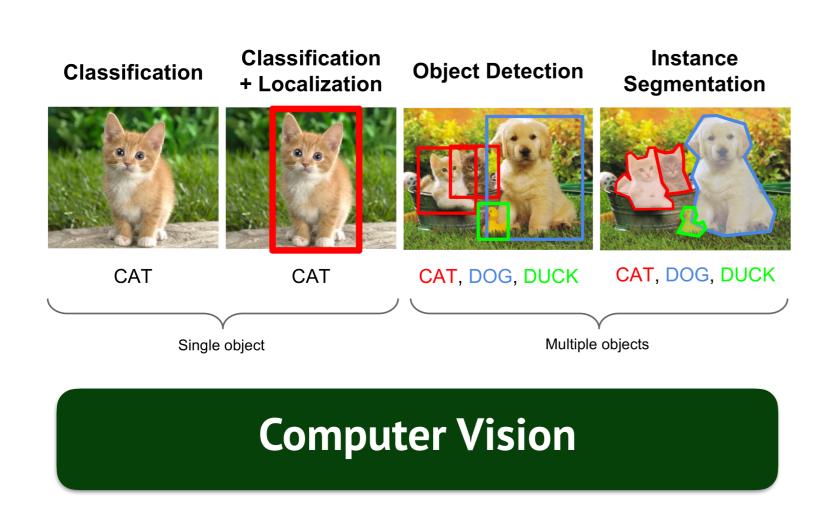
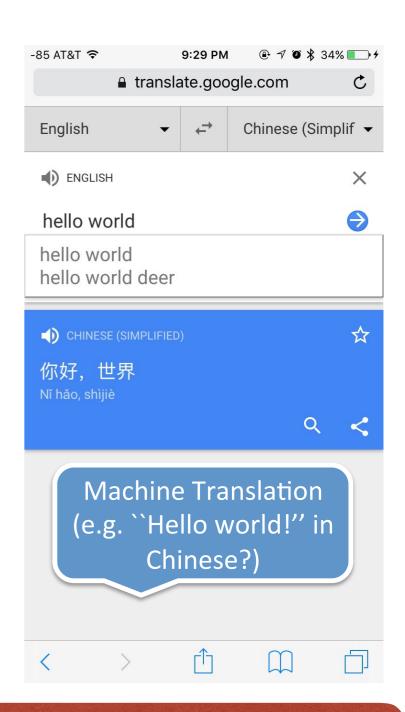
Communication Algorithms via Deep Learning

Pramod Viswanath

University of Illinois

Deep learning is part of daily life





natural language processing

Model complexity

• Data (image, languages): hard to model

• Inference problems: hard to model

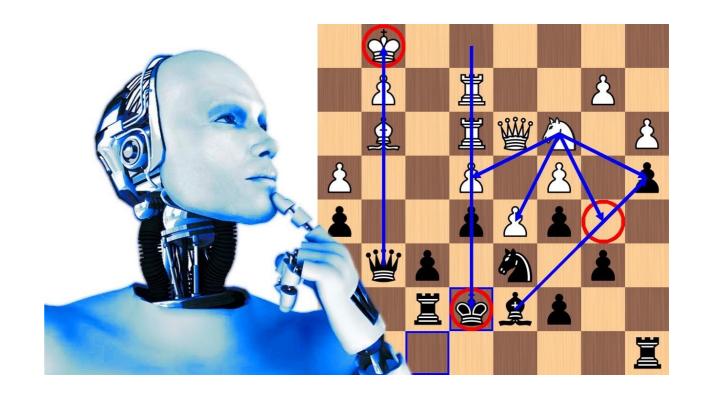
Evaluation metrics: empirical, human-validated

• Deep learning learns efficient models

Algorithmic complexity

- Models are simple
 - example: chess

unlimited training data



- clear performance metrics
- Challenge: space of algorithms very large
- Deep learning learns sophisticated algorithms (Alphazero)

Communication Algorithms

- Problems of great scientific/engineering relevance
 - mathematical models
 - precise performance metrics

Two Goals

- New (deep learning) tools for classical problems
 - new state of the art
 - inherent practical value

- Insight into deep learning methods
 - no overfitting
 - interpretability

One Lens

Scalability

- train on small settings
- test on much larger settings (100x)

Two Deep Learning Components

Recurrent neural networks

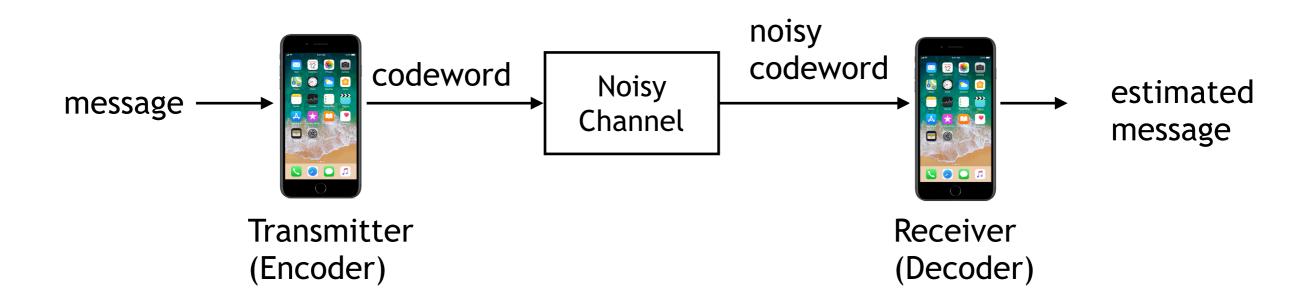
in-built capability for recursion

Gated neural networks

attention, GRU, LSTM

Communication

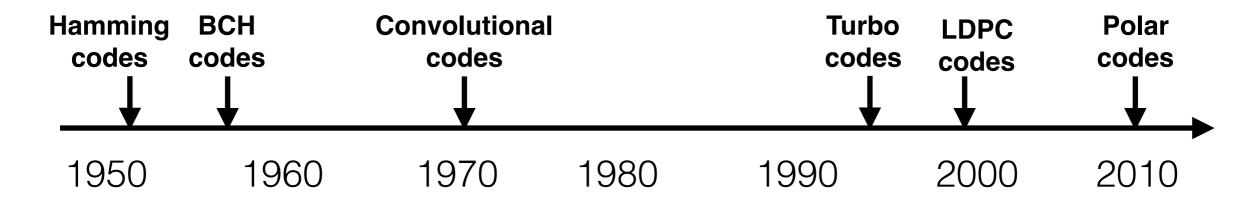
- Models are simple
- Performance metrics are clear (e.g. Bit Error Rate)
- Designing a robust encoder/decoder is critical
- Challenge: space of encoder/decoder mappings very large



Design of codes

Technical Communities

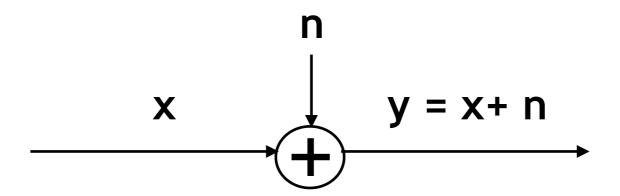
Eureka moments



Huge practical impact

Classical Model

Additive White Gaussian Noise (AWGN) channels



- Very good codes
 - turbo, LDPC, polar codes

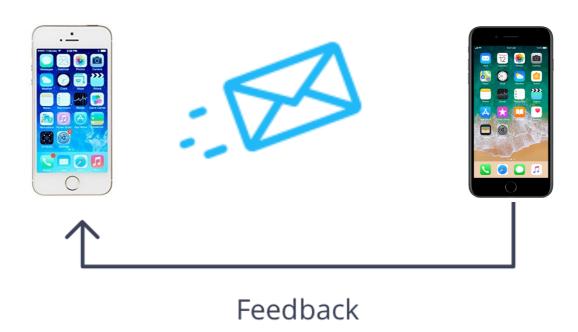
Central goal

Automate the search for codes and decoders via deep learning

But there are many challenges. Fundamentally different from other machine learning problems.

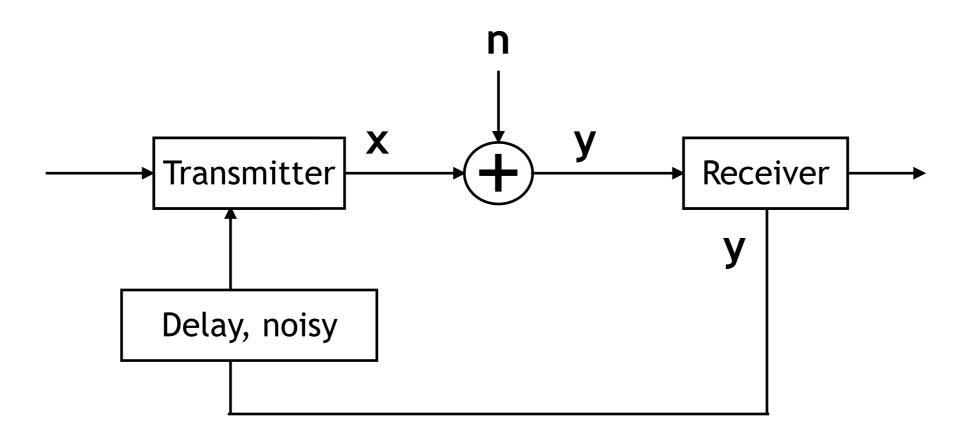
Channel with Feedback

- Learning the encoder
- Learning the decoder



AWGN channels with feedback

- AWGN channel from transmitter to receiver
- Output fed back to the transmitter



Literature

ARQ

practical, minimal feedback

- Noiseless output feedback
 - Improved reliability
 - Coding schemes
 - Schalkwijk-Kailath, '66

Literature

- Noisy feedback
 - Existing schemes perform poorly
 - Negative results
 - Linear codes very bad (Kim-Lapidoth-Weissman, '07)

Wide open

Focus of this talk

AWGN channels with noisy feedback

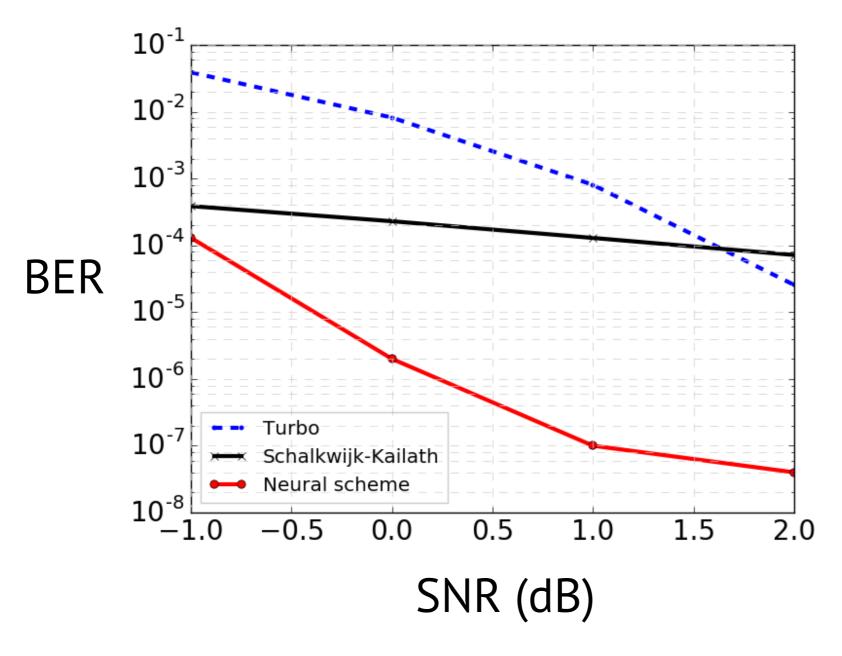
Challenge:

How to combine noisy feedback and message causally?

Model encoder and decoder as neural networks and train

Quick Summary: 100x Better Reliability

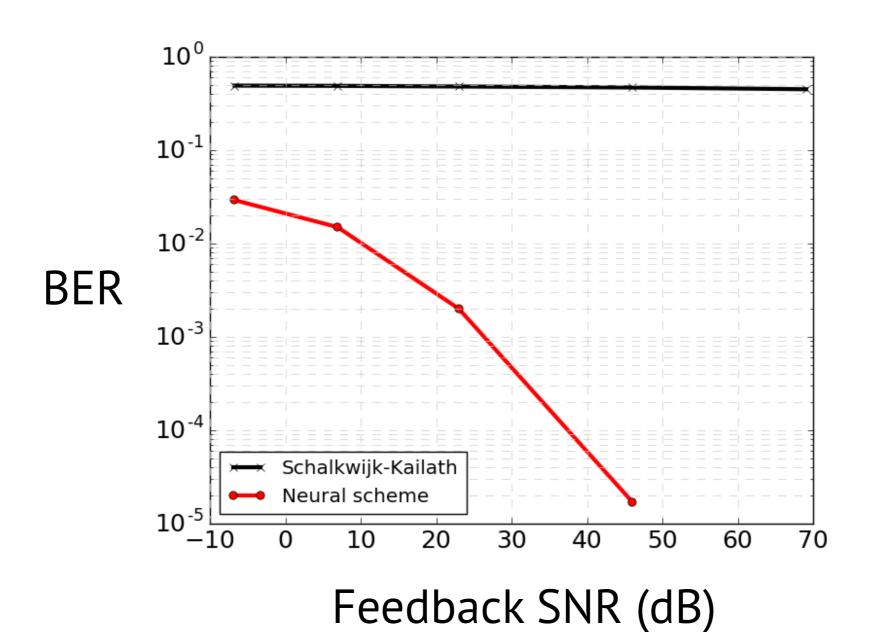
Feedback with machine precision



(Rate 1/3, 50 bits)

Robustness

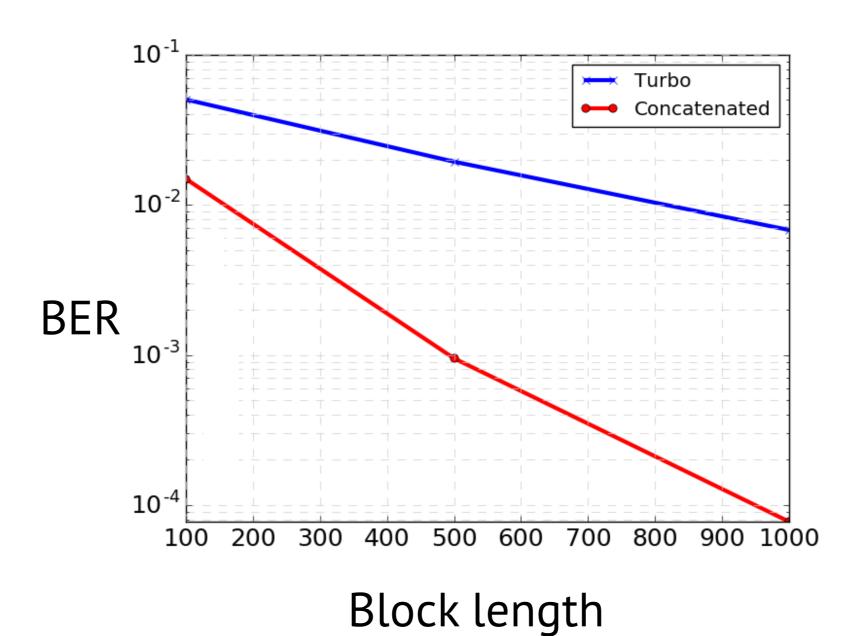
varying noise in the feedback



(Rate 1/3, 50 bits, 0dB)

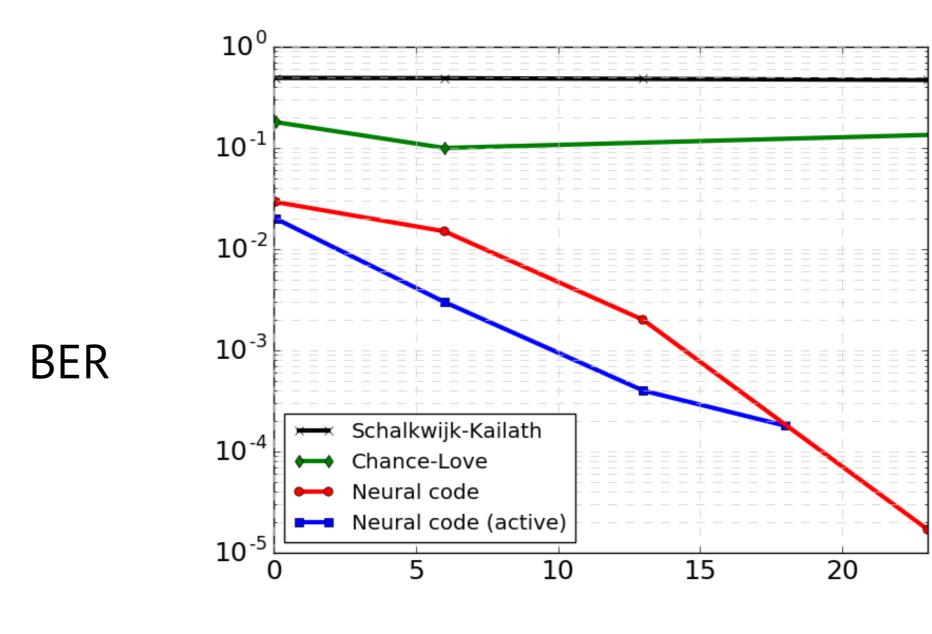
Improved error exponents

BER decays faster



Coded Feedback

• BER decays even faster



feedback SNR

Practical Considerations

Delay in feedback

interleaving; can handle large delays

Opportunistic use of feedback capability

cellular and WiFi environments

Composes with ARQ

Neural feedback code

Architectural innovations

Ideas from communications

Computationally simple

Other open problems

- Encoder is fixed (e.g. standardization)
- Practical channels are not always AWGN
- How to adapt the decoder to practical channels?

Sequential codes

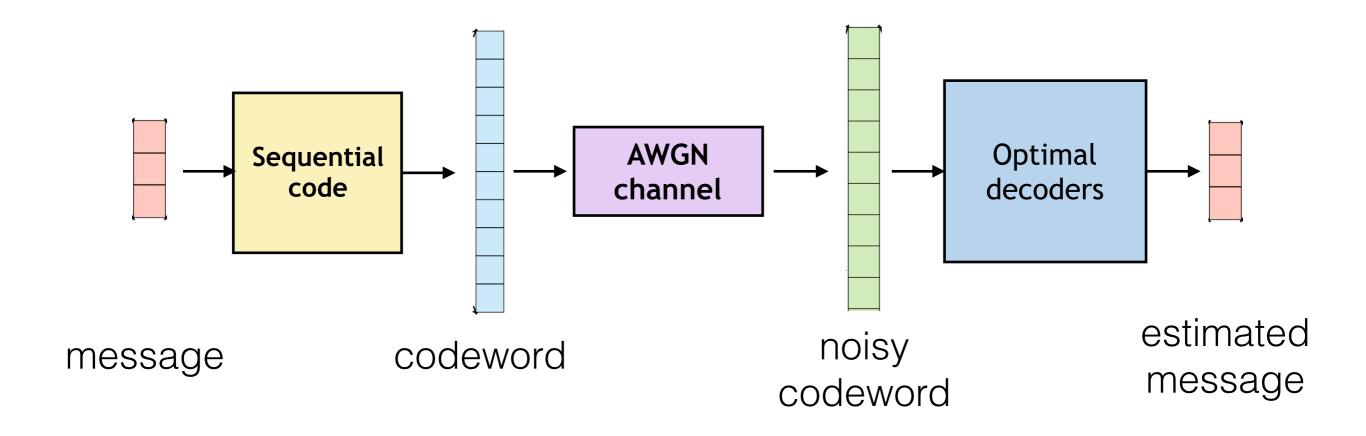
- Convolutional codes, turbo codes
 - 3G/4G mobile communications (e.g., in UMTS and LTE)
 - (Deep space) satellite communications

Provably achieve performance close to fundamental limit

Natural recurrent structure aligned with RNN

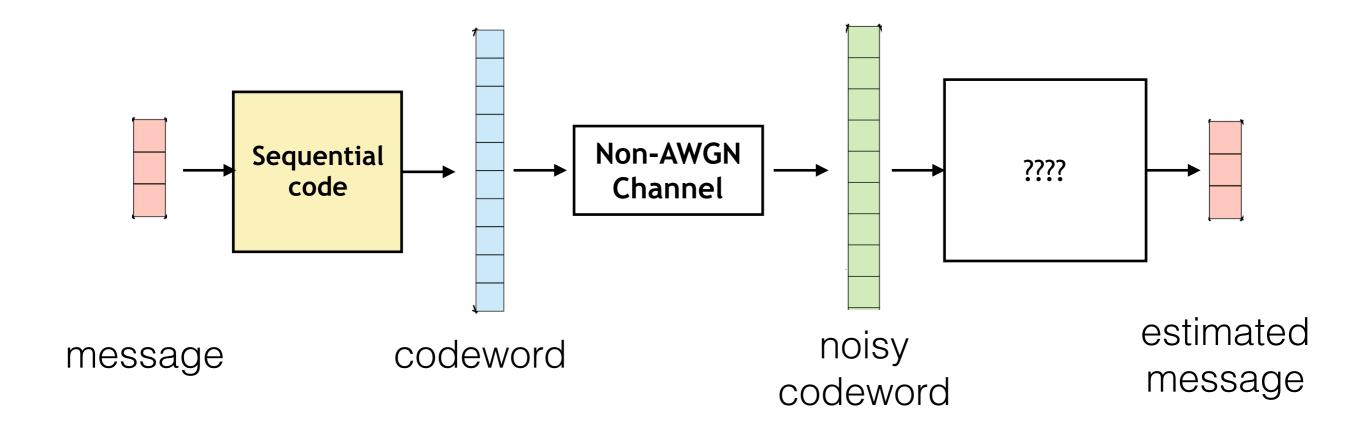
Sequential codes under AWGN

- Optimal decoders under AWGN
 - e.g. Viterbi, BCJR decoder for convolutional codes



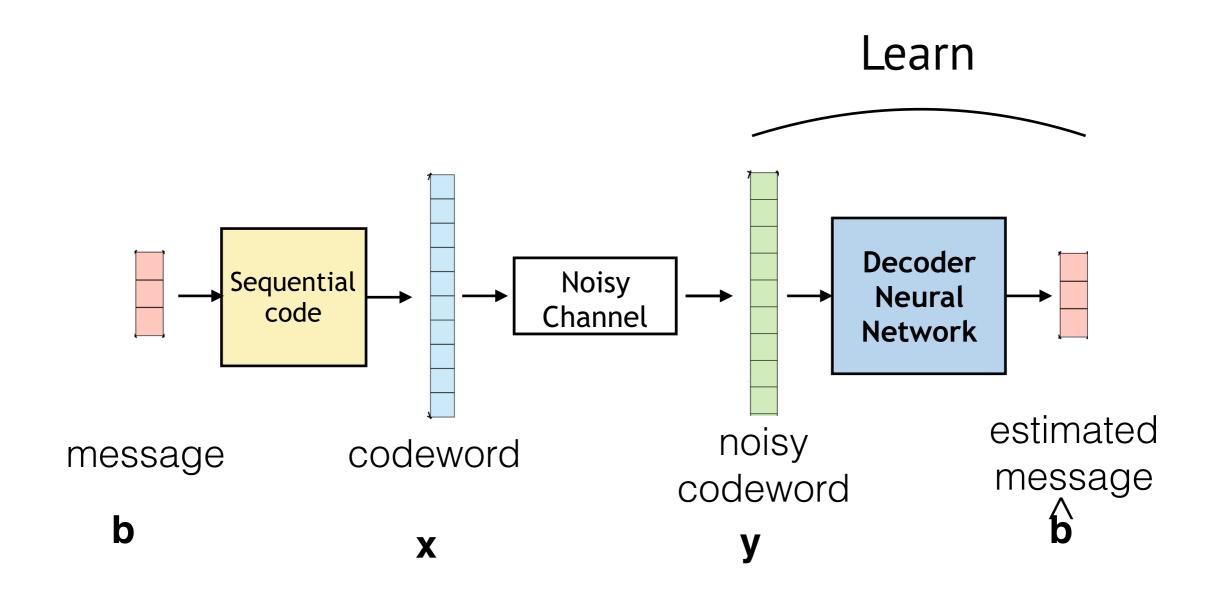
Non-AWGN channel

Bursty noise



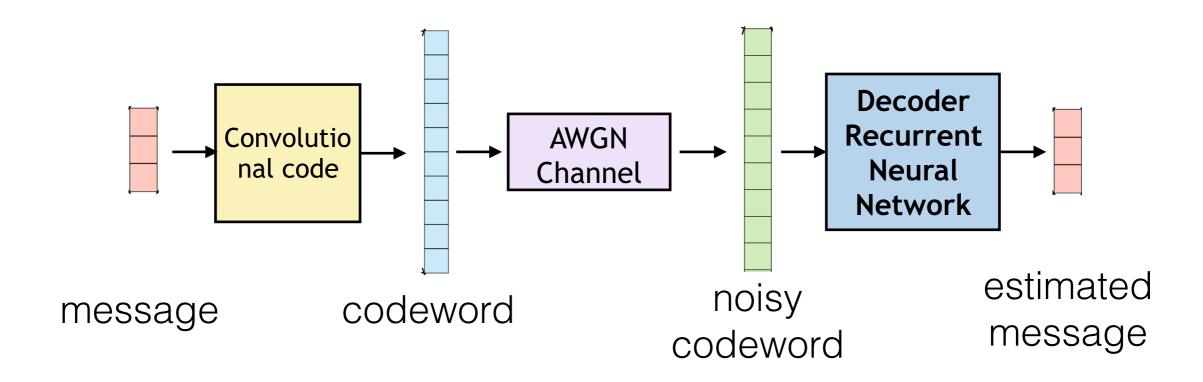
Neural decoder

Supervised training with (noisy codeword y, message b)



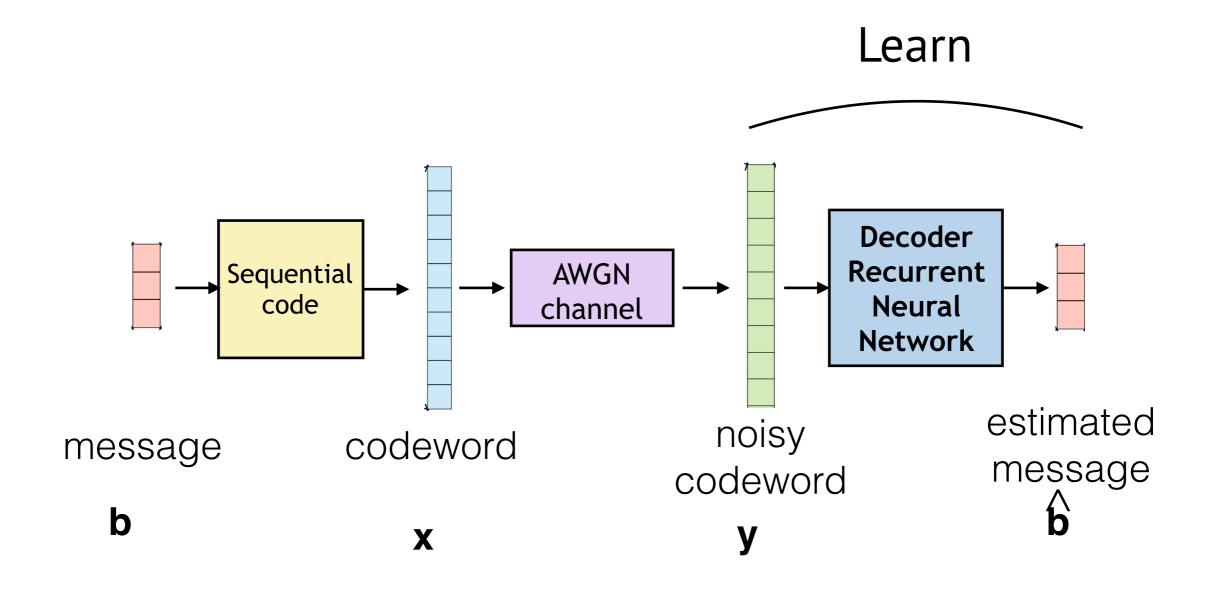
Neural decoder under AWGN

Model decoder as a Recurrent Neural Network

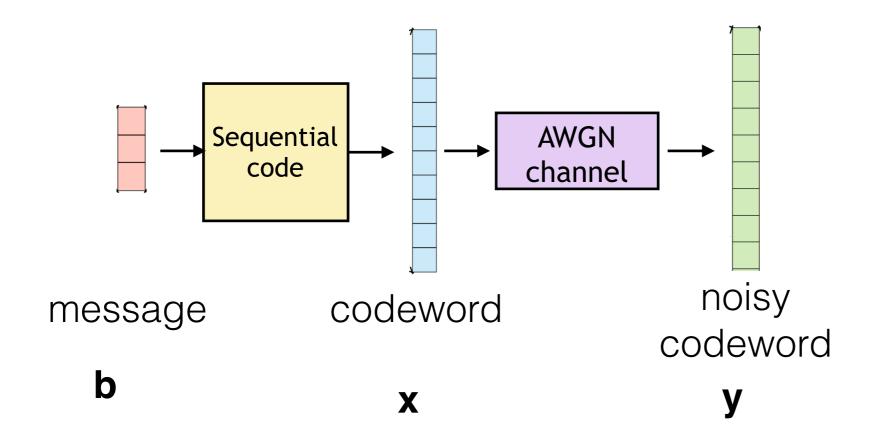


Training

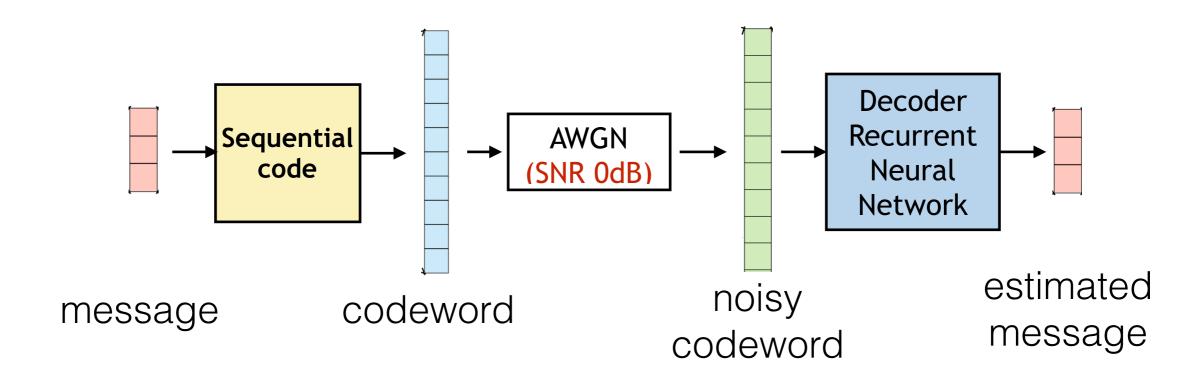
- Supervised training with (noisy codeword y, message b)
- Loss $E[(\mathbf{b} \hat{\mathbf{b}})^2]$



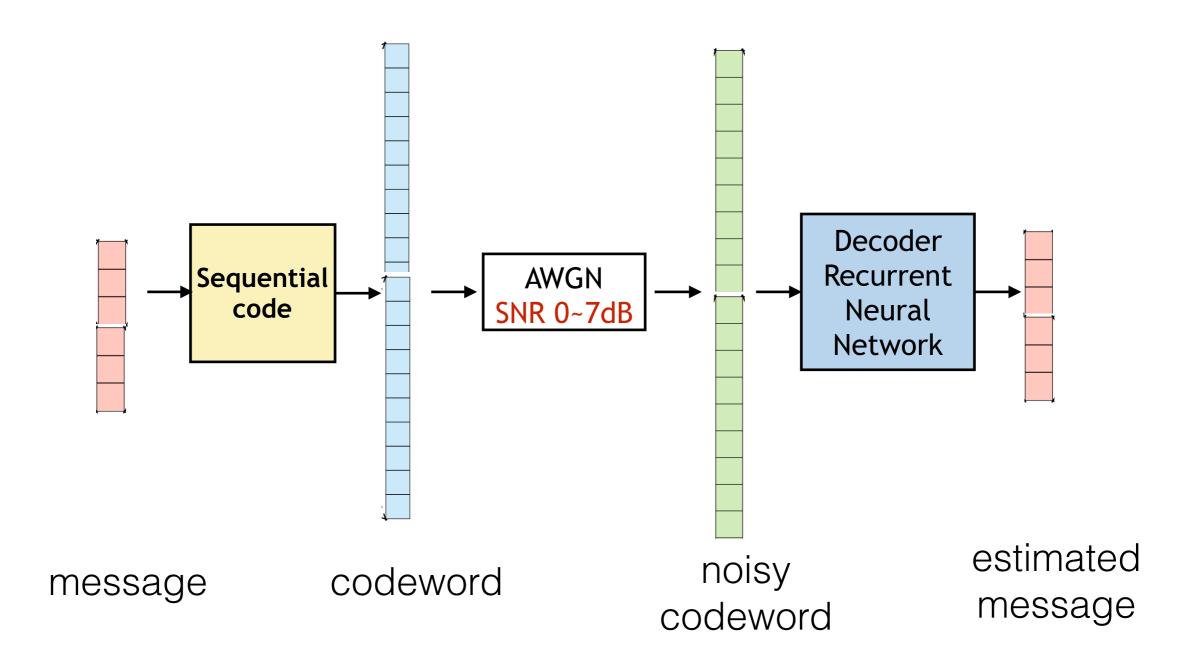
- Training examples (y, b):
 - Length of message bits $\mathbf{b} = (b_1, ..., b_K)$
 - SNR of the noisy codeword y



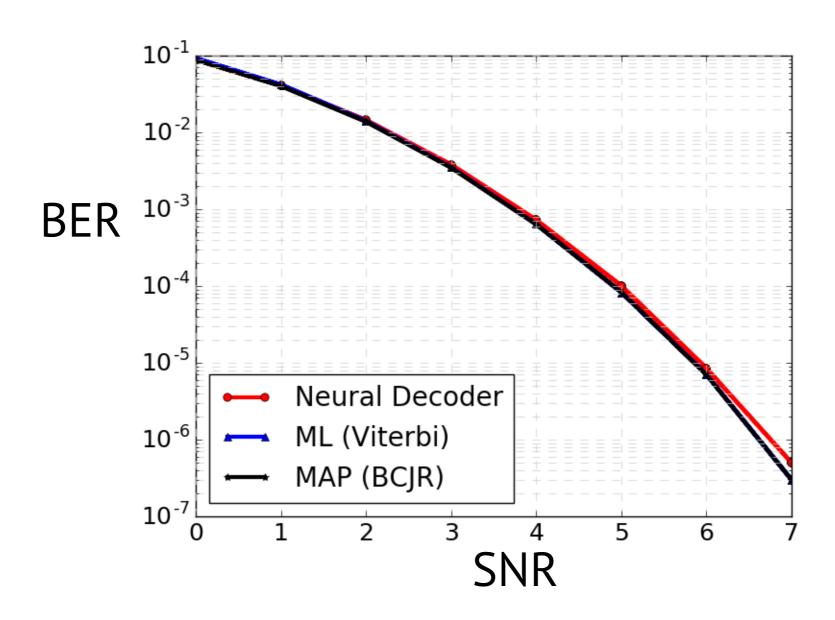
Train at a block length 100, fixed SNR (0dB)



Train at a block length 100, fixed SNR (0dB)

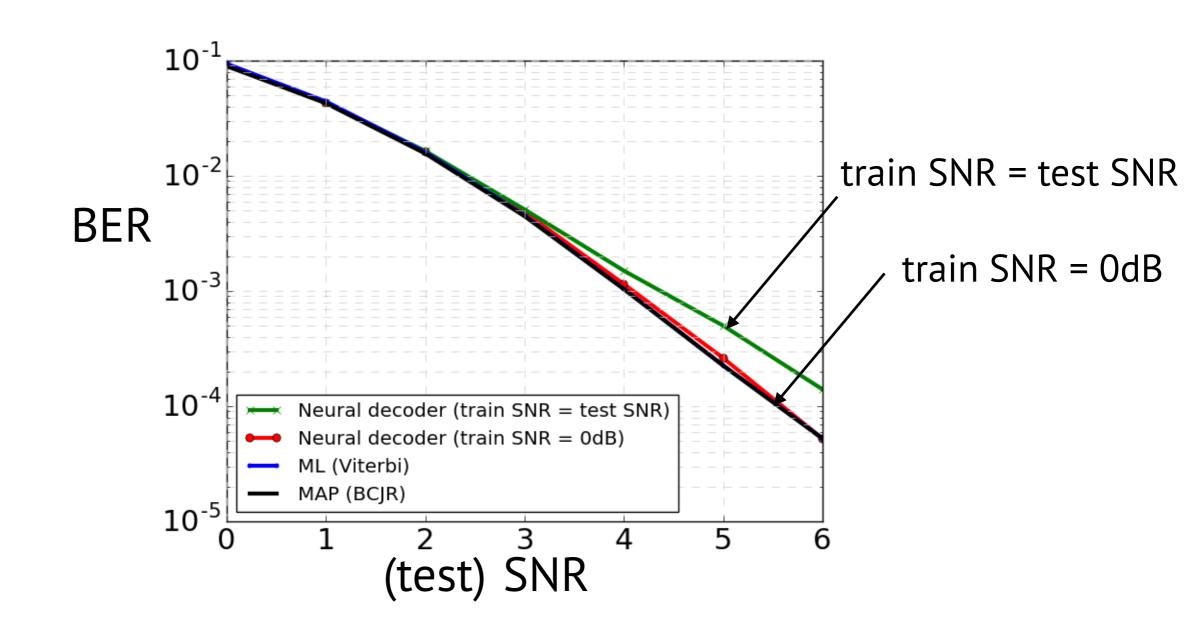


Results: 100x scalability



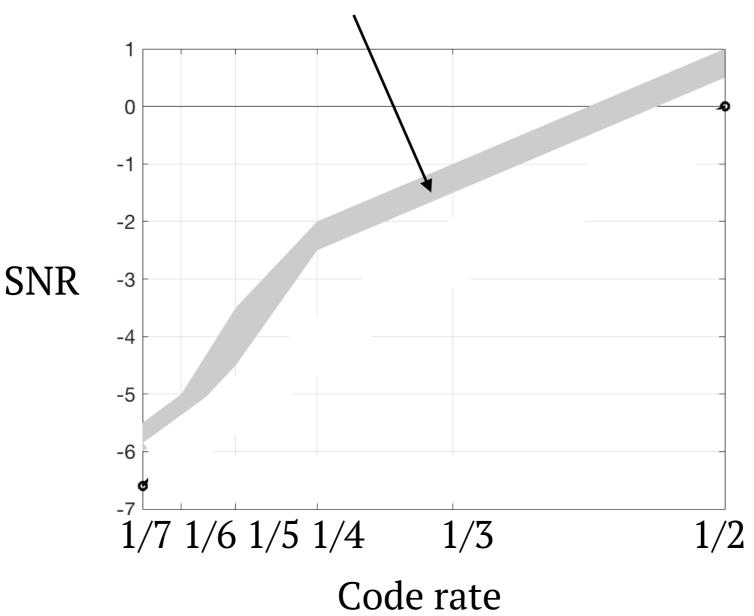
Train: block length = 100, SNR=0dB Test: block length = 10K

Training equal to test SNR?



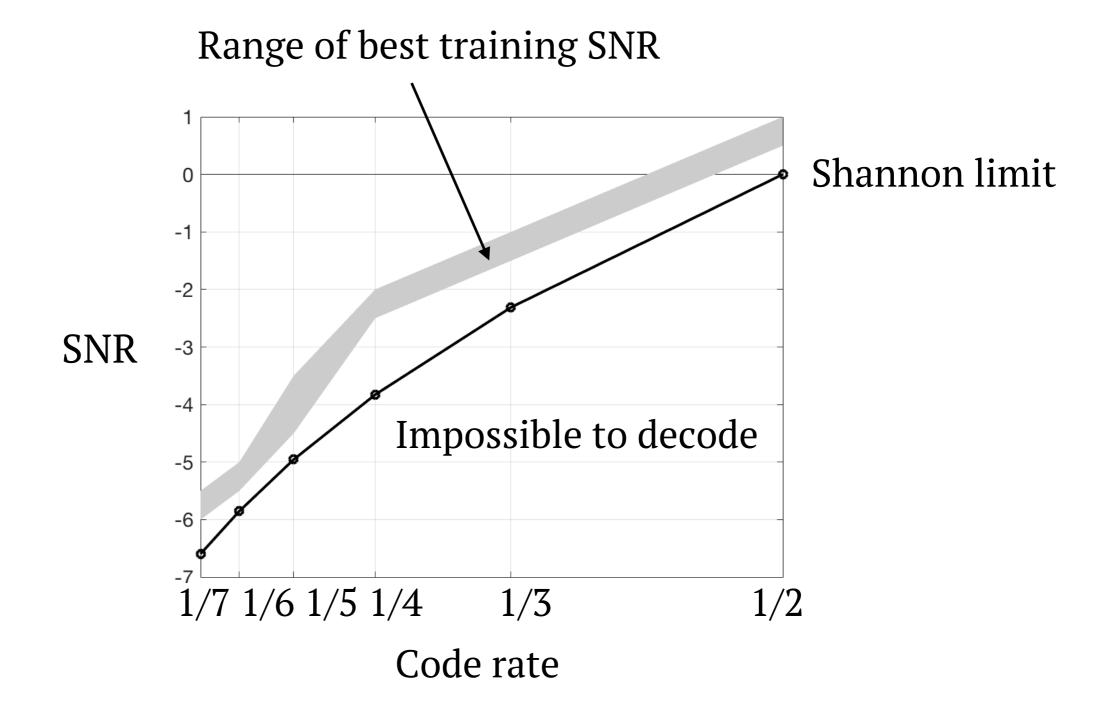
Empirically find best training SNR for different code rates

Range of best training SNR



Choice of training examples

Hardest training examples



Training with Hard Examples

Idea of hardest training examples

- Training with noisy labels
- Applies to problems where training examples can be chosen

Lessons

Use hard examples for training

Neural network robust to model mismatch

Many open problems

Channels with feedback

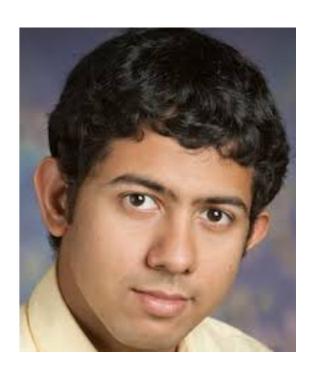
Network settings

Theoretical Agenda

- Underpinning this talk
 - Gated Recurrent Neural Networks
 - Nonlinear dynamical systems
 - switched linear system

- Learning theory meets Switched Dynamical Systems
 - many open questions
 - basic technical/mathematical value

Collaborators



Neural encoder

- Two-phase scheme
 - ▶ e.g. maps information bits b₁, b₂, b₃ to a length-6 code

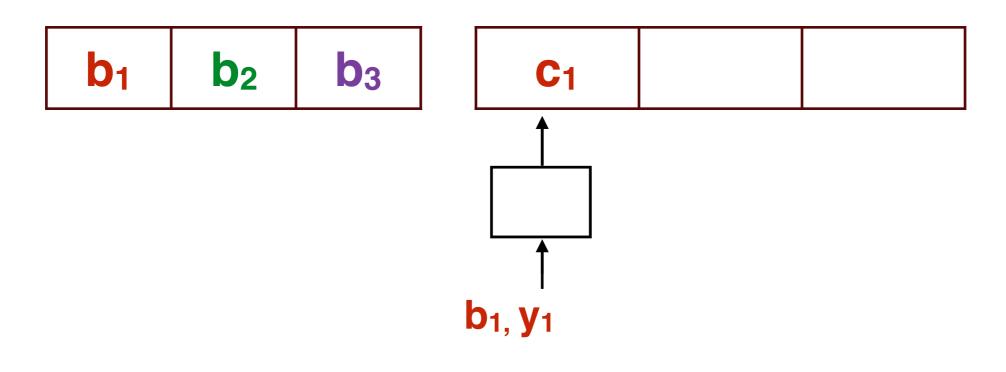
Phase I.				Phase II.			

Phase I: send information bits

b₁ b₂ b₃

b₁ b₂ b₃

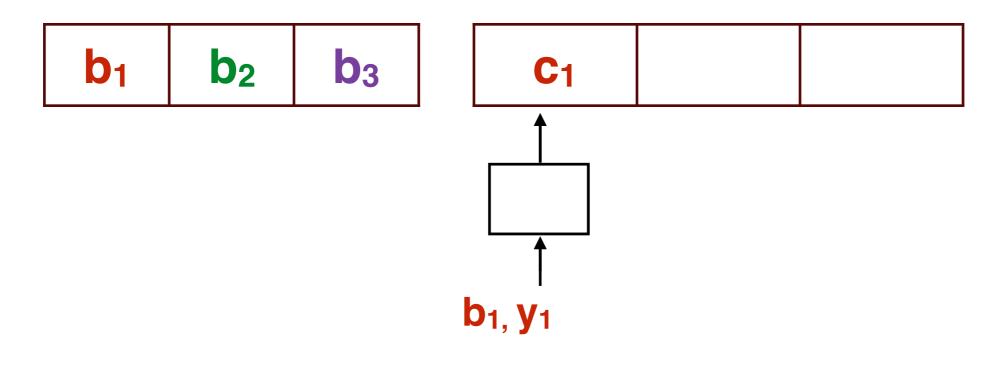
Parity for b₁



Encoder gets **y**₁

y2

y3

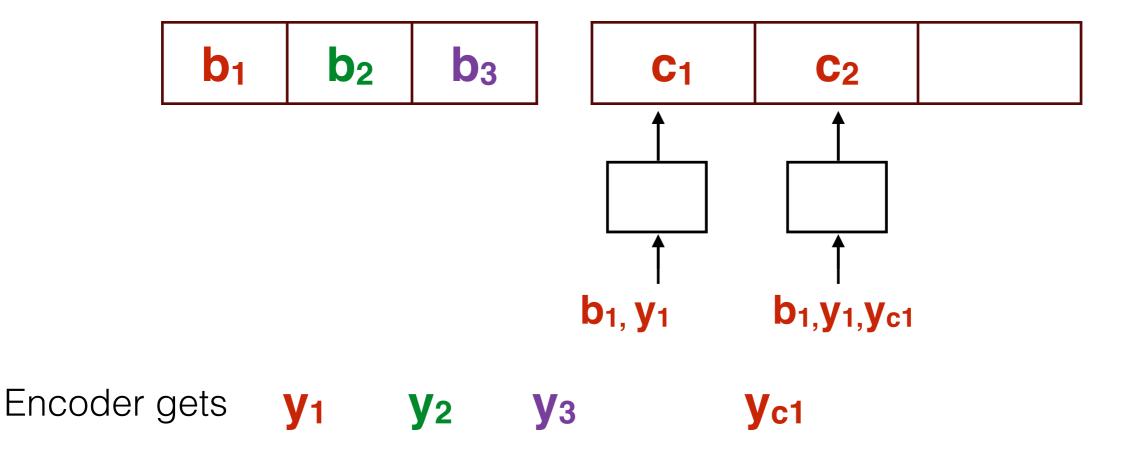


Encoder gets y₁ y₂

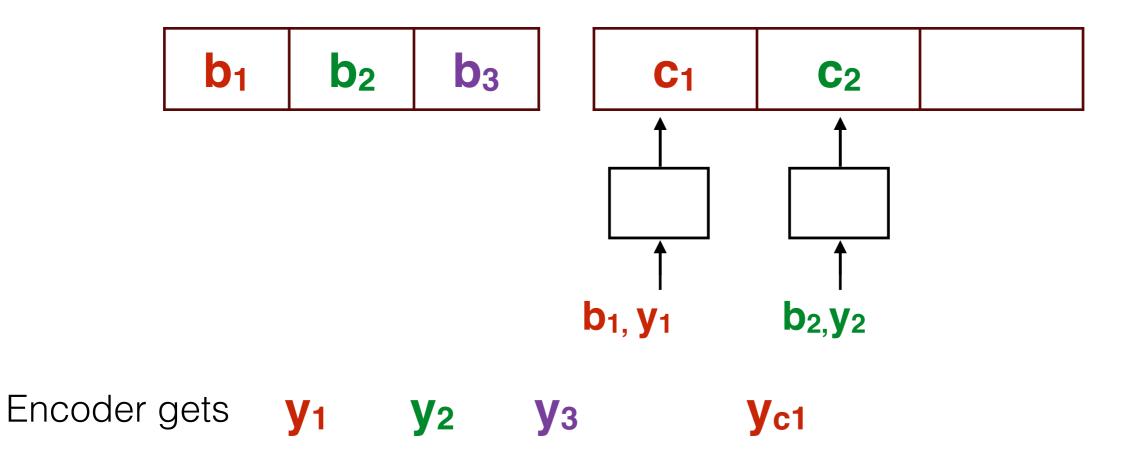
y3

yc1

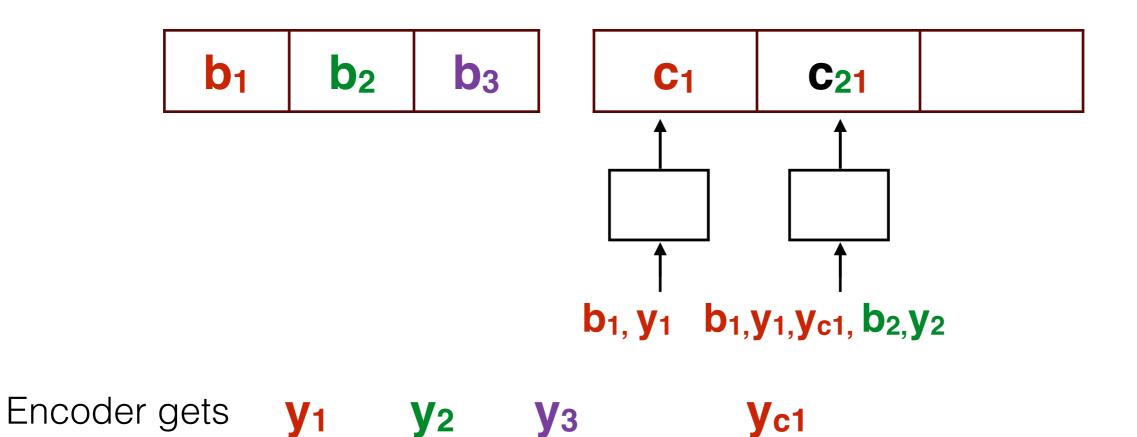
Another parity for b₁?



Parity for b₂?



Parity for b₂ and b₁



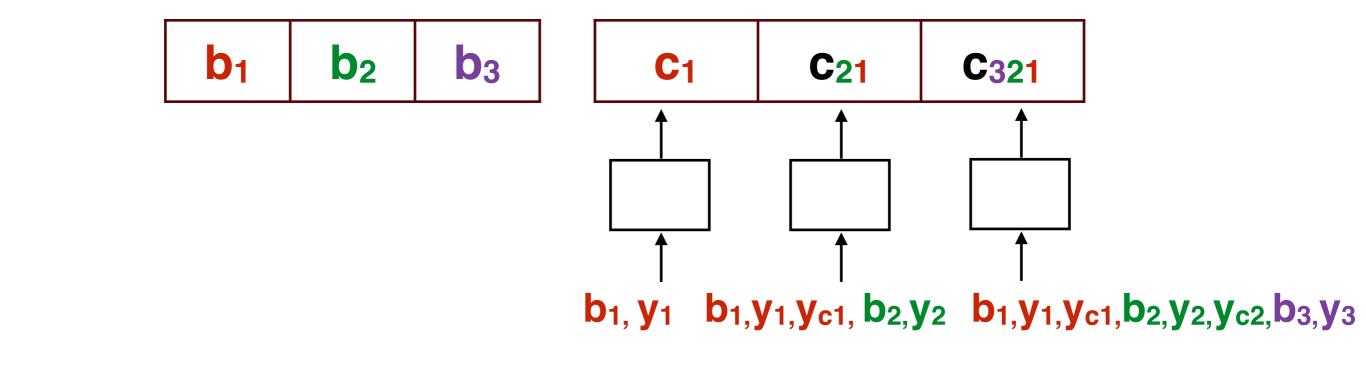
Parity for b₃, b₂ and b₁

y1

y2

y3

Encoder gets



yc1 yc2

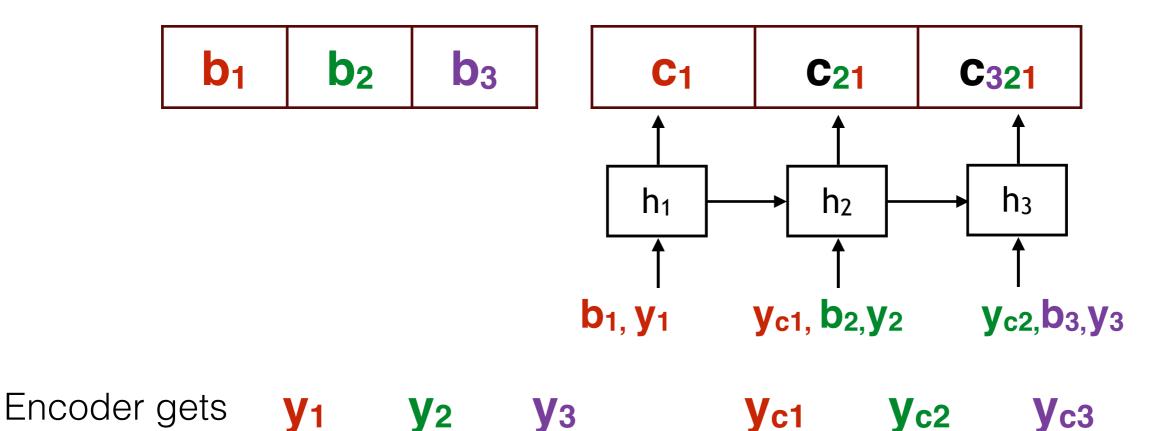
yc3

Recurrent Neural Network for parity generation

Sequential mapping with memory

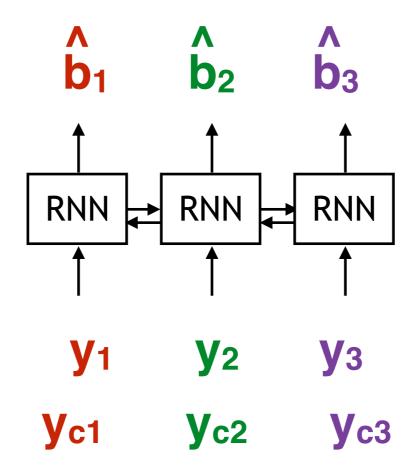
$$h_i = f(h_{i-1}, \text{Input}_i)$$

 $\text{Output}_i = g(h_i)$

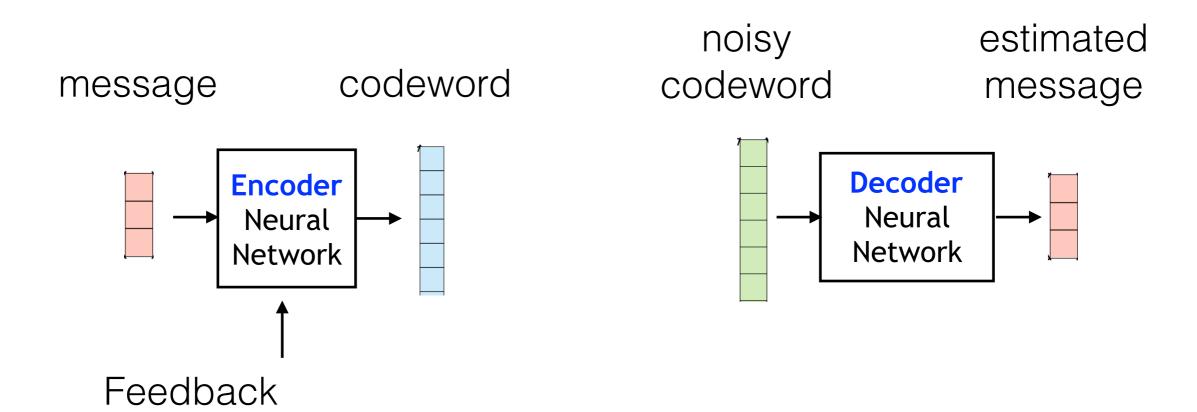


Neural decoder

• Maps $(y_1, y_2, y_3, y_{c1}, y_{c2}, y_{c3}) \rightarrow b_1, b_2, b_3$ via bi-directional RNN

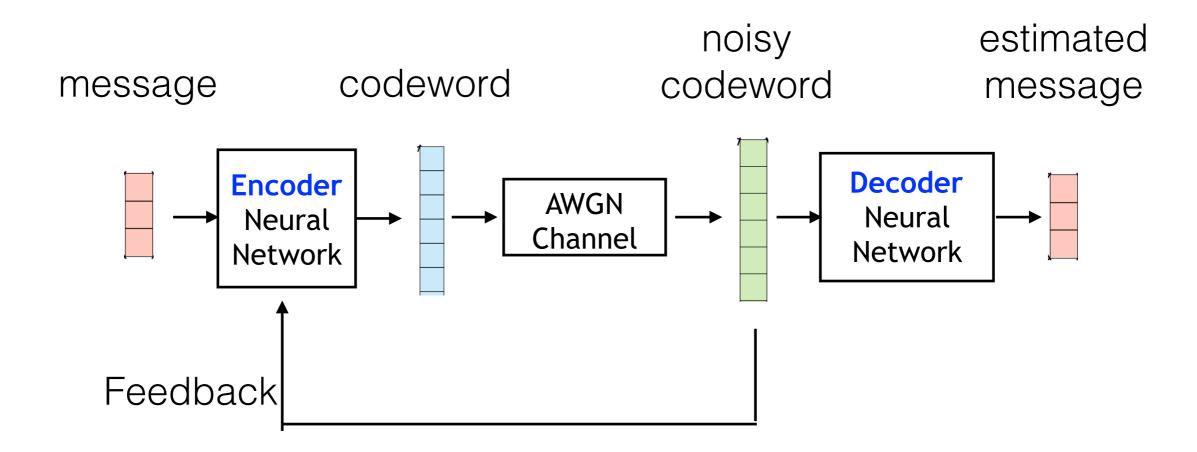


Neural encoder and decoder



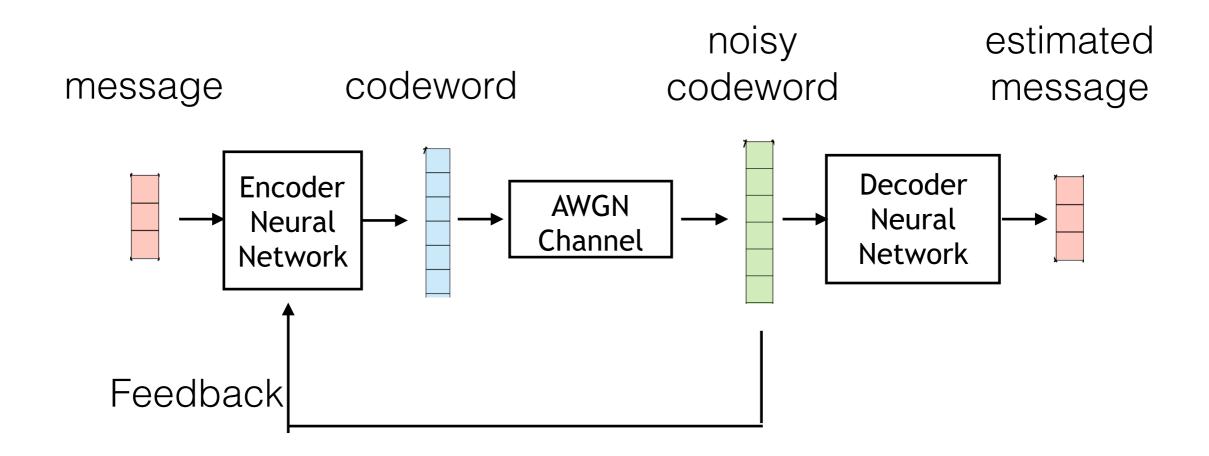
Training

Learn the encoder and decoder jointly



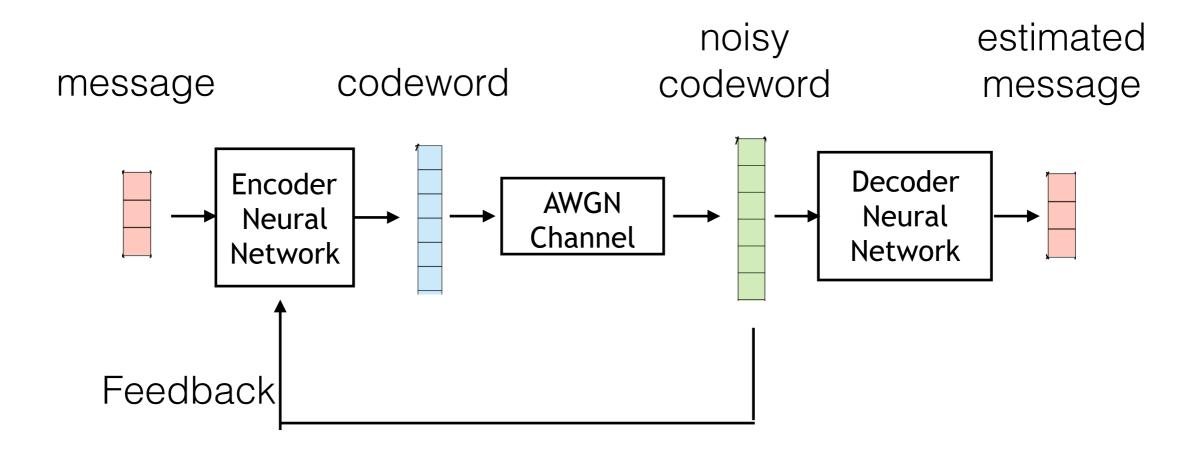
Training

- Learn the encoder and decoder jointly
 - Challenge: Gradients have to pass through decoder



Training

- Learn the encoder and decoder jointly
 - Challenge: Gradients have to pass through decoder



Encoder simpler than decoder

Supervised Training

Auto-encoder training: (input,output) = (b,b)

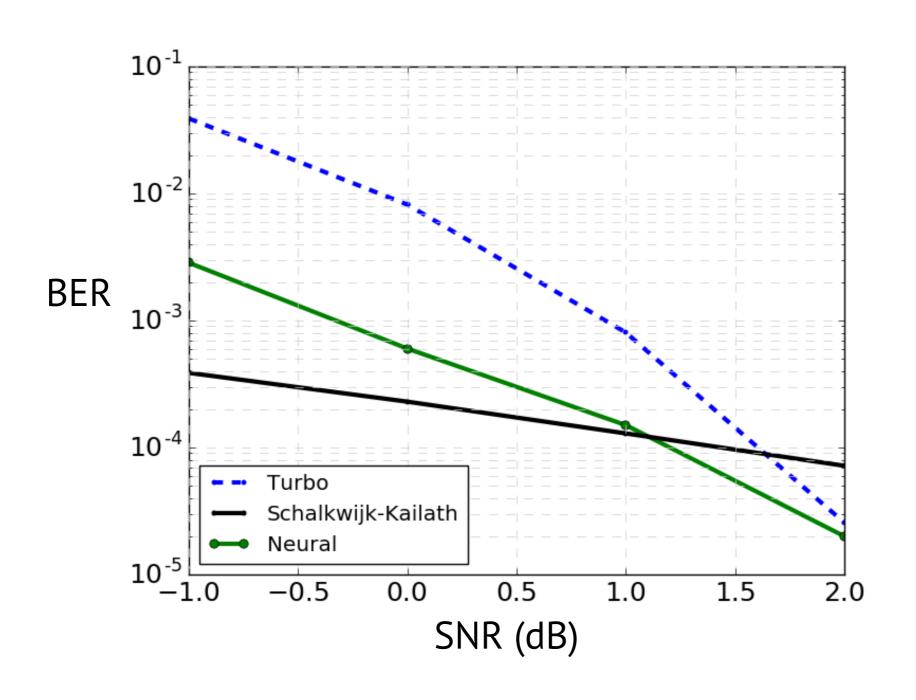
$$\mathbf{b}=(b_1,b_2,\cdots,b_K)$$

Loss: binary cross entropy

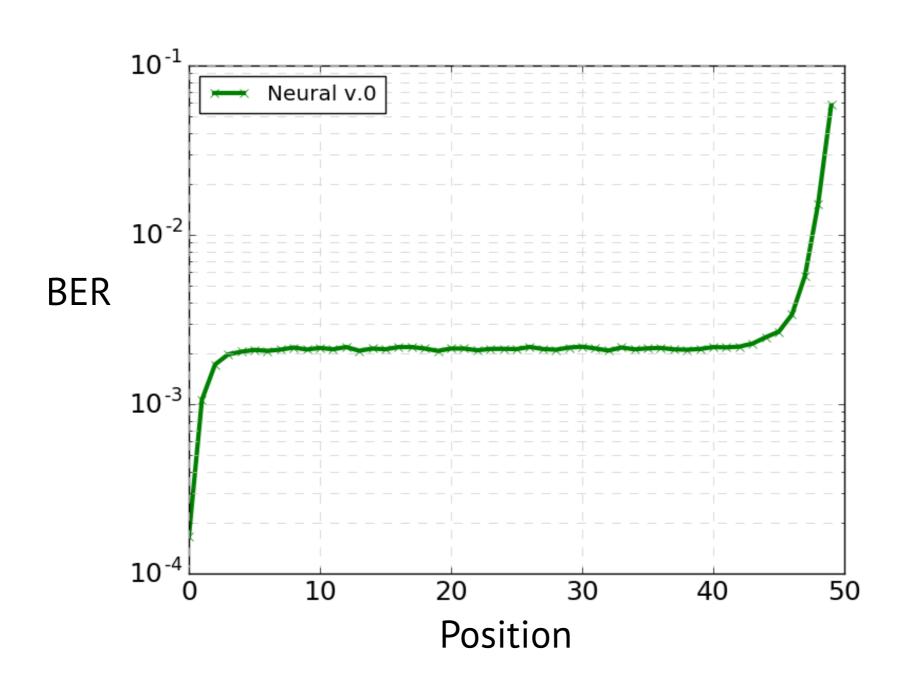
$$\mathcal{L}(\mathbf{b}, \hat{\mathbf{b}}) = -\mathbf{b} \log \hat{\mathbf{b}} - (1 - \mathbf{b}) \log(1 - \hat{\mathbf{b}})$$

- Training code length :
 - long enough (100)

Intermediate results



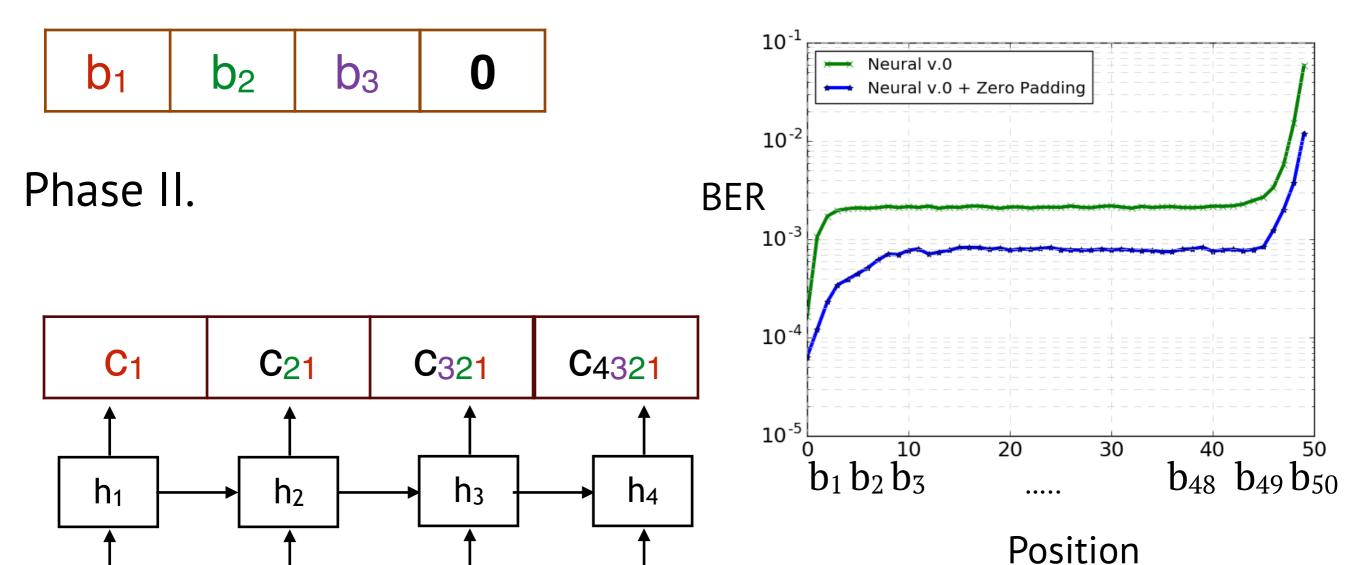
High error in the last bits



Idea 1. Zero padding

Phase I.

 b_{1}, y_{1}

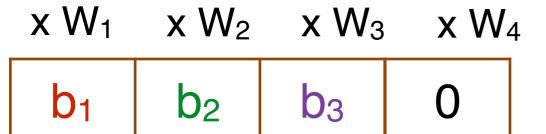


 $b_{3}, y_{3}, y_{c2} = 0, y_{4}, y_{c3}$

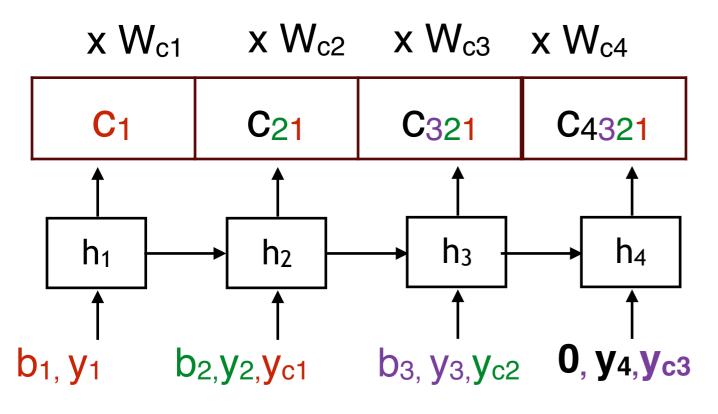
 b_2, y_2, y_{c1}

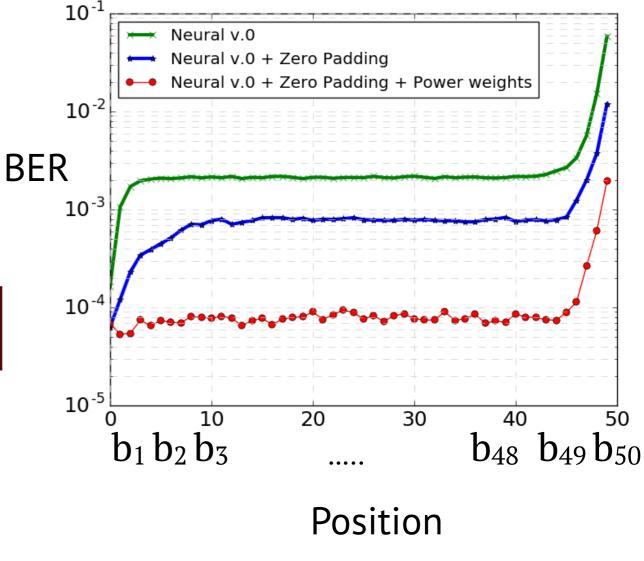
Idea 2. Power allocation

Phase I.



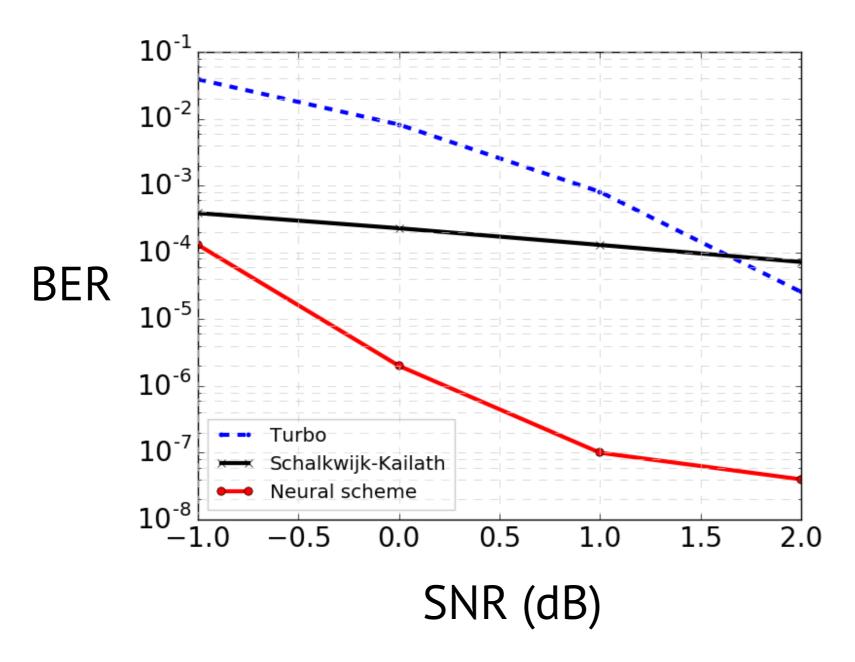
Phase II.





Results

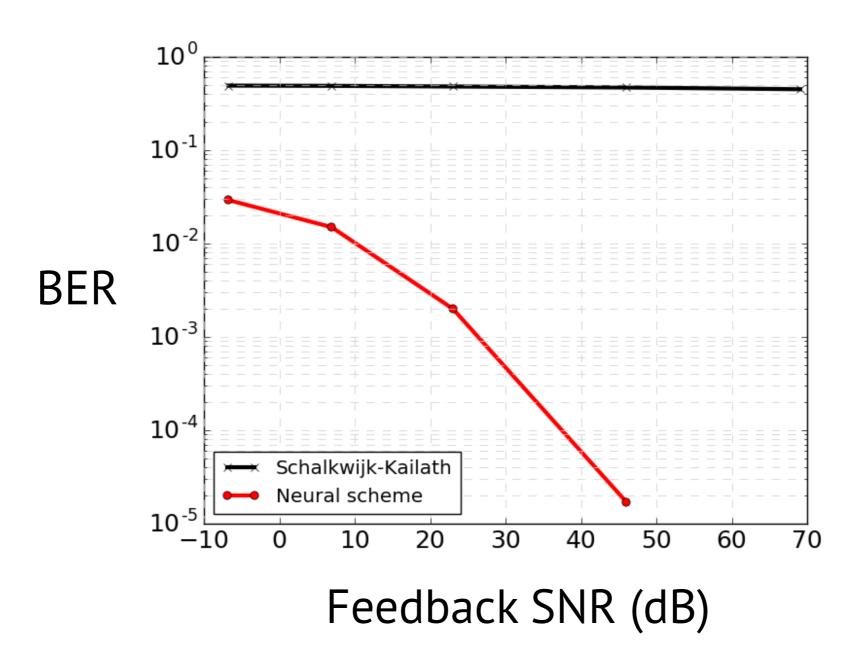
• 100x better reliability under feedback w. machine precision



(Rate 1/3, 50 bits)

Results

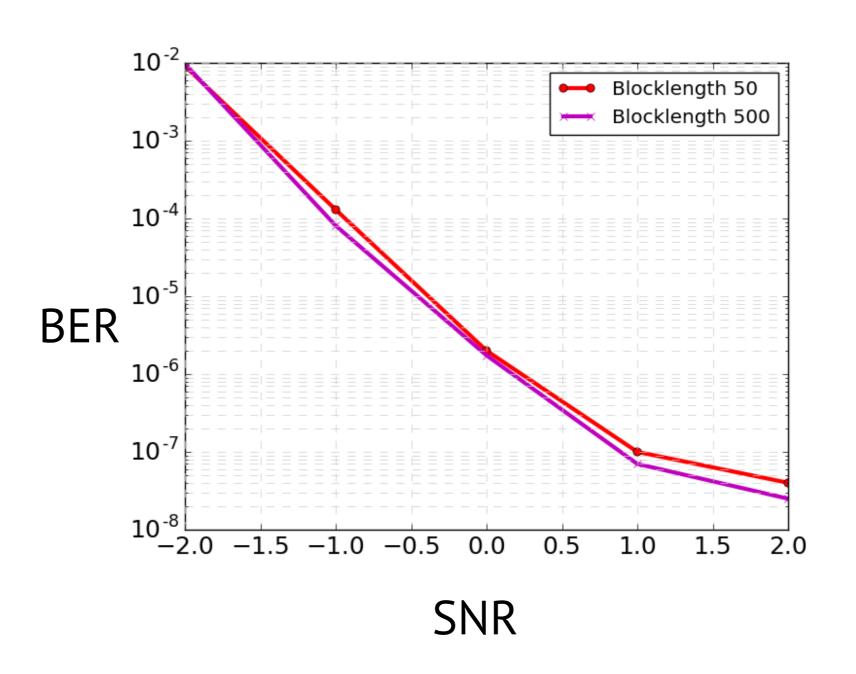
Robust to noise in the feedback



(Rate 1/3, 50 bits, 0dB)

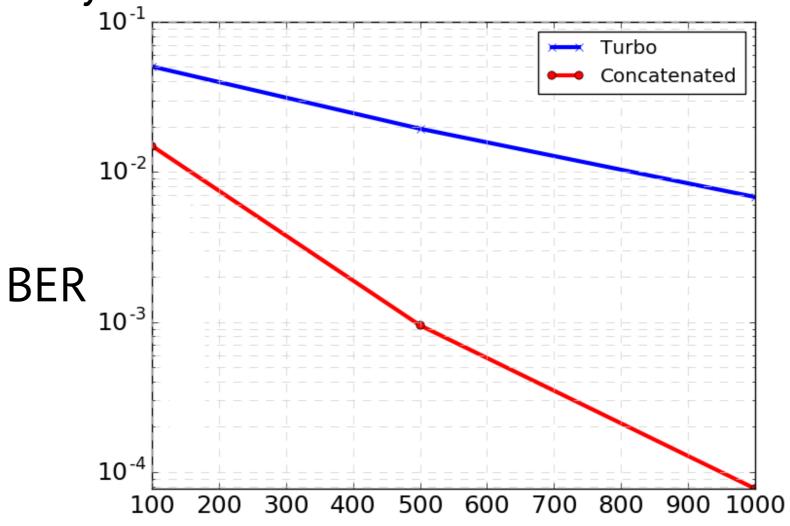
Generalization: block lengths

• Train on block length 100. Test on block lengths 50 & 500



Improved error exponents

- Concatenated code: turbo + neural feedback code
 - BER decays faster



Block length