 P : Minimize f(y) < Y o} T subject to

i=1 v

) ’ >
m < N and consider two cases. First, suppbseg j,,. Then 1> ym 20,1 sm< Nand

1) 1 dp1—1 Zunlzz /31 lzl,...,N—l

Zy;_ Z yq+z qu (82) ml m=1
q=1

K

9=, (m) a=iy (8
" R > = )

m=1 m=1
q:; < M) ) Z qz_; < ) We will first show thaty* is a solutiorj tdP. Since the constraint
) setin problenf” is larger than that i and sincey* satisfies the

m (83) constraints of?, we have completed the proof of the theorem.
> oy It remains to show thay* solves the relaxed proble#. Our
— (=g + 1) — 9=4)(m) first step is the obsdefrvation that the functipieing minimized
My inPisconcaveiny = (yi, ..., yn) and, furthermorey is con-
try1—l strained to be in a convex polytope (defined by linear inequali-
11 Z; 7q ties). Such optimization problems are classical and a complete
+ Z b1 — G — R (84) characterization of the solution is given by the Kuhn—Tucker
1 conditions [9, Theorem 28.3]. Define (the Lagrangian)
i’j L: (y7 7(1)7 ,7(2)7 ,7(3)>
C %q N
:(m—zl(m>+1)—% r—nf(?l)—z:%gL Z’Y (1—w)

1) 1 Gy —1

+ Z Z (85) - z_: Vi <Z Ym — ﬁrn )

q=i m=1

m K
2 Z 6([3,,0. (86) - ’Y](\Erg) <Z Ym — Z [3771)) N

m=1 m=1

Here, we used the definition é™ as the iteration number ans&dyer the following choice of ¥, 4(®, andv®. Define
in arriving at (82) while (83) used the update in Step 3c) osf( *Loforalll < j< N.Forl <t <n-—1,define

Algorithm B. Equations (84) and (85) follow from (69) and (L)# def o TR 87
(70). In (86), we used the property 9f.., that Vi, S = o> J (87)
(3)yx def o (88)
Zt: ryzt+1 1 =M = 77min[rn>t: Tl >%e41)
T, *
S 4=, (m) ¢ ’75\?:) _77n—1- (89)
ey = . ¢ ’ We set the remaining componentséP* and~v(®* to be equal
b=y +1 = q_z e(By) to zero. Observe from this definition that we always have
=t(m)
Vi <t < igomygy — 1 ¥r =0, 1<m < (90)
¥ =0,  ju<m<AN. (91)

with equality whert = i), ; —1. Inthe derivation of (86), .
we also used the fact that We claim that

aL
. W @ @) = o
m 1) 1 4y —1 87] (y Y , Y ) 0, Yk 1...N.

oo Z > eBy) = 2_:1 e(By)- (92)

e = If this is true, then appealing to [9, Theorem 28.3], we have
This allows us to conclude that we have equality in (86roved thaty* solves? and this completes the proof of the
whenm = 4, ; — 1 or whenm = N. Thus, we have theorem. We will now verify (92) which can be expanded into
shown thaty* satisfies (66) and (65) whenever < j,. L (W)e, ) (3
Since we haves;, = 0,Vj, +1 < m < N, we have (?/ v )
shown thay* satisfies both (65) and (66). We conclude that y N
the outputy* satisfies all the constraints i and is thus a =% W Z A3 (93)
possible solution. L-yp? " —
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Fix 1 < k < N. We consider two casek:< j, andk > j,. Define theN x (i;41 — ¢) matrix defined as

1) Case 1% > j,. Recall the definition of*) (from (78)),
with the interpretation thay; is updated (and set to
zero) in iteration numberedf*). Heren,uy = o3 and

1
2

def 7 r4 1. * e ; B
S(t) = U(t)dlag{)\,,, w<r< 'Lt-i—l}V(tt)D(t)

WP* = 92, — 12_,. Using (91) and the hypothesisWhere
thatk > j, > i, we havey,”" = 0,k < t < N. Uty Ty, i <7 < iy
Substituting these quantities in (93), we have -
andU* = [uq, ..., ux] is an orthonormal matrix that diago-
9L (y* A @) ,7(3)*) nalizes¥. Now, for everyi,,_; < r < N we have
ayk ) ) )
= 7712(k> - (7712(k) - 77721—1) - 772—1 =0 A =0r(n-1—0n), ;
In—1
and the claim of (92) is shown. k=; Ok
2) Case 2k < j,. Again, recall the definition of*) from wheren,_, = e :
(78) as the iteration number whegg is updated. In this et — o1+ 1— 3 e(Br)
case,y; = 1 — 7&—’;) (see (79)). From (90), we have k=in_1

fy,§1>* = 0. Substituting these quantities in (93), we havelet V,,_;y be any(K + 1 — 4,,_;)-dimensional orthonormal
matrix such that

aL * * * *
a (y ’ ’y(l) ’ 7(2) ’ 7(3) ) . T . . +
Oy Vin—1ydiag Y12 in—1 <7 < Jn—1 ¢ Vinon has
_ .2 0 (3)* T =
= v =0 . Z }’Vm—l diagonal entries(8;, ,), - .., e(Bk).
me il(k>+1’ eyt —1, %0
2 1A Define D¢,y to be a(K + 1 — i,,_1)-dimensional diagonal

= 7712(“ - Z (7712<k>+m - nﬁk>+nl+l) — 2. matrix with diagonal entries equal to the diagonal values of
=0 . . .
—0. " Vv(nfl)dlag{)‘:v tp—1 ST < Jﬂ—l}vv(tf)

Define theN x (K + 1 — ¢,,_1) matrix defined as

Thus, (92) is shown in this case as well. (K + in—1)
. defl ;4 ) . . : 1

This completes the proof of the claim thgtsolves? and the  St—1) = U, nydiag{A}, én1 <7 < jn-1 3V 1y D7 )

theorem is proved. O
where

B.4 Proof of Proposition 3.1 U, def i, i1 <7 < ]

We use the notation developed in the proof of Theorem 3.4
in Appendix B.3. Suppose Algorithi# concludes inn < N Now define theV x K matrix
steps. We denote the pais j) as the algorithm runs through
then iterations by(é1, j1), (i2, j2), ..., (in, jn) @andthe value
of nin Step 3 byny, ..., Mu_1. Fix 1 < ¢ < n — 1. Now,
it follows that the output of Algorithni3 has the property, for
everyi; < r < i;41, that

5 def
S = I:S(l)a ey S(n,]‘)]

and theX x K diagonal matrixD* with diagonal entried,.
equal to the(r — 4; + 1)st diagonal entry ofD,,. Heret is
eithern — 1 or the unique number betweémndn — 2 such that
t+ < 7 < t441. It follows from the construction of Section IlI-B

diy1—1

% e that the pair.S*, D*) is a solution to the dual problefd. We

N = ol — o), wherer, = h=is - ~ make the observation that thg signature sgqueapgmd 87
iy i — “*ZI: e(f) are orthogonal whenevérand % belong to different intervals
T & T of the form iy, d2), [iz, 43), -+, [in-1, K. We are now in a

position to prove the proposition. For any ugghat belongs to
Let Vi) be any(i41 —1;)-dimensional orthonormal matrix suchthe intervalfi;, 4;4,) for somel < ¢t < n — 1 we have

that
¢ =(S*D*S* + )" tsf

oA . . 1
Vv(t)dlag { N+ o2’ 1 <1< 'LH—I} Vv(f) has = U(*')dlag{n—a’ 9 <7< iH-l} U(S:t)n?;
T 7 tCr

diagonal entries(/3;,), ..., e(Bi,,,—1)- 11,
=—X"28;.
Define D) to be &4;4, —1;)-dimensional diagonal matrix with K
diagonal entries equal to the diagonal values of A similar calculation for userk that lie in the intervali,,_; , K]
shows that} = —— ¥~z s%. This completes the proof of the

Vindiag{Ay, i < < i1}V proposition. O
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B.5 Proof of Propositions 3.2 and 3.3 we see that for the optimization proble® above,V should

Fix a set of SIR requirement§s,, ..., Bx) such that always be chosen such thEt WV is a diagonal matrix with

Efil () < N. Now, the minimum sum poweP* is diagonal entriesuyyy, ..., Wi Thus, P is reduced to
the solution of the optimization problen® in (22) which
was rewritten as (64). It is clear thd®* as a function of bi N A
(62, ..., 0%) is the minimum of a sequence (indexed by problem : Minimize Zw[Z Nta?
41, ..., ynv Which range over a convex polytope, see (65) N
and (66)) of linear functions (given bZZ 1 31‘“7 ). Hence, subjecttor; > - Ay >0, Y N <P
it follows that P* is a concave function 0(01, e O3 =t
FurthermoreP* is a symmetric function ofo?, . . 0,2\,) We ] ] N ] )
conclude thaP* is a Schur-concave function @ff, SY It is easily verified that the solution to this reduced problem
This concludes the proof of Proposition 3.2. 1S ?}‘k = 03(1h/W];] — 0:)" Wheren, is chosen such that
Fix the additive colored noise variancés?, ..., 02,) 2.;=1 A = P.Thisallocation oV, A translates into signature
and consider a pair of SIR requiremertis;, ..., k) and Sequence and powers allocation as follows. Users corresponding
(/31, s /}K) such that to the weightswyy, ..., wyyy are assigned powers, ... Ay
and signature sequences equal to the eigenvectdtsoafre-
. 5 5 ding to the eigenvalues, ..., o3 in that order. We can
31), ..., e(Bi majorizes ( (3),..., (3)) spondin 2y YN .
(e(A1) (f)) ) e\ P now verify that the SIRs attained by theSeusers (given by the

same ordering as the users correspondingtQ . . ., wyy1) are

Using the transitivity of the majorization relation in the opti- o

mization problem (64) (whose value £5"), we see that the set
of (y1, ..., yn) over which the optimization is carried Corre_proposmon
sponding to SIR requiremen{s, ..., ) outis contained in

the set corresponding to the SIR requiremepts ..., Sx). B.7 Proof of Propositions 3.6 and 3.7
Thus, we arrive at the inequality

—1)*,4 = 1---N. This completes the proof of the
O

We begin with Proposition 3.6. Consider the map

dF,(x)
f: /3 s /41)(%
& +Oéf 14+p8

PY((Br, s i)y o) 2 P (B oo i) o).

We conclude thatP* is a Schur-convex function of
(e(B1), ..., e(Bx)) and is thus convex as well. O
N We see thaB™* is the unique positive fixed point gf. We claim
B.6 Proof of Proposition 3.4 that f is concave and monotonically increasing. Suppose this is
From Lemma 3.3, we know that the region ﬁ% that true. FixF), and conside#, that is a dilation off,. Now, f is
are achievable with a sum received power constrdints seen to be dilatory-convex ifi,, we have that
convex. We will now characterize this convex set (henceforth

denoted byC(P, X)) by its extreme points. Each extreme S ~ S

point (e, ..., ex) on this convex set is characterized by F(Fo, Fp, ) 2 1 (F"’ Fp, ﬁ) V520

a vectorw with nonnegative entries with the property that

(e1, ..., ex) is the argument of the optimization problefh The concavity and increasing property pf(as a function of

in the statement of Lemma 3.2. We reformul@tdaelow using /) coupled with the relation above, shows th#( ,, £},) >
Lemma 3.2 and the conveX|ty of the map— - and the /3*(F,,, F,). Now fix F, and considet), that is a dilation of
orderings? < --- < o3 (as in the beginning of the proof of F},. Again, f is seen to be dilatory-convex ifi, and thus
Theorem B. 3)

ProblempP : [, by, B) 2 f (Fo, Fy, /3) ,  vVp>o.

o . . AL AN
Minimize tx [V Wleag{)\l +027 T AN+ o3 H As before, this observation coupled with the concavity and
subject toV, aK x N matrix with orthonormal columns and increasing property off (as a function off3) shows that

‘ B*(F,, F,) > p*(F,, F,). We only need to show that is
Ar2-- Ay z0and} A < P concave and increasing monotonicallydn
= A straightforward calculation shows that

Since the diagonal entries (denoted by, say, ..., dy) of

VWV are majorized by the eigenvalues6fWV (denoted p 2

by, say,u1, .., un) and sinceuy, ..., un satisfy the con- (8) = / <1 +p/3) »(p)
straints [4, Theorem 4.3.15] / 1

2dFa(az:). (94)
pvog Sy 1PN, (+ ) s dB(0))
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Since the first derivative of is strictly positive, we have shown

that f is monotonically increasing with. Continuing from (94),
we arrive at

ag(B) +x [ (ﬁ)g dF,(p)

(v +af fpdbym)

) ==af

Fo(x)

(95)
where we have written

o ([ Lsanm) ([ (1) e
B /<1fp/3>2dF”(p) |

Using Holder’s inequality

/ 1 ()9 ()| ()

<(/ ||gl<x>||P||u<dx>)% ([ m@iu)

for everyu-integrable functiong; andg, andp, ¢ > 0 such that

L1 =1in(96) Withg: (z) = (555)%, 92(7) = (555) %,
p = ¢ = 2, andy = dF},) we see thay(3) > 0. Using this
in (95), we see that the second derivativefof negative and

(96)
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