Finding and Hiding Message
Sources in Networks:

Epidemics, Social Media, Cryptocurrencies

. Giulia Fanti and Pramod Viswanath




Broadcasting Information: Then
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Broadcasting Information: Now

==l Donald J. Trump
@realDonaldTrump

Sorry losers and haters, but my 1.Q. is one of the highest -and
you all know it! Please don't feel so stupid or insecure,it's not
your fault

8:37 PM - 8 May 2013




Broadcast communication is easier, cheaper,
and more democratic than ever before.



Distributed broadcasting
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Epidemics
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Social Networks




Cryptocurrencies

®




Broadcasting can impact the robustness,
utility, and security of a network.

... but distributed network management
poses new challenges!



Relevant Questions

What are the

spreading Robustness Who started
dynamics? a broadcast?
What is the
network —— 2 = = °
structure” - _
Utility Security
When do messages ___—— "~ Whois allowed
go extinct? to broadcast?



Attribution Is central to communication

"We'll know our
disinformation program is
complete when everything

the American public believes
is false.”
- William Casey, CIA Director

(from first staff meeting in 1981)




This talk

 Part I: Systems and how to model them (1 hr)
* Bitcoin primer (30 min)
» Network models
* Propagation models
* Observation models

 Part ll: Source finding (1 hr)
« Algorithms for source detection
» Analysis of these algorithms
» Open problems

 Part lll: Source hiding (1 hr)
» Early results: crypto community
« Statistical approaches
* Open problems



Cryptocurrencies Primer

The Origin of Bitcoin

Narayanan et al., Bitcoin and Cryptocurrency Technologies, 2016



Financial systems

Cash
‘@>/\

\@
+ Offline transactions

+ Anonymous
- Requires initial seed cash

+ Exchanges can be digital

- Parties take on risk



Bitcoin Objectives

- Egalitarianism - no central trusted party
« Transparency - transactions can be verified by all nodes

* Privacy - users need not reveal their identity to the currency



Bitcoin objectives

-

Egalitarianism
Transparency

Privacy
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Why this problem is hard

What prevents

forgeries”?
Money =
string of bits What prevents
double-
No central spending?
controller

Who creates
money”?

-)
-)

-)

Digital
signatures

Global
ledger

Users



Image from Narayanan et al, 2016

Append-only ledgers

Haber and
Stornetta, 1991



Hierarchical structure

t=1 t=2 t=3

Block

Merkle Tree

Transaction |
Transaction (i+1)

Image from Narayanan et al, 2016




Basic network operation -

Bob
IPg

ﬁl

Alice
IP A




Basic network operation

tx2 (ktx2)

Send 1 BTC from
Kis 1O Kg. [ ]

Signed: Ky




Adding to the Blockchain




Adding to the Blockchain | Blockehain
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tx1

tx2

What's wrong with this?
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Basic network operation

tx2'
ﬁ tx1 -> Dev

Alice
tx2

tx1 -> Bob




Adding to the Blockchain




Distributed Consensus in Bitcoin

No fixed notion

of identity Robust to

Sybils



Proof-of-Work

Puzzle
Find x:  H(x) = f(tx, blockchain)










How are contlicts managed?

55

Alice




How are contlicts managed?




How are contlicts managed?
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Bitcoin Consensus Protocol: Summary
 New transactions are broadcast

« Each node collects transactions into blocks
« One random node gets to broadcast its block / round
» Other nodes accept the block iff valid puzzle solution

* Miners “accept” blocks by referencing them in the next
block



Probability of transaction reversal

Adversary

Finds blocks with
probability g

O °0%

p>q

:
O 26

f"‘\

\Rest of the network

Finds blocks with

probability p

C
-2 0

‘ ‘ Block
2 differential

Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System (2008)



Probability of transaction reversal

p = Probability an honest node finds next block
q = Probability attacker finds next block

q, = Probability attacker overtakes main
blockchain starting from - z differential

This does not
hold by
( 1, ifp<gq /assumption

s ifp>q

I
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Properties of Proofs of Work

Cost Reward

Measured in: Computation Bitcoins

(new-block reward,
transaction fees)

Scales according to: Network’s mining power Geometric scaling
(1 block per 10 minutes)
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Bitcoin - Controlled Supply

Number of bitcoins as a function of Block Height
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Bitcoin's Controlled Supply is a function of the Block Height and the Block Reward.

The block reward started at 50BTC. The block reward is halved every 210,000 blocks.
Theoretically this would lead to a maximum number of Bitcoins that tends toward 21,000,000

Due to a limitation in the present data structure of the blockchain, the maximum number of Bitcoins is actually 20,999,999.9769

This maximum will be reached when block 6,929,999 has been mined.
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What purposes does mining serve?

Distributed consensus Limit rate of
protocol production



The Upshot

Repeat after me: if you don't need concurrent access to a decentralized, mutable, singleton, you

don't need a #blockchain.

— ArthurB (@ArthurB) December 17, 2014



Why should the IT community care?

1. Network is 2. Distributed
central storage

1

This talk

3. Game theory



A

Zerocash
Cryptography Zerocoin
Confidential
Rlng Sigr\atures transactions
alth addresses TumbleBit
CoinShuffle
CoinSwap XIM Mixcoin
Used in Altcoins
Obfuscation Fresh addresses Merge avoidance Not used
=
2009 Today

Figure 1: Privacy-Enhancing Technologies for Bitcoin. The X-axis is the date of invention
and the Y-axis is an informal measure that combines the sophistication of the technique
and the strength of the privacy guarantee. See Appendix 1 for references.

Narayanan and Moser, 2017



Models

Broadcasting over Networks



System Modeling

Network

Models p

Propagation
Models

o)

Observation/
Adversarial
Models



Network Models

Random
Irregular General

Regular trees regular
- — graphs graphs

Theoretlcal Empirical
Results Results



Propagation Models

Susceptible- Susceptible-Infected- Susceptible-Infected-
Infected (SI) Susceptible (SIS) Recovered (SIR)

o6 o o 000
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Epidemics

Propagation Models O Social media

’ Cryptocurrencies

Susceptible- Susceptible- Susceptible-
Infected (SI) Infected- Infected-

Susceptible Recovered
(SIS) (SIR)

Continuous-

time ‘Q‘ .O ‘

Discrete-Time



S| Diffusion (continuous-time)




S| Diffusion (discrete-time)

Time t

wn -+ 0O




S| Gossip (discrete-time)




S| Gossip (discrete-time)



Propagation Models: Key attributes

 Fully-distributed protocols
* Infection model can vary (Sl, SIR, SIS)
« Continuous- vs. discrete-time systems

» Gossip vs. diffusion



Snapshot Observer

;
Q Epidemics

Q Cryptocurrencies




Eavesdropping Observer

O C
~ v O O ~ ~ O
Luxembourg Researchers Fifid'a Way to
Unmask Bitcoin Users

¢ cryptocoins

1172014
O =C [ORNO



Eavesdropping Observer

- Supernode
O Epidemics

O Cryptocurrencies

0 connections per node



Spy-based Observer

The Facebook Squad: How Israel Police
Tracks Activists on Social Media

It follows their Facebook pages,|uses fake profiles to 'befriend' them|and presents
screenshots of posts in court — this is how Israel Police is adding social activists to its
virtual surveillance list. "They know what I write and do, Ethiopian protest leader says.

Yaniv Kubovich | Feb 06, 2016 9:46 AM



Sampled Observers (Spies)

________________________________________________________

t = 06:10:34

_________________________________________________



Observation Models: Key Attributes

 Fraction of nodes that can be observed (all nodes, subset)
» Delay of observation at those nodes (instantaneous / random)

* Nodes’ adherence to protocol (honest-but-curious / malicious)



Summary: Modeling Epidemics

* Network models

* Trees
» General graphs (social networks, random graphs)

« Spreading models
 Diffusion

 Observation/adversarial models

« Snapshot
« Spy-based, eavesdropper



Finding the Source

Part [l




What you will learn in this hour

« Source detection algorithms
* Rumor centrality
« Other heuristics

* Introduction to Pdlya urns
* Definition
« Convergence results
« Generalizations

* Using Pdlya urn processes to analyze the probability of source
detection in diffusion processes



Source Detection Algorithms



Rumors Iin networks




Rumors Iin networks

a2 random node is the source of the rumor



Ditfusion spreading

* Node 2 spreads the rumor to its neighbors iid along its edges



Rumors Iin networks




Ditfusion Spreading

« Both nodes 1 and 2 spread the message along their edges



Ditfusion Spreading

« Node 3 receives the message, say.



Ditfusion Spreading




Ditfusion Spreading




Snapshot observation

» Get to observe set of nodes Wlth the message
* No timestamps



Source of Rumor

» knowledge of set of nodes with the message



Centrality

e Source is in the center



Rumor centrality

« Specific metric of centrality

Shah and Zaman, Rumors in a Network: Who's the Culprit?, IT Transactions, 2011



Rumor centrality

* Hypothesis: node 1 is the source



Rumor centrality

* |dentify a possible spreading pattern



Rumor centrality

] >2-—>3-—>4—>8
1 —>2—>3—>8—>4

« Enumerate all possible spreading patterns



Rumor centrality

] >2-—>3-—>4—>8
] >2-—>3->8—>4
] —>2—>4->3—>8



Rumor centrality

« Score = number of possible spreading patterns



Rumor centrality

e Similar score for node 2



Rumor centrality

2—>1->4->3->38
2->1->3—>4->38
2—>1->3->8-—>4
2—>4->1->3->8
2—>4->3->1->38
2—>4->3->8—1
2>3->1->4->8
2>3->1->8-—>4
2>3->8—>1->4
2>3->4->1->38
2>3->4->8-—1



Rumor centrality




Rumor centrality




Rumor centrality

« Node 2 has the highest centrality score



Rumor centrality

« Same as picking node with: smallest sum of distances to all nodes



Jordan centrality

« Maximum distance from a node to another



Jordan centrality




Jordan centrality

* Node 1’s eccentricity is 3



Jordan centrality




Jordan centrality

« Both nodes 2 and 3 are equally central



Counting Efficiently

« Naive counting is very inefficient



2—>1->4->3->38
2—>1->3—>4->38
2>1->3->8-—>4
2—>4-—>1->3->38
2—>4->3->1->38
2—>4->3->8—1
2>3->]->4->8
2>3->1->8-—>4
2>3->8—>1—>4
2>3->8—>4—1
2>3->4->1->38
2>3->4->8—1

« Some orderings are valid, others not

Naive implementation of rumor centrality

2—>4->1->8-3
2—>]—>4->8->3
2—>4-—>8-—>]1->3
2—>4->8->3—>]
2—>1—>8—>4->3
2>]1—>8-—>3->4
2 >8—>4->]1->3
2>8—>1—->3->4
2 >8—>1—4->3
2>8—>3—>1—>4
2>8—>3—>4—>]
2>8—>4->3—>]



Rumor centrality via message passing

{

* Reuse computations



Rumor centrality via message passing

 Start with a node (1, say) and form a rooted tree



Rumor centrality via message passing

* Tree rooted at node 2



Upward pass

« Messages pass upwards from leaves to the root



Upward pass

* Two types of messages



Upward pass
o

A

lysy =1 o P32 =l .opPg o3 =2
Pa—sn =1 ° By =1lg 3 +1=2
Ol
Ps—3 =1

* Node 3 processes its message and sends it to its parent



Upward pass

P21 = 1P3>2P4—>2 =8
t2_>1 = f3_>2 + t4_>2 +1=4

D3y =l pPgs3 =2
lt3%2 = t8%3 +1=2

t8—>3 = 1
P33 =1

« Node 2 can now process its message and send it



Upward pass v s

R(T) = oSt
M Np,_,;  S5x8

3

P21 = 1P3>2P4—>2 =8
t2_>1 = f3_>2 + t4_>2 +1=4

D3y =l pPgs3 =2
lt3%2 = t8%3 +1=2

« Node 1 gets to calculate its rumor centrality score



Downward pass

° f3>3 =1

* Messages pass downwards from root



Downward pass

* Pass the rumor centrality score downwards



Downward pass

R(2) = R(D)

« Node 2 can compute its rumor centrality score



Downward pass




Downward pass

R(4) = RQ2)







Downward pass




Downward pass R®) - RG)_B=3 g L )
N-ty.; 5-1




Computational complexity
(D) R(1) =3

R =12 2) RO -12

R(4)=3 R(3) =38

(3) R@®) =2

« 3N computations



Choice of root node

* Root node could have been 2
« Rumor centrality scores remain the same



Graphs with cycles?

« Heuristic: spreading occurs on a breadth-first tree



Regular tree

e Theorem: Rumor centrality = Maximum Likelihood
 Positive probability of detection, asymptotically

Shah and Zaman, Rumor Centrality: A Universal Source Detector, Sigmetrics 2012



Analyzing Diffusion Processes



Introduction to Pdolya Urns

.
What is the fraction of red
balls after n draws?

1) Analyze for 2 colors.

2) Generalize

Mahmoud, Polya Urn Models, CRC Press 2008



Does the order of draws matter?

1 2 1 3 31!
;@ ;0 @0 @ -

31!

1 1 2 3 _ 3
5‘ §‘ Z‘ g‘ 5!

n
IW%=k+D=(QBw+Ln+1—@

d

1
# red balls ﬁ(x» y) — j mx—l(l — m)y—ldm
0

at nth draw




Does the fraction of red balls converge”

1,,: Number of red balls R,:Fraction ofred balls R, =
" n+2

Approach

1) R, is a martingale.

2) That martingale converges a.s.




1) R,, IS a martingale.

T
‘ r.: Number of red balls R,,: Fraction of red balls R,, = " : >

Num red

. Num red
. F

Fraction palls +1 blLanggﬁS palls

red balls | | |

E[Rn | R‘n—l' ""Rl] —

Rn-1+Th-1 m-1(n+2)
= — — Rn—l
n+ 2 n+1)(n+2)




2) This martingale converges a.s.

Martingale Convergence Theorem

R, € (0,1)

— R(w) =lim R,,(w)

n—0o




What is the limiting distribution??

Let’s look at the moment-generating function
Mg, (t) = E[exp(tR;)]
- k+1 k+1
= > exp(t——)P(R, = ——)

n+ 2 n+ 2
k=0
. k+1\ (1 /n
— k _ n—k
_Zexp(tn_l_z)fo (k)m (1—-—m) dm |
k=0 Moment-generating

(et i / function of Unif(0,1)
, x # 0
t

1
—>jetmdm = 1
0 1, x =0

\



Generalization 1: Number of replacements

Y = new balls added of same color

Depends on initial conditions!




Generalization 2: Number of classes

a=[112] Initial values
y = 2 # added balls of same color

R ~ Dirichlet — Multinomial(a, n)




How can we anaj,yze diffusion”
/ I
1

/ \
Shah and Zaman, Rumor Centrality: A Universal Source Detector, 2012



A nice prgperty

Yoo =1 7 \ N Xreq = 1
blue — \ : :
| v is a rumor center iff
X
Xi(T) < t;tal
/ y \
e — = == == == i€ {red,orange,blue} Number of

“infected” nodes

Example:

n 5
Xorange =2 = E = E

Xorange =2 /



What does this mean for our urn?

B,: Fraction of @ v is a rumor center iff
R,: Fraction of @ B RO <
e Op: Fraction of ) ]

Let’'s use the convergence
results from before.




Let’'s consider a slightly ditferent urn.

1 d—1)

R~Bt( ,
Sd=2rd—2
= Beta(1, 2)



Putting it all together L aa
R~Beta(— —)

d-2’d-2

N |-

Want R <
I1(a,b) = P(X € [0,%]) where X~Beta(a, b)
2
( 1 d—1)
d—2"d—2 )

Example: (d = 3) = lim P(detection) = 0.25

t— o0

lim P(detection) =1 —d(1—11

t— oo 2

Rumor centrality: A Universal Source Detector, Shah and Zaman, 2012



What about other problems?

Supernode
Eavesdropper

Adversary Al (A

6 = 2 connections per node



| et’'s model this as an urn

Supernode




Generalized Polya Urns

Replacement Matrix
Solid  Striped

_[d—2 17 Sold
A= ’ 0 —1] Striped

Example
o1
A=



Convergence properties A=t 1]

0 -1
Conditions Example
1) AijZOforiijandAiiZ—l 1) Al‘jzoandAiiZ_l
2) Largestreal eigenvalue of A (4;) is 2) A(4) = {1,-1)
1) positive ’
2) simple
3) Start with > 1 ball of a dominating type 3) Solids are a dominating type

R, \as.
( ) — A Vg
&,
raction of

I;oliolt balls / /

Fraction of First
striped balls eigenvalue Athreya and Ney 1972, Jansen 2003

First (right) eigenvector



Comparing the two results

Classic Podlya Urns
* Transition matrix

« Nonsingular
* Not positive regular

d—2 -« 0
.A: . . . ]

0 - d-—2

« Converges to a random
variable (Beta distribution)

Generalized Polya Urns

* Transition matrix
« Nonsingular
» Positive regular

°A:[d62 _11]

« Converges to a constant



er xt(v)= # blue balls in ith
subtree of v at time t

Back to the eavesdro

I Zicti((vv)) < % Vi, then v
t

IS a reporting source.

—i

— SOUICG 2. Estimate © drawn
uniformly from the set of
reporting sources.



Back to the eavesdropper

‘ ‘ Proof Sketch

1) v*is a rumor center with known
probability.

Uses urn

/ results

2) Given that v* is a rumor center,
lim P(v* is a reporting center) = 1

t—oo

3) There is at most 1 reporting center.

Anonymity Properties of the Bitcoin P2P Network, 2017



Summary of Approach

» Extract a representation of the problem that can be modeled as
a Polya Urn

« Use known convergence results (Athreya and Ney 1972,
Jansen 2003)



Spy Adversary

small
timestamp

« Spy nodes observe time stamps



Centrality methods

* First spy estimator
» source = node reporting earliest to spies
 very easy to implement

* N0 knowledge of underlying graph



Centrality methods

 Earliest infection time estimator [Zhu, Chen, Ying, 2014]
« estimate infection times of other nodes

* eccentricity score =
min min ty — ty — 1)
TEPy (u,w)ET ( “ Y ,U/)

u,v,l
* pick node with smallest eccentricity

* related estimator [Pinto, Thiran, Vetterli, 2012]



Thoughts on how to handle spies

» Use the same counting-
based estimator

« Use randomized Polya
urns




Open Problems



Other related questions

« Number of sources
» Detecting more than one source
« Combination of adversaries: snapshot+eavesdropper+spy

* Inferring the underlying network



Inferring diffusion networks

I t=0




Inferring diffusion networks

I t=0




Inferring diffusion networks

I t=0




Inferring diffusion networks

I t=0




Inferring diffusion networks

I t=0




Inferring diffusion networks

I t=0




Inferring diffusion networks

O .
° ® only time-stamps are

observed
® O
O @ O



I t=0

Inferring diffusion networks




! t=0

Inferring diffusion networks




It:O

Inferring diffusion networks

*
*
*

cascades



l t=0

Inferring diffusion networks

O
O O Goal:
O ® Estimate underlying graph
topolo

o ® o pology

© o ©
o

_ @
° @)




Models

e independent cascades model [Kempe, Kleinberg, Tardos '03]
+ discrete-time
+ susceptible — active for one time-slot — inactive

« node I infects | with probability Pi; if I is active



Algorithms

 estimate Pij for all pairs (i,)):
[Netrapalli, Sanghavi '12],
+ log likelihood decouples, each term convex
[Daneshmand,

 threshold to output graph Gomez-Rodriguez, Song,
Scholkopf ’14]

- sample complexity O(d?logn) for degree bound d



Algorithms

e sSubmodularit
’ [Gomez-Rodriguez,

i - Leskovec, Krause '12
« greedy algorithm; add one edge at a time to the eskovec, Krause 12]

graph estimate



Hiding the Source

Part Ill




What you will learn in this hour

« Classical approach from the crypto community
» Dining cryptographer networks

« Statistical approaches
- Static graph is given

* Dynamic graph can be chosen

* Open problems



General-Purpose Hiding



Dining Cryptographer Networks

K

Chaum The Dining Cryptographers Problem, 1988

Alice




What are some problems”

* High communication costs
 Cannot handle collisions

 Fragile to misbehaving nodes

Golle and Juels, Dining Cryptographers Revisited, 2004
Sirer et al., Eluding Carnivores: File Sharing with Strong Anonymity, 2004
Franck, New Directions for Dining Cryptographers, 2008
Corrigan-Gibbs et al., Dissent: Accountable Group Anonymity, 2013



Worst-case solutions can be
too heavy to be practical.



Hiding on a Static Network



Information flow in social networks

Diffusion has statistical symmetry



Breaking symmetry: Adaptive diffusion

High likelihood

Low likelihood

Provides provable anonymity guarantees

[Spy vs. Spy: Rumor Source Obfuscation, ACM Sigmetrics 2015]



d-regular trees: adaptive diffusion

Initially, the author is also the “virtual source”



d-regular trees: adaptive diffusion

Break
directional
symmetry




d-regular trees: adaptive diffusion

Break
directional
symmetry

chosen neighbor = new virtual source



d-regular trees: adaptive diffusion

Break
directional
symmetry




d-regular trees: adaptive diffusion

Break
temporal
symmetry

keep the virtual source token pass the virtual source token



keep the virtual source token

(O
CQ‘CC‘
00\00
@ f.a..
=0 omuglhe
N\ Om®
e = Sl e KO NS
O o RO
() O



pass the virtual source token

O O O
O
o0 O A

o L O—-CO
Q o O

e ~0
o ¢ T 00

. ‘ . < new virtual source




pass the virtual source token



Results

d-Regular trees Irregular trees Facebook graph

Snapshot 4

(1] Spy vs. Spy: Rumor Source Obfuscation, Sigmetrics 2015
'] Rumor Source Obfuscation on Irreqular Trees, Sigmetrics 2016




When to keep the virtual source
token?

OO0 O
O
QO
L O—-CO
Q ® O
O—O) & O
(O—0 O
o Y OO
A Q Q¢ ~O
o e OO distance
)y O node from
O O O degree source

! /

Virtual source token is kept with probability & = (d — 1)™"



Maximum likelihood detection

High likelihood

Low likelihood

THEOREM: Probability of detection = ——



hop distance

/from source

h=1 2
O
Pr(keep token)
Likelihood == - a Likelihood = L. 1=@
A? d d-1

Tree degree

Want these to be equal: a = %



Irregular trees



How do we analyze this”?

d ={dmin W.D. Pmin
v dmax W.D. Pmax

S eqye Y O ) )
‘ . . VmL = arg verlrelegx)/(esd_v 1_[ dW -1
M) WEP (v,vT)
0 O—OE—C / \
J ()
vy ® Path from v to Degree of
0. 1/2 virtual source node w
O0—O 2 O3
0 O > g
@ O
O 00 O

1
mln d'l? HWEP(U,UT)(dW - 1)

v€Eleaves

P(detection | snapshot)




Main result (special case)

Ag, 2 min d, 1_[ d,—1)

v€Eleaves

WEP(v,v1)

Probability of  Min
min degree degree

| J
If pmin(dmin - 1) > 1

'

log(AGT)
T

Theorem: Probability of detection =

— log(dmin — 1)‘ > 6) <e GT

(dmin_l)T




—~1

—2

10

Degree distributions

10

.-

5 /dv={3 w.p. 0.55
-§ 10 w.p. 0.
§ d = 3 w.p. 0.5
5 — "7 |7 w.p. 0.5
=

E

3

o

[a

—1/N

10°

-3

10

10' 10° 10
Number of Infected Nodes (N)
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Proof sketch for .am.e || @-1= G-

WEP(v,vr)
4 = 3 w.p. 0.7 4 = 3 w.p. 0.7
V|5 w.p. 03 v l1 w.p. 0.3
pruned
pruned

0.7 3
}

If pmm(djnm — 1) > 1 then the pruned process survives.



oH

If pmin(dmin - 1) > 1:
min d, 1_[ dy—1 ~ (dy —1)7

v€Eleaves
WEP(v,vr)



' : 3 w.p. 0.7
Ag, £ min d, 1_[ (dy,—1) d :{ P
Main result =15 wp 03
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Sim|OleXy B Bi= . KL-Divergence
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Results

Snapshot

d-Regular trees

Optimal
[1]

Irregular trees Facebook graph
-
Near-optimal [1]
[2]
Y

[1] Spy vs. Spy: Rumor Source Obfuscation, Sigmetrics 2015
'] Rumor Source Obfuscation on Irregular Trees, Sigmetrics 2016



Facebook graph
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Results

d-Regular trees Irregular trees Facebook graph
Snapshot
Near lower
Optimal Near-Optimal bound

[1] [2] [1]
Spy-based

[3] [3] [3]

A A

[1] Spy vs. Spy: Rumor Source Obfuscation, Sigmetrics 2015
'] Rumor Source Obfuscation on Irregular Trees, Sigmetrics 2016
[3] Metadata-Conscious Anonymous Messaging, ICML 2016



Spy-based adversary SPYETY)7

Bob With probability p
ra|g
-message
-T = 09/10/2015
@ 8:40 pm
David
-message
-T = 09/10/2015
Alice @ 9:10 pm

Adversary sees metadata at spy nodes



Facebook Graph
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Result on d-regular trees

Lower bound
on detection

/

Probability of detection

0 0.2 0.4 0.6 0.8 1
Spy probability, p

THEOREM: Probability of detection = p + o(p)

34



Hiding on a Dynamic Network



Blockchain

I " ' dosfjj2
Bitcoin Reminder Dcknbo
Transaction our transaction

Ky sends K, to Kk




Botnet (spy-based) adversarial model
observe all _ N
metadata identities
@ unknown

: fraction p

of spies

spies
collude

® . D

but-curious



Metric for Anonymity

Recall

%Z 1{Mgz’s tx) = v}
f \ Mapping

Number User
honest
users

E[Recall] =
Probability of Detection

Transactions

s~

/

& & @

Mapping M

Users

n 4 # tx mapped tov

Precision
1 1{M(v's tx) = v}

v



Goal:

Design a distributed flooding protocol that minimizes

the maximum and achievable by a
computationally-unbounded adversary.




Fundamental Limits

1

Thm: Maximum

recall = p.
Precision
Thm: Maximum
precision > p?.
Fraction
of spies ~ p2 ___________________ l

0 P Recall 1



What are we looking for?

Asymmetry Mixing

%’ o000



What can we control?

Diffusion

Given a graph, how
do we spread content?

Spreading
Protocol

Topology Dynamicity

Approximately
regular

What is the underlying
graph topology?

Dynamic

>i Static

How often does the
graph change?

Dandelion: Redesigning the Bitcoin Network for Anonymity, Sigmetrics 2017
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Why Dandelion spreading”

Theorem: Dandelion spreading has an

optimally low maximum recall of p + O (%)

. -

lower bound = p fraction number of
of spies nodes



Graph Topology: Line

.-~ Anonymity graph

tx2

__.----"Regular” graph




Dynamicity: High

Change the anonymity
graph frequently.




DANDELION Network Policy

Dandelion
Spreading

Given a graph, how
do we spread content?

Spreading

Protocol

Topology

Line
graph

What is the anonymity
graph topology?

Dynamicity

>

Dynamic

i Static

How often does the
graph change?



lower bound = p?

|

Theorem: DANDELION has a nearly-optimal
maximum precision of log( ) + 0 ( )

fe

fraction number of
of spies nodes

N 1
Forp<§



Performance: Achievable Region

Precision

10

Floodir

Diffusion

DANDELION




How practical is this”




Dandelion spreading

— 2) Spreading




Anonymity graph construction

06




Dealing with stronger adversaries

Learn the Misbehave during Misbehave during
graph graph construction propagation
Only send _
4-regular messages on Multiple nodes

graphs outgoing edges diffuse



Latency Overhead: Estimate

0.12 T 1 T T T

0.10

!
|

Avg. Dandelion delay = 1-4 seconds
0.081 (3-5% overhead) ]

PDF 0.06

0.04

0.02

0.00
0 10 20 30 40 50 60

Time to first transaction sighting (s)

Information Propagation in the Bitcoin Network, Decker and Wattenhofer, 2013



Deployment considerations




Why not alternative solutions”

Connect through Tor I2P Integration (e.g. Monero)




Open Problems

« Static graph
« Modeling user preferences
» Using cliques for better anonymity on general graphs

* Dynamic graph
» Characterizing graph learning rate

* Both
* |[ntersection attacks!



Conclusion

« Broadcasting information
e common primitive
* modern applications

» Performance metrics
* latency, spreading rate, coverage, anonymity

* Engineering choices
 underlying topology, spreading protocol

* Finding the source
* Inferring the network topology

- Hiding the source
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