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Broadcasting Information: Then



Broadcasting Information: Now



Broadcast communication is easier, cheaper, 
and more democratic than ever before.



Distributed broadcasting

Social Networks CryptocurrenciesEpidemics



Epidemics

Gomes et al. 2014, PLOS



Social Networks



Cryptocurrencies



Broadcasting can impact the robustness, 
utility, and security of a network.

… but distributed network management
poses new challenges!



Relevant Questions

Who started 
a broadcast?

What is the 
network 

structure?

What are the
spreading 
dynamics?

Robustness

SecurityUtility
When do messages

go extinct?
Who is allowed
to broadcast?



Attribution is central to communication



This talk
• Part I: Systems and how to model them (1 hr)
• Bitcoin primer (30 min)
• Network models
• Propagation models
• Observation models

• Part II: Source finding (1 hr)
• Algorithms for source detection
• Analysis of these algorithms
• Open problems

• Part III: Source hiding (1 hr)
• Early results: crypto community
• Statistical approaches
• Open problems



Cryptocurrencies Primer
The Origin of Bitcoin

Narayanan et al., Bitcoin and Cryptocurrency Technologies, 2016



Financial systems
Cash Credit

+ Offline transactions
+ Anonymous 
- Requires initial seed cash

+ Exchanges can be digital
- Parties take on risk



Bitcoin Objectives
• Egalitarianism à no central trusted party

• Transparency à transactions can be verified by all nodes

• Privacy à users need not reveal their identity to the currency



Bitcoin objectives
Credit Cash

Egalitarianism

Transparency

Privacy



Why this problem is hard

Money = 
string of bits

No central 
controller

What prevents 
double-

spending? 

What prevents 
forgeries?

Digital 
signatures

Global 
ledger

Who creates 
money? Users



Append-only ledgers

Haber and 
Stornetta, 1991

Image from Narayanan et al, 2016



Hierarchical structure

…
Transaction i

Transaction (i+1)
…

Block
t=1 t=2 t=3

Merkle Tree

Image from Narayanan et al, 2016



Basic network operation

Alice Bob
IPA

IPB

Blockchain
…



Basic network operation

Alice Bob
kA

kB

ktx1

tx2 (ktx2)
Send 1 BTC from 

ktx1 to kB.

Signed: kA



Adding to the Blockchain

Alice Bob

tx2



Adding to the Blockchain

Alice Bob

Blockchain
…
tx1
tx2

What’s wrong with this?



Basic network operation

Alice
tx2

tx1 -> Bob

tx2'
tx1 -> Dev



Adding to the Blockchain

Alice



Distributed Consensus in Bitcoin

Goal:
Pick 1 node uniformly at random

No fixed notion 
of identity Robust to 

Sybils



Proof-of-Work
Puzzle

Find x:   H(x) = f(tx, blockchain)



Mining

Alice



Alice



How are conflicts managed?

Alice



How are conflicts managed?



How are conflicts managed?



Bitcoin Consensus Protocol: Summary
•New transactions are broadcast

• Each node collects transactions into blocks

•One random node gets to broadcast its block / round

•Other nodes accept the block iff valid puzzle solution

•Miners “accept” blocks by referencing them in the next 
block



Probability of transaction reversal

Finds blocks with 
probability 𝑞

Finds blocks with 
probability 𝑝

Rest of the networkAdversary

𝑝 > 𝑞

Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System (2008)

0 2-2
Block 

differential-4



Probability of transaction reversal

𝑞$ 	
  = Probability attacker overtakes main 
blockchain starting from – 𝑧 differential

𝑞$ = )
	
  	
  	
  	
  	
  	
  	
  	
  1, 𝑖𝑓	
  𝑝 ≤ 𝑞

	
  
𝑞
𝑝

/$
, 𝑖𝑓	
  𝑝 > 𝑞

𝑝	
   = Probability an honest node finds next block

𝑞	
   = Probability attacker finds next block

This does not 
hold by 

assumption



Properties of Proofs of Work
Cost Reward

Measured in: Computation Bitcoins
(new-block reward,
transaction fees)

Scales according to: Network’s mining power
(1 block per 10 minutes)

Geometric scaling



Block reward scaling

Image from BitcoinWiki



What purposes does mining serve?

Distributed consensus 
protocol

Limit rate of 
production



The Upshot



Why should the IT community care? 

2. Distributed 
storage

1. Network is 
central

This talk

3. Game theory



Narayanan and Moser, 2017



Models
Broadcasting over Networks



System Modeling

Network
Models

Propagation
Models

Observation/
Adversarial

Models



Network Models

Regular trees Irregular 
trees

Random 
regular 
graphs

General 
graphs

Theoretical
Results

Empirical 
Results



Propagation Models

Susceptible-
Infected (SI)

S I

Susceptible-Infected-
Susceptible (SIS)

S I

Susceptible-Infected-
Recovered (SIR)

S I R



Propagation Models

Susceptible-
Infected (SI)

Susceptible-
Infected-

Susceptible
(SIS)

Susceptible-
Infected-

Recovered 
(SIR)

Continuous-
time

Discrete-Time

Epidemics

Social media

Cryptocurrencies



SI Diffusion (continuous-time)

𝐺

exp	
  (𝜆)

exp	
  (𝜆) exp	
  (𝜆)

exp	
  (𝜆) exp	
  (𝜆)

exp	
  (𝜆)

exp	
  (𝜆)



SI Diffusion (discrete-time)

𝐺

𝑞
𝑞 𝑞

𝑞 𝑞

𝑞

𝑞𝑞

𝑞 0
1
2
3
…

Time	
  𝑡



SI Gossip (discrete-time)

𝐺



SI Gossip (discrete-time)

(3)(2)

(1)(4)



Propagation Models: Key attributes
• Fully-distributed protocols

• Infection model can vary (SI, SIR, SIS)

• Continuous- vs. discrete-time systems

• Gossip vs. diffusion



Snapshot Observer

𝐺𝐺;

Epidemics

Cryptocurrencies



Eavesdropping Observer

t=1

t=3

t=5

t=6

t=6

t=2

t=3



Eavesdropping Observer

Epidemics

Cryptocurrencies

Supernode

T=2

T=3

T=4

T=6 ,6

𝜃	
  connections	
  per	
  node



Spy-based Observer



Sampled Observers (Spies)

𝐺

𝑡 = 06: 10: 34

𝑡 = 06: 12: 18

Epidemics

Social media

Cryptocurrencies



Observation Models: Key Attributes
• Fraction of nodes that can be observed (all nodes, subset)

• Delay of observation at those nodes (instantaneous / random)

• Nodes’ adherence to protocol (honest-but-curious / malicious)



Summary: Modeling Epidemics
• Network models
• Trees
• General graphs (social networks, random graphs)

• Spreading models
• Diffusion

• Observation/adversarial models
• Snapshot
• Spy-based, eavesdropper



Finding the Source
Part II



What you will learn in this hour
• Source detection algorithms

• Rumor centrality
• Other heuristics

• Introduction to Pólya urns
• Definition
• Convergence results
• Generalizations

• Using Pólya urn processes to analyze the probability of source 
detection in diffusion processes



Source Detection Algorithms
Centrality measures



Rumors in networks



Rumors in networks

• a random node is the source of the rumor



Diffusion spreading 

• Node 2 spreads the rumor to its neighbors iid along  its edges 

𝜆 𝜆

𝜆



Rumors in networks



Diffusion Spreading

• Both nodes 1 and 2 spread the message along their edges

𝜆𝜆

𝜆𝜆



Diffusion Spreading

• Node 3 receives the message, say. 



Diffusion Spreading

𝜆

𝜆

𝜆

𝜆

𝜆



Diffusion Spreading



Snapshot observation

• Get to observe set of nodes with the message
• No timestamps



Source of Rumor

• Use knowledge of underlying graph 
• knowledge of set of nodes with the message



Centrality 

• Source is in the center



Rumor centrality

• Specific metric of centrality 

Shah and Zaman, Rumors in a Network: Who’s the Culprit?, IT Transactions, 2011



Rumor centrality

• Hypothesis: node 1 is the source



Rumor centrality

• Identify a possible spreading pattern



Rumor centrality

• Enumerate all possible spreading patterns



Rumor centrality



Rumor centrality

• Score = number of possible spreading patterns



Rumor centrality

• Similar score for node 2



Rumor centrality



Rumor centrality



Rumor centrality



Rumor centrality

• Node 2 has the highest centrality score



Rumor centrality

• Same as picking node with:  smallest sum of distances to all nodes 



Jordan centrality

• Maximum distance from a node to another



Jordan centrality



Jordan centrality

• Node 1’s eccentricity is 3



Jordan centrality



Jordan centrality

• Both nodes 2 and 3 are equally central 



Counting Efficiently  

• Naive counting is very inefficient 



Naïve implementation of rumor centrality

• Some orderings are valid, others not



Rumor centrality via message passing

• Reuse computations 



Rumor centrality via message passing

• Start with a node (1, say) and form a rooted tree 



Rumor centrality via message passing

• Tree rooted at node 2



Upward pass

• Messages pass upwards from leaves to the root 



Upward pass

• Two types of messages



Upward pass

• Node 3 processes its message and sends it to its parent



Upward pass

• Node 2 can now process its message and send it



Upward pass

• Node 1 gets to calculate its rumor centrality score



Downward pass

• Messages pass downwards from root



Downward pass

• Pass the rumor centrality score downwards



Downward pass

• Node 2 can compute its rumor centrality score 



Downward pass



Downward pass



Downward pass



Downward pass



Downward pass



Computational complexity

• 3N computations



Choice of root node 

• Root node could have been 2
• Rumor centrality scores remain the same 



Graphs with cycles?

• Heuristic: spreading occurs on a  breadth-first tree



Regular tree 

• Theorem: Rumor centrality = Maximum Likelihood 
• Positive probability of detection, asymptotically

Shah and Zaman, Rumor Centrality: A Universal Source Detector, Sigmetrics 2012



Analyzing Diffusion Processes
Pólya Urns and More



Introduction to Pólya Urns

What is the fraction of red 
balls after 𝑛 draws? 

1) Analyze for 2 colors.

2) Generalize

Mahmoud, Polya Urn Models, CRC Press 2008



Does the order of draws matter? 

1
2

2
3

1
4

3
5

= 	
  	
  
3! 1!
5!

1
2

1
3

2
4

3
5

= 	
  	
  
3! 1!
5!

P 𝑟- = 𝑘 + 1 =
n
k 𝛽(𝑘 + 1, 𝑛 + 1 − 𝑘)

𝛽 𝑥, 𝑦 = 9 𝑚;<= 1 − 𝑚 ><=𝑑𝑚
=

@
# red balls 
at nth draw



Does the fraction of red balls converge?
𝑟-: Number	
  of	
  red	
  balls 𝑅-: Fraction	
  of	
  red	
  balls 𝑅- =

𝑟-
𝑛 + 2

1) 𝑅- is a martingale.

2) That martingale converges a.s.

Approach



1) 𝑅- is a martingale. 
𝑟-: Number	
  of	
  red	
  balls 𝑅-: Fraction	
  of	
  red	
  balls 𝑅- =

𝑟-
𝑛 + 2

𝐸[𝑅-	
   	
  𝑅-<=, … , 𝑅= = 𝑅-<=
𝑟-<= + 1
𝑛 + 2 + (1 − 𝑅-<=)

𝑟-<=	
  
𝑛 + 2

=
𝑅-<= + 𝑟-<=

𝑛 + 2 =
𝑟-<=(𝑛 + 2)

(𝑛 + 1)(𝑛 + 2) = 𝑅-<=

Fraction
red balls

Num red
balls +1 Fraction

blue balls
Num red

balls



2) This martingale converges a.s.

𝑅-	
   ∈ (0,1)

Martingale Convergence Theorem

→ 𝑅 𝜔 = lim	
  𝑅-(𝜔)
-→Z



What is the limiting distribution? 

𝑀\](𝑡) = 𝐸[exp	
  (𝑡𝑅-)]

Let’s look at the moment-generating function

= bexp(𝑡
𝑘 + 1
𝑛 + 2)Ρ(𝑅- =

𝑘 + 1
𝑛 + 2)

-

de@

= bexp 𝑡
𝑘 + 1
𝑛 + 2 9

𝑛
𝑘 𝑚d 1 −𝑚 -<d	
  𝑑𝑚	
  

=

@

-

de@

-→Z
9 𝑒gh	
  𝑑𝑚	
  
=

@
= i

𝑒g − 1
𝑡 , 𝑥 ≠ 0

	
  1, 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  𝑥 = 0

Moment-generating 
function of Unif(0,1)



Generalization 1: Number of replacements

𝑅@ = 3

𝐵@ = 2

𝛾 = new	
  balls	
  added	
  of	
  same	
  color

Depends on initial conditions!

𝑅	
  ~	
  Beta(
𝑅@
𝛾 ,

𝐵@
𝛾 )



Generalization 2: Number of classes
𝜶 = 1	
  1	
  2 	
  	
  	
  	
  	
  	
  Initial	
  values

𝑅	
  ~	
  Dirichlet − Multinomial(𝜶, 𝑛)

𝛾 = 2	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  #	
  added	
  balls	
  of	
  same	
  color



How can we analyze diffusion?

Shah and Zaman, Rumor Centrality: A Universal Source Detector, 2012



A nice property

𝑣 is a rumor center iff

Xz 𝑇 ≤
𝑋~�~��
2

𝑋��� = 1

𝑋������ = 2

𝑋���� = 1

Number of 
“infected” nodes

i ∈ {red, orange, blue}

Example:

𝑋������ = 2 𝑛
2 =

5
2

≤



What does this mean for our urn? 

𝑣 is a rumor center iff

B�, R�, O� ≤
1
2

B�: Fraction	
  of
R�: Fraction	
  of
O�: Fraction	
  of

Let’s use the convergence 
results from before. 



Let’s consider a slightly different urn.

Want
R� as 𝑛 → ∞

𝑅	
  ~	
  Beta
1

d − 2 ,
d − 1
d − 2

= Beta(1, 2)



Putting it all together
𝑅	
  ~	
  Beta =

�<�
, �<=
�<�

Want 𝑅 ≤ =
�

𝐼=
�
𝑎, 𝑏 	
  ≜ 𝑃 𝑋 ∈ [0,½] 	
  where	
  𝑋~Beta(𝑎, 𝑏)

lim
g→Z

𝑃 detection = 1 − 𝑑(1 − 𝐼=
�

1
𝑑 − 2 ,

𝑑 − 1
𝑑 − 2 )

Example: 𝑑 = 3 → 	
   lim
g→Z

𝑃 detection = 0.25

Rumor centrality: A Universal Source Detector, Shah and Zaman, 2012



What about other problems?

Eavesdropper
Adversary

Supernode

𝜃 = 2	
  connections	
  per	
  node
𝜆

𝜆

𝜆 𝜆

𝜆

𝜆
𝜆𝜆

𝜆

𝜆
𝜆

𝜆 𝜆



Let’s model this as an urn

Supernode



Generalized Polya Urns
Replacement Matrix

𝐴 = 𝑑 − 2 1
0 −1

Solid Striped

Striped
Solid

Example

𝐴 = 1 1
0 −1



Convergence properties

Athreya and Ney 1972, Jansen 2003

Conditions
1) 𝐴�� ≥ 0	
  	
  for	
  𝑖 ≠ 𝑗 and 𝐴�� ≥ −1

2) Largest real eigenvalue of 𝐴 (𝜆=) is 
1) positive
2) simple

3) Start with ≥ 	
  1	
  ball of a dominating type

Example
1) 𝐴�� ≥ 0 and 𝐴�� ≥ −1

2) 𝜆 𝐴 = {1,-1}

3) Solids are a dominating type

𝑅-
1 − 𝑅-

�.�.
𝜆=	
  𝑣=

First (right) eigenvectorFirst 
eigenvalue

Fraction of
solid balls

𝐴 = 1 1
0 −1

Fraction of
striped balls



Comparing the two results

Classic Pólya Urns
• Transition matrix
• Nonsingular
• Not positive regular

• 𝐴 =
𝑑 − 2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑑 − 2

• Converges to a random 
variable (Beta distribution)

Generalized Pólya Urns
• Transition matrix

• Nonsingular
• Positive regular

• 𝐴 = 𝑑 − 2 1
0 −1

• Converges to a constant



Back to the eavesdropper

Source
𝑣∗

Not yet received

Received

Received and reported

𝑥g�(𝑣)= # blue balls in 𝑖th
subtree of 𝑣	
  at time 𝑡

1. If 	
  ;¤
¥ ¦

∑;¤¥(¦)
< =

�
, 	
   ∀𝑖, then v 

is a reporting source.

2. Estimate 𝑣ª drawn 
uniformly from the set of 

reporting sources.



Back to the eavesdropper
Proof Sketch

1) 𝑣∗ is a rumor center with known 
probability.

2) Given that 𝑣∗ is a rumor center,     
lim
g→Z

𝑃 𝑣∗	
  is	
  a	
  reporting	
  center = 1

3) There is at most 1 reporting center.

Uses urn 
results

Anonymity Properties of the Bitcoin P2P Network, 2017



Summary of Approach
• Extract a representation of the problem that can be modeled as 

a Pólya Urn

• Use known convergence results (Athreya and Ney 1972, 
Jansen 2003)



Spy Adversary

• Spy nodes observe time stamps

Source

small
timestamp

Spy



Centrality methods

• First spy estimator

• source = node reporting earliest to spies

• very easy to implement

• no knowledge of underlying graph



Centrality methods
• Earliest infection time estimator [Zhu, Chen, Ying, 2014]

• estimate infection times of other nodes 

• eccentricity score = 

• pick node with smallest eccentricity 

• related estimator [Pinto, Thiran, Vetterli, 2012]



Thoughts on how to handle spies
• Use the same counting-

based estimator

• Use randomized Polya
urns



Open Problems
Moving Forward



Other related questions
• Number of sources 

• Detecting more than one source

• Combination of adversaries: snapshot+eavesdropper+spy

• Inferring the underlying network



Inferring diffusion networks
t=0



t=0

Inferring diffusion networks



t=0

Inferring diffusion networks



t=0

Inferring diffusion networks



t=0

Inferring diffusion networks



t=0

Inferring diffusion networks



t=0
only time-stamps are 

observed 

Inferring diffusion networks



t=0

Inferring diffusion networks



t=0

Inferring diffusion networks



t=0 cascades

Inferring diffusion networks



t=0

Goal:
Estimate underlying graph
topology

Inferring diffusion networks



Models

• independent cascades model [Kempe, Kleinberg, Tardos ’03]

❖ discrete-time

❖ susceptible       active for one time-slot      inactive

❖ node i infects j with probability        if i is active



Algorithms

• estimate         for all pairs (i,j):  

❖ log likelihood decouples, each term convex

• threshold to output graph

• sample complexity                    for degree bound d

[Netrapalli, Sanghavi ’12], 

[Daneshmand, 
Gomez-Rodriguez, Song, 
Scholkopf ’14]   



Algorithms

• submodularity

• greedy algorithm; add one edge at a time to the 
graph estimate

[Gomez-Rodriguez, 
Leskovec, Krause ’12]



Hiding the Source
Part III



What you will learn in this hour
• Classical approach from the crypto community
• Dining cryptographer networks

• Statistical approaches
• Static graph is given

• Dynamic graph can be chosen

• Open problems



General-Purpose Hiding
Dining Cryptographer Networks



Dining Cryptographer Networks

0

1

0

Chaum, The Dining Cryptographers Problem, 1988

0

1

Alice Bob

Mary

0

0⊕ 0⊕ 1 = 1



What are some problems?
• High communication costs

• Cannot handle collisions

• Fragile to misbehaving nodes

Golle and Juels, Dining Cryptographers Revisited, 2004
Sirer et al., Eluding Carnivores: File Sharing with Strong Anonymity, 2004

Franck, New Directions for Dining Cryptographers, 2008
Corrigan-Gibbs et al., Dissent: Accountable Group Anonymity, 2013

…



Worst-case solutions can be
too heavy to be practical.



Hiding on a Static Network
Applications in Social Networks



Information flow in social networks

Diffusion has statistical symmetry

message author 



Breaking symmetry: Adaptive diffusion

Low likelihood

High likelihood

Provides provable anonymity guarantees
[Spy vs. Spy: Rumor Source Obfuscation, ACM Sigmetrics 2015]



𝑑-regular trees: adaptive diffusion

Initially, the author is also the “virtual source”



𝑑-regular trees: adaptive diffusion

Break
directional
symmetry



𝑑-regular trees: adaptive diffusion

chosen neighbor = new virtual source

Break
directional
symmetry



𝑑-regular trees: adaptive diffusion

Break
directional
symmetry



𝑑-regular trees: adaptive diffusion

keep the virtual source token pass the virtual source token

Break
temporal
symmetry



keep the virtual source token



new	
  virtual	
  source

pass the virtual source token



pass the virtual source token



Results

[1] [2] [1]

[3] [3] [3]

Snapshot

Spy-based

𝑑-Regular trees Irregular trees Facebook graph

[1] Spy vs. Spy: Rumor Source Obfuscation, Sigmetrics 2015
[2] Rumor Source Obfuscation on Irregular Trees, Sigmetrics 2016



When to keep the virtual source 
token?

Virtual source token is kept with probability 𝜶 = 𝒅 − 𝟏 *𝒉

distance
from 

source
node

degree



Maximum likelihood detection

Low likelihood

High likelihood

All nodes except for the final virtual source are equally likely
THEOREM:	
  Probability of detection = ,

-*,



hop distance
from source

ℎ = 1 ℎ = 2

Likelihood = %& ⋅ ( Likelihood = %& ⋅
%)*
&)%

tree
degree

P(keep token)

Want these to be equal:  ( = %
&

ℎ = 1 ℎ = 2

Likelihood = ,
0
⋅ 𝛼

Pr(keep token)

Tree degree

Likelihood = ,
0
⋅ ,*3
0*,



Irregular trees
𝑑4 = 53	
  	
  	
  	
  	
  𝑤. 𝑝. 	
  	
  	
  0.75	
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𝑑=>? = 3

𝑑=@A = 5



How do we analyze this?
𝑑4 = 5 𝑑=>?	
  	
  	
  	
  	
  𝑤. 𝑝. 	
  	
  	
  𝑝=>?𝑑=@A	
  	
  	
  	
  	
  	
  𝑤. 𝑝. 	
  	
  	
  𝑝=@A

𝑣C

𝑃 detection	
   	
  snapshot) =
1

min
4∈STUVTW

𝑑4 ∏ (𝑑Z − 1)�
Z∈\(4,4^)

Path from v to 
virtual source

Degree of 
node w

𝑣_`a = arg max
4∈STUVTW

1
𝑑4

e
1

𝑑Z − 1

�

Z∈\(4,4^)

𝑣

1/3
1/2

𝑤



Main result (special case)

𝑃
log Λh^

𝑇 − log	
  (𝑑=>? − 1) > 𝛿 ≤ 𝑒*noC

If	
  	
  	
  𝑝=>? 𝑑=>? − 1 > 1

Theorem: Probability of detection ≈ ,
(0stu*,)^

Probability of 
min degree

Min
degree

𝑣C	
  Λh^ ≜ min
4∈STUVTW

𝑑4 e (𝑑Z−1)	
  
�

Z∈\(4,4^)



Theorem: Probability of detection ≈ ,
(0stu*,)^

𝑑4 = 5 3	
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Degree distributions



Proof sketch for
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If 𝑝=>? 𝑑=>? − 1 > 1	
  then the pruned process survives. 
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Main result
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Facebook graph

Adaptive diffusion
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Perfect hiding
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Results

Optimal
[1]

Near-Optimal
[2]

Near lower 
bound

[1]

[3] [3] [3]

Snapshot

Spy-based

𝑑-Regular trees Irregular trees Facebook graph

[1] Spy vs. Spy: Rumor Source Obfuscation, Sigmetrics 2015
[2] Rumor Source Obfuscation on Irregular Trees, Sigmetrics 2016
[3] Metadata-Conscious Anonymous Messaging, ICML 2016



Adversary sees metadata at spy nodes

Spy-based adversary

-message
-T = 09/10/2015 

@ 9:10 pm

-message
-T = 09/10/2015

@ 8:40 pm

Bob

Mary

David

Alice

Craig
With probability 𝑝
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Result on 𝑑-regular trees
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THEOREM:	
  Probability of detection = 𝑝 + 𝑜(𝑝)
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𝑇 = ∞



Hiding on a Dynamic Network
Applications in Cryptocurrencies



Bitcoin Reminder

Alice Bob
kA

kB

Transaction
kA sends kcoin to kB

kcoin

Blockchain
sd93fjj2
pckrn29

…
our transaction



Botnet (spy-based) adversarial model

fraction p
of spies

spies 
collude

honest-
but-curious

observe all
metadata identities

unknown



Metric for Anonymity

Recall Precision
1
𝑛�1 𝑀 𝑣�s	
  tx = 𝑣

�

4

Mapping 𝑀

User

UsersTransactions

Number 
honest
users

Mapping

1
𝑛�

1 𝑀 𝑣�s	
  tx = 𝑣
#	
  tx	
  mapped	
  to	
  v
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4

𝔼[Recall] 	
  =	
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  of	
  Detection



Goal:

Design a distributed flooding protocol that minimizes 
the maximum precision and recall achievable by a 

computationally-unbounded adversary. 



Fundamental Limits

Precision

Recall0 1

1

p
p2

Thm: Maximum 
precision ≥ 𝑝 .

Thm: Maximum 
recall ≥ 𝑝.

Fraction 
of spies



What are we looking for?

1 2 3 4 spy

Asymmetry Mixing



Approximately
regular

What can we control?
Spreading
Protocol Topology Dynamicity

Static

Dynamic

How often does the
graph change?

What is the underlying
graph topology?

Given a graph, how 
do we spread content?

Diffusion

Dandelion: Redesigning the Bitcoin Network for Anonymity, Sigmetrics 2017



Spreading Protocol: Dandelion

1) Anonymity
Phase

2) Spreading
Phase



Theorem: Dandelion spreading has an 
optimally low maximum recall of 𝑝 + 𝑂 ,

?
.

fraction 
of spies

number of 
nodes

lower bound = p

Why Dandelion spreading?



Graph Topology: Line
tx1

tx2

Anonymity graph

“Regular” graph



Dynamicity: High

Change the anonymity 
graph frequently.



Line
graph

DANDELION Network Policy
Spreading
Protocol Topology Dynamicity

Static

Dynamic

How often does the
graph change?

What is the anonymity
graph topology?

Given a graph, how 
do we spread content?

Dandelion
Spreading



Theorem: DANDELION has a nearly-optimal 
maximum precision of  ¢

£

,*¢
log  

¢
+ 𝑂 ,

?
.*

fraction 
of spies

lower bound = p2

number of 
nodes

*For 𝑝 < ,
¥



Performance: Achievable Region

Flooding

Diffusion

DANDELION

Precision

Recall0 1

1

p
p2



How practical is this?



Dandelion spreading

1) Anonymity
Phase

2) Spreading
Phase



Anonymity graph construction

Degree



Dealing with stronger adversaries

Learn the 
graph

Misbehave during 
graph construction

Misbehave during 
propagation

4-regular
graphs

Only send 
messages on 

outgoing edges
Multiple nodes 

diffuse



Latency Overhead: Estimate

Information Propagation in the Bitcoin Network, Decker and Wattenhofer, 2013

Time to first transaction sighting (s)

PDF

Avg. Dandelion delay = 1-4 seconds
(3-5% overhead)



Deployment considerations

tx1

Not running 
DandelionRunning 

Dandelion



Why not alternative solutions?
Connect through Tor I2P Integration (e.g. Monero)

Tor



Open Problems
• Static graph
• Modeling user preferences
• Using cliques for better anonymity on general graphs

• Dynamic graph
• Characterizing graph learning rate

• Both
• Intersection attacks!



Conclusion
• Broadcasting information
• common primitive
• modern applications

• Performance metrics
• latency, spreading rate, coverage, anonymity

• Engineering choices
• underlying topology, spreading protocol

• Finding the source
• Inferring the network topology

• Hiding the source
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