Finding and Hiding Message Sources in Networks:

Epidemics, Social Media, Cryptocurrencies

Broadcasting Information: Then

Broadcasting Information: Now

Broadcast communication is easier, cheaper, and more democratic than ever before.

Distributed broadcasting

Epidemics

Social Networks

Cryptocurrencies

Social Networks

Cryptocurrencies

Broadcasting can impact the robustness, utility, and security of a network.

... but distributed network management poses new challenges!

Relevant Questions

Attribution is central to communication

"We'll know our disinformation program is complete when everything the American public believes is false."

- William Casey, CIA Director

(from first staff meeting in 1981)

This talk

- Part I: Systems and how to model them (1 hr)
 - Bitcoin primer (30 min)
 - Network models
 - Propagation models
 - Observation models
- Part II: Source finding (1 hr)
 - Algorithms for source detection
 - Analysis of these algorithms
 - Open problems
- Part III: Source hiding (1 hr)
 - Early results: crypto community
 - Statistical approaches
 - Open problems

Cryptocurrencies Primer

The Origin of Bitcoin

Narayanan et al., Bitcoin and Cryptocurrency Technologies, 2016

Financial systems

- + Offline transactions
- + Anonymous
- Requires initial seed cash

- + Exchanges can be digital
- Parties take on risk

Bitcoin Objectives

• **Egalitarianism** → no central trusted party

• Transparency -> transactions can be verified by all nodes

Privacy → users need not reveal their identity to the currency

Bitcoin objectives

	Credit	Cash
Egalitarianism	X	X
Transparency		
Privacy	X	

Why this problem is hard

Append-only ledgers

Haber and Stornetta, 1991

Image from Narayanan et al, 2016

Hierarchical structure

Basic network operation **Blockchain** Bob Alice IP_B IP_A

Basic network operation

Adding to the Blockchain

Basic network operation

Adding to the Blockchain

Distributed Consensus in Bitcoin

Proof-of-Work

Puzzle

Find x: H(x) = f(tx, blockchain)

Mining

How are conflicts managed?

How are conflicts managed?

How are conflicts managed?

Bitcoin Consensus Protocol: Summary

- New transactions are broadcast
- Each node collects transactions into blocks
- One random node gets to broadcast its block / round
- Other nodes accept the block iff valid puzzle solution
- Miners "accept" blocks by referencing them in the next block

Probability of transaction reversal

Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System (2008)

Probability of transaction reversal

p = Probability an honest node finds next block

q = Probability attacker finds next block

 q_z = Probability attacker overtakes main blockchain starting from – z differential

$$q_z = \begin{cases} 1, & \text{if } p \le q \\ \left(\frac{q}{p}\right)^{-z}, & \text{if } p > q \end{cases}$$

This does not
hold byassumption

Properties of Proofs of Work

	Cost	Reward
Measured in:	Computation	Bitcoins (new-block reward, transaction fees)
Scales according to:	Network's mining power (1 block per 10 minutes)	Geometric scaling

Bitcoin - Controlled Supply

Number of bitcoins as a function of Block Height

What purposes does mining serve?

Distributed consensus protocol

Limit rate of production

The Upshot

Repeat after me: if you don't need concurrent access to a decentralized, mutable, singleton, you don't need a #blockchain.

— ArthurB (@ArthurB) December 17, 2014

Why should the IT community care?

1. Network is central

2. Distributed storage

3. Game theory

Figure 1: Privacy-Enhancing Technologies for Bitcoin. The X-axis is the date of invention and the Y-axis is an informal measure that combines the sophistication of the technique and the strength of the privacy guarantee. See Appendix 1 for references.

Models

Broadcasting over Networks

System Modeling

Network Models

Propagation Models

Observation/ Adversarial Models

Network Models

Propagation Models

Susceptible-Infected (SI)

Susceptible-Infected-Susceptible (SIS)

Susceptible-Infected-Recovered (SIR)

Propagation Models

	Susceptible- Infected (SI)	Susceptible- Infected- Susceptible (SIS)	Susceptible- Infected- Recovered (SIR)
Continuous- time			
Discrete-Time			

SI Diffusion (continuous-time)

SI Diffusion (discrete-time)

SI Gossip (discrete-time)

SI Gossip (discrete-time)

Propagation Models: Key attributes

- Fully-distributed protocols
- Infection model can vary (SI, SIR, SIS)
- Continuous- vs. discrete-time systems
- Gossip vs. diffusion

Snapshot Observer

Eavesdropping Observer

Eavesdropping Observer

Epidemics

Cryptocurrencies

Spy-based Observer

The Facebook Squad: How Israel Police Tracks Activists on Social Media

It follows their Facebook pages, uses fake profiles to 'befriend' them and presents screenshots of posts in court – this is how Israel Police is adding social activists to its virtual surveillance list. 'They know what I write and do,' Ethiopian protest leader says.

Yaniv Kubovich | Feb 06, 2016 9:46 AM

Sampled Observers (Spies)

Observation Models: Key Attributes

- Fraction of nodes that can be observed (all nodes, subset)
- Delay of observation at those nodes (instantaneous / random)
- Nodes' adherence to protocol (honest-but-curious / malicious)

Summary: Modeling Epidemics

- Network models
 - Trees
 - General graphs (social networks, random graphs)
- Spreading models
 - Diffusion
- Observation/adversarial models
 - Snapshot
 - Spy-based, eavesdropper

Finding the Source

Part II

What you will learn in this hour

- Source detection algorithms
 - Rumor centrality
 - Other heuristics
- Introduction to Pólya urns
 - Definition
 - Convergence results
 - Generalizations
- Using Pólya urn processes to analyze the probability of source detection in diffusion processes

Source Detection Algorithms

Centrality measures

Rumors in networks

Rumors in networks

• a random node is the source of the rumor

• Node 2 spreads the rumor to its neighbors iid along its edges

Rumors in networks

• Both nodes 1 and 2 spread the message along their edges

• Node 3 receives the message, say.

Snapshot observation

- Get to observe set of nodes with the message
- No timestamps

Source of Rumor

- Use knowledge of underlying graph
- knowledge of set of nodes with the message

Centrality

• Source is in the center

• Specific metric of centrality

• Hypothesis: node 1 is the source

• Identify a possible spreading pattern

• Enumerate all possible spreading patterns

• Score = number of possible spreading patterns

• Similar score for node 2

$$2 \rightarrow 1 \rightarrow 4 \rightarrow 3 \rightarrow 8$$

$$2 \rightarrow 1 \rightarrow 3 \rightarrow 4 \rightarrow 8$$

$$2 \rightarrow 1 \rightarrow 3 \rightarrow 8 \rightarrow 4$$

$$2 \rightarrow 4 \rightarrow 1 \rightarrow 3 \rightarrow 8$$

$$2 \rightarrow 4 \rightarrow 3 \rightarrow 1 \rightarrow 8$$

$$2 \rightarrow 4 \rightarrow 3 \rightarrow 1 \rightarrow 8$$

$$2 \rightarrow 3 \rightarrow 1 \rightarrow 4 \rightarrow 8$$

$$2 \rightarrow 3 \rightarrow 1 \rightarrow 8 \rightarrow 4$$

$$2 \rightarrow 3 \rightarrow 4 \rightarrow 1 \rightarrow 8$$

$$2 \rightarrow 3 \rightarrow 4 \rightarrow 1 \rightarrow 8$$

$$2 \rightarrow 3 \rightarrow 4 \rightarrow 8 \rightarrow 1$$

Node 2 has the highest centrality score

• Same as picking node with: smallest sum of distances to all nodes

• Maximum distance from a node to another

• Node 1's eccentricity is 3

• Both nodes 2 and 3 are equally central

Counting Efficiently

Naive counting is very inefficient

Naïve implementation of rumor centrality

Some orderings are valid, others not

Rumor centrality via message passing

Reuse computations

Rumor centrality via message passing

• Start with a node (1, say) and form a rooted tree

Rumor centrality via message passing

• Tree rooted at node 2

• Messages pass upwards from leaves to the root

• Two types of messages

• Node 3 processes its message and sends it to its parent

• Node 2 can now process its message and send it

Node 1 gets to calculate its rumor centrality score

• Messages pass downwards from root

• Pass the rumor centrality score downwards

• Node 2 can compute its rumor centrality score

$$R(3) = R(2) \frac{t_{3 \to 2}}{N - t_{3 \to 2}} = 12 \frac{2}{5 - 2} = 8$$

$$R(8) = R(3) \frac{t_{8 \to 3}}{N - t_{8 \to 3}} = 8 \frac{1}{5 - 1} = 2$$

Computational complexity

• 3N computations

Choice of root node

- Root node could have been 2
- Rumor centrality scores remain the same

Graphs with cycles?

• Heuristic: spreading occurs on a breadth-first tree

Regular tree

- Theorem: Rumor centrality = Maximum Likelihood
- Positive probability of detection, asymptotically

Shah and Zaman, Rumor Centrality: A Universal Source Detector, Sigmetrics 2012

Analyzing Diffusion Processes

Pólya Urns and More

Introduction to Pólya Urns

What is the fraction of red balls after *n* draws?

- 1) Analyze for 2 colors.
- 2) Generalize

Mahmoud, Polya Urn Models, CRC Press 2008

Does the order of draws matter?

$$\frac{1}{2}$$

$$\frac{2}{3}$$

$$\frac{1}{4}$$

$$\frac{1}{2}$$
 $\frac{2}{3}$ $\frac{1}{4}$ $\frac{3}{5}$ $=$ $\frac{3! \, 1!}{5!}$

$$\frac{1}{2}$$

$$\frac{1}{3}$$

$$\frac{2}{4}$$

$$\frac{1}{2}$$
 $\frac{1}{3}$ $\frac{2}{4}$ $\frac{3}{5}$ $=$ $\frac{3! \, 1!}{5!}$

$$P(r_n = k + 1) = {n \choose k} \beta(k + 1, n + 1 - k)$$

red balls at nth draw

$$\beta(x,y) = \int_0^1 m^{x-1} (1-m)^{y-1} dm$$

Does the fraction of red balls converge?

 r_n : Number of red balls R_n : Fraction of red balls

$$R_n = \frac{r_n}{n+2}$$

Approach

- 1) R_n is a martingale.
- 2) That martingale converges a.s.

1) R_n is a martingale.

 n_n : Number of red balls

$$R_n$$
: Fraction of red balls $R_n = \frac{r_n}{n+2}$

2) This martingale converges a.s.

Martingale Convergence Theorem

$$R_n \in (0,1)$$

$$\to R(\omega) = \lim_{n \to \infty} R_n(\omega)$$

What is the limiting distribution?

Let's look at the moment-generating function

$$\begin{split} M_{R_n}(t) &= E[\exp(tR_n)] \\ &= \sum_{k=0}^n \exp(t\frac{k+1}{n+2}) P(R_n = \frac{k+1}{n+2}) \\ &= \sum_{k=0}^n \exp\left(t\frac{k+1}{n+2}\right) \int_0^1 \binom{n}{k} m^k (1-m)^{n-k} \, dm \\ &\stackrel{\longrightarrow}{\longrightarrow} \int_0^1 e^{tm} \, dm \qquad = \begin{cases} \frac{e^t-1}{t}, & x \neq 0 \\ 1, & x = 0 \end{cases} \end{split}$$

Generalization 1: Number of replacements

Generalization 2: Number of classes

$$\alpha = [1 \ 1 \ 2]$$
 Initial values

$$\gamma = 2$$
 # added balls of same color

 $R \sim \text{Dirichlet} - \text{Multinomial}(\alpha, n)$

How can we analyze diffusion?

Shah and Zaman, Rumor Centrality: A Universal Source Detector, 2012

A nice property

What does this mean for our urn?

B_n: Fraction of

R_n: Fraction of

 O_n : Fraction of

v is a rumor center iff

$$B_n, R_n, O_n \le \frac{1}{2}$$

Let's use the convergence results from before.

Let's consider a slightly different urn.

Putting it all together

$$R \sim \text{Beta}\left(\frac{1}{d-2}, \frac{d-1}{d-2}\right)$$

Want
$$R \leq \frac{1}{2}$$

$$I_{\frac{1}{2}}(a,b) \triangleq P(X \in [0,\frac{1}{2}]) \text{ where } X \sim \text{Beta}(a,b)$$

$$\lim_{t\to\infty} P(\text{detection}) = 1 - d(1 - I_{\frac{1}{2}} \left(\frac{1}{d-2}, \frac{d-1}{d-2} \right))$$

Example:
$$(d = 3) \rightarrow \lim_{t \to \infty} P(\text{detection}) = 0.25$$

Rumor centrality: A Universal Source Detector, Shah and Zaman, 2012

What about other problems?

Eavesdropper Adversary

Let's model this as an urn

Generalized Polya Urns

Replacement Matrix

Solid Striped

$$A = \begin{bmatrix} d-2 & 1 \\ 0 & -1 \end{bmatrix} \frac{\mathsf{Solid}}{\mathsf{Striped}}$$

Example

Convergence properties

$$A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$$

Conditions

- 1) $A_{ij} \ge 0$ for $i \ne j$ and $A_{ii} \ge -1$
- 2) Largest real eigenvalue of $A(\lambda_1)$ is
 - 1) positive
 - 2) simple
- 3) Start with ≥ 1 ball of a dominating type

Example

- 1) $A_{ij} \ge 0$ and $A_{ii} \ge -1$
- 2) $\lambda(A) = \{1,-1\}$
- 3) Solids are a dominating type

Comparing the two results

Classic Pólya Urns

- Transition matrix
 - Nonsingular
 - Not positive regular

 Converges to a random variable (Beta distribution)

Generalized Pólya Urns

- Transition matrix
 - Nonsingular
 - Positive regular

•
$$A = \begin{bmatrix} d-2 & 1 \\ 0 & -1 \end{bmatrix}$$

Converges to a constant

$x_t^i(v)$ = # blue balls in *i*th Back to the eavesdropper subtree of v at time tNot yet received 1. If $\frac{x_t^i(v)}{\sum x_t^i(v)} < \frac{1}{2}$, $\forall i$, then v Received is a reporting source. Source 2. Estimate \hat{v} drawn Received and reported uniformly from the set of reporting sources.

Back to the eavesdropper

Anonymity Properties of the Bitcoin P2P Network, 2017

Summary of Approach

- Extract a representation of the problem that can be modeled as a Pólya Urn
- Use known convergence results (Athreya and Ney 1972, Jansen 2003)

Spy Adversary

• Spy nodes observe time stamps

Centrality methods

- First spy estimator
 - source = node reporting earliest to spies
 - very easy to implement
 - no knowledge of underlying graph

Centrality methods

- Earliest infection time estimator [Zhu, Chen, Ying, 2014]
 - estimate infection times of other nodes
 - eccentricity score =

$$\min_{\mathcal{T} \in \mathcal{P}_v} \min_{(u,v) \in \mathcal{T}} \sum_{u,v,\mu} (t_u - t_v - \mu)^2$$

- pick node with smallest eccentricity
- related estimator [Pinto, Thiran, Vetterli, 2012]

Thoughts on how to handle spies

 Use the same countingbased estimator

 Use randomized Polya urns

Open Problems

Moving Forward

Other related questions

Number of sources

Detecting more than one source

Combination of adversaries: snapshot+eavesdropper+spy

Inferring the underlying network

Goal:

Estimate underlying graph topology

Models

- independent cascades model [Kempe, Kleinberg, Tardos '03]
 - ❖ discrete-time
 - \diamond susceptible \rightarrow active for one time-slot \rightarrow inactive
 - ullet node i infects j with probability p_{ij} if i is active

Algorithms

- estimate p_{ij} for all pairs (i,j):
 - log likelihood decouples, each term convex
- threshold to output graph
- sample complexity $O(d^2 \log n)$ for degree bound d

[Netrapalli, Sanghavi '12],

[Daneshmand, Gomez-Rodriguez, Song, Scholkopf '14]

Algorithms

- submodularity
- greedy algorithm; add one edge at a time to the graph estimate

[Gomez-Rodriguez, Leskovec, Krause '12]

Hiding the Source

Part III

What you will learn in this hour

- Classical approach from the crypto community
 - Dining cryptographer networks
- Statistical approaches
 - Static graph is given
 - Dynamic graph can be chosen
- Open problems

General-Purpose Hiding

Dining Cryptographer Networks

Dining Cryptographer Networks

What are some problems?

- High communication costs
- Cannot handle collisions
- Fragile to misbehaving nodes

Golle and Juels, *Dining Cryptographers Revisited*, 2004 Sirer et al., *Eluding Carnivores: File Sharing with Strong Anonymity*, 2004 Franck, *New Directions for Dining Cryptographers*, 2008 Corrigan-Gibbs et al., *Dissent: Accountable Group Anonymity*, 2013

. . .

Worst-case solutions can be too heavy to be practical.

Hiding on a Static Network

Applications in Social Networks

Information flow in social networks

Diffusion has statistical symmetry

Breaking symmetry: Adaptive diffusion

Provides provable anonymity guarantees

[Spy vs. Spy: Rumor Source Obfuscation, ACM Sigmetrics 2015]

Initially, the author is also the "virtual source"

Break directional symmetry

chosen neighbor = new virtual source

Break temporal symmetry

keep the virtual source token

pass the virtual source token

keep the virtual source token

pass the virtual source token

pass the virtual source token

Results

- [1] Spy vs. Spy: Rumor Source Obfuscation, Sigmetrics 2015
- [2] Rumor Source Obfuscation on Irregular Trees, Sigmetrics 2016

When to keep the virtual source token?

Maximum likelihood detection

THEOREM: Probability of detection = $\frac{1}{N-1}$

Want these to be equal:
$$\alpha = \frac{1}{d}$$

Irregular trees

$$d_v = \begin{cases} 3 & w.p. & 0.7 \\ 5 & w.p. & 0.3 \end{cases}$$

How do we analyze this?

$$d_v = \begin{cases} d_{min} & w.p. & p_{min} \\ d_{max} & w.p. & p_{max} \end{cases}$$

$$\hat{v}_{ML} = \arg\max_{v \in \text{leaves}} \frac{1}{d_v} \prod_{w \in P(v,v_T)} \frac{1}{d_w - 1}$$
 Path from v to virtual source Degree of node w

$$P(\text{detection} \mid \text{snapshot}) = \frac{1}{\min_{v \in \text{leaves}} d_v \prod_{w \in P(v, v_T)} (d_w - 1)}$$

Main result (special case)

$$\Lambda_{G_T} \triangleq \min_{v \in \text{leaves}} d_v \prod_{w \in P(v, v_T)} (d_w - 1)$$

Probability of Min min degree degree
$$\downarrow \qquad \downarrow$$
 If $p_{min}(d_{min}-1)>1$

$$P\left(\left|\frac{\log(\Lambda_{G_T})}{T} - \log(d_{min} - 1)\right| > \delta\right) \le e^{-C_1 T}$$

Theorem: Probability of detection $\approx \frac{1}{(d_{min}-1)^T}$

Theorem: Probability of detection
$$\approx \frac{1}{(d_{min}-1)^T}$$

Proof sketch for
$$\min_{v \in \text{leaves}} d_v \prod_{w \in P(v,v_T)} (d_w - 1) \approx (d_{min} - 1)^T$$

$$d_v = \begin{cases} 3 & w. p. & 0.7 \\ 5 & w. p. & 0.3 \end{cases}$$

$$d_v = \begin{cases} 3 & w.p. & 0.7 \\ 1 & w.p. & 0.3 \end{cases}$$

If $p_{min}^{0.7}(d_{min}^{3}-1)>1$ then the pruned process survives.

If
$$p_{min}(d_{min}-1) > 1$$
:
$$\min_{v \in \text{leaves}} d_v \prod_{w \in P(v,v_T)} d_w - 1 \approx (d_{min}-1)^T$$

Main result

$$\Lambda_{G_T} \triangleq \min_{v \in \text{leaves}} d_v \prod_{w \in P(v, v_T)} (d_w - 1)$$

$$d_v = \begin{cases} 3 & w.p. & 0.7 \\ 5 & w.p. & 0.3 \end{cases}$$

In general,

$$P\left(\left|\frac{\log(\Lambda_{G_T})}{T} - r^*\right| > \delta\right) \le e^{-C_1 T}$$

$$r^* = \min_{\mathbf{r} \in R_D} \langle \mathbf{r}, \log(\mathbf{d} - 1) \rangle$$

Results

- [1] Spy vs. Spy: Rumor Source Obfuscation, Sigmetrics 2015
- [2] Rumor Source Obfuscation on Irregular Trees, Sigmetrics 2016

Facebook graph

Results

	d-Regular trees	Irregular trees	Facebook graph
Snapshot	Optimal [1]	Near-Optimal [2]	Near lower bound [1]
Spy-based	[3]	[3]	[3]

- [1] Spy vs. Spy: Rumor Source Obfuscation, Sigmetrics 2015
- [2] Rumor Source Obfuscation on Irregular Trees, Sigmetrics 2016
- [3] Metadata-Conscious Anonymous Messaging, ICML 2016

Spy-based adversary SPX

Adversary sees metadata at spy nodes

Facebook Graph

Result on *d*-regular trees

THEOREM: Probability of detection = p + o(p)

Hiding on a Dynamic Network

Applications in Cryptocurrencies

Botnet (spy-based) adversarial model

Metric for Anonymity

Recall

E[Recall] =
Probability of Detection

Precision

$$\frac{1}{n} \sum_{v} \frac{1\{M(v's tx) = v\}}{\text{# tx mapped to v}}$$

Goal:

Design a distributed flooding protocol that minimizes the maximum precision and recall achievable by a computationally-unbounded adversary.

Fundamental Limits

What are we looking for?

Asymmetry

Mixing

What can we control?

Dandelion: Redesigning the Bitcoin Network for Anonymity, Sigmetrics 2017

Why Dandelion spreading?

Graph Topology: Line

Dynamicity: High

Change the anonymity graph frequently.

Dandelion Network Policy

Given a graph, how do we spread content?

Topology

What is the anonymity graph topology?

Dynamicity

How often does the graph change?

lower bound = p^2

Theorem: DANDELION has a nearly-optimal

maximum precision of
$$\frac{2p^2}{1-p}\log\left(\frac{2}{p}\right) + O\left(\frac{1}{n}\right)$$
.*

fraction number of of spies nodes

*For
$$p < \frac{1}{3}$$

Performance: Achievable Region

How practical is this?

Dandelion spreading

Anonymity graph construction

Dealing with stronger adversaries

Learn the graph

Misbehave during graph construction

Misbehave during propagation

4-regular graphs

Only send messages on outgoing edges

Multiple nodes diffuse

Latency Overhead: Estimate

Information Propagation in the Bitcoin Network, Decker and Wattenhofer, 2013

Deployment considerations

Why not alternative solutions?

Connect through Tor

I2P Integration (e.g. Monero)

Open Problems

- Static graph
 - Modeling user preferences
 - Using cliques for better anonymity on general graphs
- Dynamic graph
 - Characterizing graph learning rate
- Both
 - Intersection attacks!

Conclusion

- Broadcasting information
 - common primitive
 - modern applications
- Performance metrics
 - latency, spreading rate, coverage, anonymity
- Engineering choices
 - underlying topology, spreading protocol
- Finding the source
 - Inferring the network topology
- Hiding the source