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Abstract—Words have been studied for decades as the basic
unit in natural language. Although words are traditionally
modeled as atomic units, a real-valued representation can wield
power in many application domains. The state-of-the-art in such
real-valued representations is word2vec, known for its efficiency in
handling large datasets and its ability to capture multiple degrees
of similarities. In this report, we will present the training model
of word2vec and summarize the evolution of word2vec, ranging
from its canonical form to state-of-the-art implementations. We
show that word2vec can be understood as a low-dimensional
factorization of the so-called word-context matrix, whose cells are
the pointwise mutual information (PMI) of the respective word
and context pairs, shifted by a global constant. Following this
insight, we explain the ability of word2vec of modeling similarity
by a probabilistic interpretation of the ‘“distributional hypothesis”
from linguistics.

Keywords—word, vector representations, multiple degrees of
similarities.

I. INTRODUCTION

Most applications in natural language processing (NLP)
take words as the basic unit. Understanding the interaction of
words in a corpus of documents is one of the most important
research areas in NLP. The fundamental difficulty is the large
cardinality of the vocabulary (for example, the size of the
vocabulary in English is around 10°). Learning marginal word
distribution, i.e., unigram distribution, is a difficult task — the
underlying distribution follows Zipf-law, where the majority
of words appear only a few times in the corpus. If one
would like to model the joint distribution of two words, i.e.,
bigram distribution, there are potentially 102 free parameters,
which are too many to infer from current datasets. Due
to the grammatical and semantical structures in documents,
neither unigram distribution nor bigram distribution is enough
to model them. Higher order statistics, however, are almost
impossible to infer.

An alternative solution to the cardinality problem that arises
from representing words as atomic units is to represent them in
real space by using an appropriate function (example: neural
network) to model the interaction between words. Such an
approach is particularly useful because similarities between
words can now be captured by the distances between their
representations, which is not possible when we take words as
discrete items. Moreover, we would like to consider functions
(in the neural network) that operate on these real-valued
representations in a smooth fashion: that is, similar input word
sequences should map to similar outputs. The primary chal-
lenge, then, lies in defining an appropriate mapping between
words and their real-valued representations.

To address this challenge, different word embedding algo-
rithms have been proposed in recent years. Neural network
language models represent the word by its context words [1],
[2], [3], [4], where the context word with respect to the current
word is defined to be any word within a window p to the left
and right of the current word, excluding the current word itself.
For example, in the following piece of text where the current
word is “genres” and p = 3,

... a series of many genres, including fantasy, drama,
coming of age ...

“series”, “of”, “many”, “including”, “fantasy”, and ‘“dra-
ma” are the context words. The nonlinearity and non-
convexity when constructing the representations leads to
computationally-intensive training stages. To ameliorate the
computational difficulties, [5] simplified the deep neural net-
work models by using a single layer feedforward neural
network architecture to allow an efficient training process.
Due to this simplification, word vector representations can be
benefit from a word being modeled by a larger window of
contexts in sentences and being able to handle larger training
corpus. This work has made a large impact on the NLP
community and is popularly known as word2vec.

It is not clear if word2vec is the best representation, nor
is it clear exactly what properties of words and sentences
the representations should model. Different properties of the
representations are useful in different applications. There is
one property — similar words should have similar representa-
tions — is important in all tasks, since it captures the basic
difference between continuous representations and discrete
ones. What makes word2vec a successful algorithm is the
property that the representations obtained from word2vec can
capture multiple degrees of similarity, e.g., between words
or between pairs of words, in an unsupervised fashion. The
similarity between words is captured by the distance between
the words’ corresponding vectors. The similarity between pairs
of words is captured by the distances between the pairs’ cor-
responding difference vectors. For example, the closest vector
to vector(“king’") — vector (“man’) + vector(“woman’’) is
the vector of the word “queen”.

After making this surprising observation, one would ask a
natural question: “why can word2vec capture multiple degrees
of similarity?” Even though this question largely remain-
s satisfactorily not answered, several recent works provide
insightful understanding of word2vec. The understanding of
similarity between words comes from a linguistic hypothesis,
i.e., the distributional hypothesis [6]: “a word is characterized
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Fig. 1. The architectures in word2vec to predict the context words given the
current one (SG).

by the company it keeps.” According to this hypothesis, [7]
interpreted the similarity between two words w; and wso as
the similarity between the empirical conditional distributions
of the context word given w; and wy respectively. In parallel,
[8] showed that word2vec is implicitly doing a weighted low
dimensional factorization on the cooccurrence statistics of the
word and the words around it with some preprocessing and
a careful choice of hyperparameters [8]. More recently, [9]
showed that the distances between word vectors capture the
similarity between the empirical distributions of their contexts
via a generative model, and thus capture the similarities
between words.

II. ALGORITHM

The skip-gram (SG) model of word2vec aims at efficiently
predicting the context words given the current word. The
architecture in SG is presented in in Figure 1, where w(t)
is the t-th word in the corpus. The goal of word2vec is to
predict w(t — p), ..., w(t + p) (e.g. series, of, many, including,
fantasy, drama) given the current word w(t) (e.g. genres).

The complexity in prior work [1], [2], [3], [4] stemmed from
nonlinear operations in the training methods’ hidden layers.
Word2vec addressed this by changing nonlinear operations
to more efficient bilinear ones, while also training on larger
datasets to compensate for the loss of nonlinearity. To allow
efficient computation, word2vec further makes independence
assumptions on the context words. The training objective for
SG is to maximize the probability of the context words given
the current one,
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To avoid ambiguity, we use w to represent the current word
and use c to represent its context word. The conditional

distribution pe|yy (clw) in (2) is defined as,

exp(u(w)"v(c))
ey exp(u(w)To(¢))’
where v and v are the mapping from word to its word-
and context-vector representations respectively, and V is the
vocabulary as a list of words.

In (3), the summation over w (i.e., the vocabulary) is
used to normalize the vectors; however, this summation is
computationally intensive. To solve this issue, word2vec in-
troduces the negative sampling (NS) mechanism to further
reduce the computation complexity. Let p(D = 1|w, ¢) be the
probability that the word/context pair (w,c) comes from the
data, and p(D = O|w,c) be the probability that it does not.
The probability distribution is defined via a logistic regression,
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where o(z) = 1/(e™® + 1) is the sigmoid function. Let
#(w, c¢) be the number of occurrence for word/context pair
(w, ¢) in the training corpus. We define the marginal statistics
by #(w) = Yooy #w.c) #(0) = Yoy #w,c) and
|ID| = >, .#(w,c). The training objectives for SG then
turns into maximizing p(D = 1|w, ¢) for observed pair (w, c)
and maximizing p(D = O|w, ¢) for randomly generated pairs
(w,c’) (this pair is called a “negative” sample), where ¢’ is
randomly generated from an empirical unigram distribution
pc, which is defined as:
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The optimization objective for SG with NS is formulated
in (1), where k is a hyperparameter controlling the number
of negative samples. One can implement a parallel training
algorithm using mini-batch asynchronous gradient descent
with AdaGrad [10].

III. THEORETICAL ANALYSIS

It is the ability to capture multiple degrees of similarity, e.g.,
between words or between pairs of words, in an unsupervised
fashion that makes makes word2vec a successful algorithm.
We will theoretically justify this ability in the remaining of
this section.

Let n be the size of the vocabulary and let d be the
dimension of the vector representations. Word2vec represents
both words and their contexts in a dense low dimension space
in R? by the mappings v and v defined in Section II. We
embed v and v to a word- and context-matrix U € R™*? and
V € R™*? respectively, where the i-th row of each matrix is
the corresponding vector representation for the i-th word in the



vocabulary. The sufficient statistics in the training objective in
(1) are the inner product between u(w) and v(c). As a result,
the sufficient statistics are the product of two matrices, i.e.,
UVT € R™™. We use w and c to denote the indices of w and
c in the vocabulary if there is no ambiguity. Let M = UV,
one can rewrite the objective defined in (1) as,
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and rewrite the optimization as,
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To study the matrix M, we make the first assumption:

Assumption 1. The dimension d is large enough so that we
can ignore the rank constraint.

Therefore each elements in M are independent of the others.
This objective is then decomposed into n? objectives, whose
variable is M, for each (w,c) pair.

= #(w, ) Lue(Mue),

where L,,. is defined over each (w, ¢) pair as,
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One can obtain the maximizing M by optimizing the objec-
tives independently, i.e.,
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interpret SG as a low-dimensional matrix factorization on the
shifted version of the empirical PMI matrix of word/context
pair.

To measure the multiple degrees of similarity between
words by the distances between their corresponding vectors,
we make another assumption:

Assumption 2. For any vector x € R4,

|z]|? = azTE.(v(c)v(c)D)z = aE.(zTv(c))?,  (6)
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Fig. 2. Isotropy property of vector representations v. the histogram of
Ec(zTv(c))?/||z||? for 10,000 random vector z. The x-axis is normalized
by the mean of values.

where « is a universal constant.

This assumption can be validated empirically: Figure 2 shows
the histogram of E.(xTv(c))?/||z||* for 10,000 random vec-
tors z. The x-axis is normalized by the mean of their values.
It can be observed that most samples satisfy the property (6).

A. Word Similarity

The definition of word similarity comes from the distribu-
tional hypothesis [6]: “a word is characterized by the company
it keeps.” In a probabilistic view, if two words w; and ws are
closely related, then for most context words c,

poiw (clwi) = poyw (clwz),

and if they are remotely related, for most context words c,

PC\W(C|U11) # PC\W(C|1U2)~
In the setting of word2vec, for any two words wi, we and
any context word ¢, one can compute the differences of the
conditional probabilities using (5),

u(wr ) v(e) — u(wz)™v(c) = log (
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Under the Assumption 2, one has,

pcw(c|w1)>2

w(wy) — u(wy)||? =~ aE.lo (
[u(wi) — u(ws)] &\ poyw (clwa)

which indicates that the distances between the vectors measure
the similarities between the corresponding words. To visualize
the clustering property, we show two-dimensional PCA pro-
jections of the 300-dim SG vectors of some sample words in
Figure 3, where the vectors of the similar words are close to
each other.

B. Word Analogy

Other than the similarity of words, the similarity of word
pairs can also be captured by word2vec. Word analogy is a
task to evaluate the measure of word pair similarity: given four
words w,, Wy, W., and w, where the relation between w, and
wy are the same as w. and wy, one is asked to predict wy
given the other three words. For example, given three words
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Fig. 3. Two dimensional PCA projection of the 300-dim SG vectors of some
sample words, where the verbs that share the same infinitive clus. The figure
illustrates the ability of the SG model to measure the similarities between
words by the distances between the corresponding vectors.
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man”, “king” and “woman”, the answer should be “queen”
since “queen” is the word that is similar to “king” in the same
sense as “man” is to “woman”. [7] and [8] justified the answer
in a probabilistic fashion: most context words c satisfies,

poyw (clking)  pojw(clqueen)
poyw (clman) ~ poyw (clwoman)

and therefore “queen” is the solution to the following opti-
mization problem,

ki 2
i, 1o (P00 o (penie) Y
w pew (¢lman) pcjw (clwoman)
From (6) and (7), one can readily compute the ratios using
their vector representations, i.e.,
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u(wy) = u(wa)) v(e) = (u(wa) — u(we)) v(c))
(u(wp) — u(wa)) — (u(wa) — u(we)))T(c))”
—u(wa)) = (u(wa) — u(we))|*/a.

As a result, one can solve word analogy questions by a simple
arithemic operation on the vectors, i.e.,
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The observation above indicates that the differences of
vector pairs capture the relations between word pairs. One can
use this property to learn word pairs that share the common
relation in an unsupervised fashion. Table I lists the examples
of the word pair relations using word2vec representations [5].
Figure 4 shows the difference vectors of a semantic relation
(countries and their capitals) and a syntactic relation (verbs,
their comparatives and their superlatives).

IV. EXPERIMENTS

To empirically justify the ability of word2vec to capture
multiple degrees of similarity, we perform two tasks — word
similarity and word analogy.
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Fig. 4. Two dimensional PCA projection of the 300-dim SG vectors of
semantic relations and syntactic relations. This figure illustrate the ability
of SG vectors to automatically learn the implicit relations between words.

TABLE I
EXAMPLES OF THE WORD PAIRS GENERATED FROM THE VECTOR
REPRESENTATIONS THAT SHARE THE COMMON RELATIONSHIP.

Relationship Example 1 Example 2
france : paris italy : rome japan : tokyo
big : bigger small : larger cold : colder

dallas : texas
mozart : violinist

miami : florida
einstein : scientist

baltimore : maryland
messi : midfielder

sarkozy : france berlusconi : italy merkel : germany
copper : cu zinc : zn gold : au

berlusconi : silvio sarkozy : nicholas putin : medvedev
microsoft : windows google : android ibm : linux

microsoft : ballmer
japan : sushi

google : yahoo
germany : bratwurst

ibm : mcnealy
france : tapas

A. Parameters and Baselines

We train word2vec representations on the Wikipedia dump
in August 2013 with 1.6 billion tokens (an instance of a
sequence of characters in some particular document that are
grouped together as a useful semantic unit for processing). We
use the preprocessing script from Matt Mahoney’s website'
to remove non-textual elements, split sentences, tokenize and
lowercase the vocabulary. We build a vocabulary of words that
occur more than 100 times in the training corpus. We set the
context window size to be 10, use 10 negative samples and
set the dimension of vectors to be 500.

We compare with two baselines, which are singular value
decomposition (SVD) approaches motivated by (5). SVD-
SPMI computes the SVD of the shifted PMI matrix to obtain

Thttp://mattmahoney.net/dc/textdata.html



TABLE II
SPEARMAN RAN CORRELATION p(X100) BETWEEN THE HUMAN SCORES
AND THE ALGORITHM SCORES ON WORD SIMILARITY TASKS.

WordSim WordSim Mechanical
model Similarity | Relatedness Turk Rare Words
SG 79.4 70.0 67.8 28.1
SVD-SPMI 76.6 68.1 62.8 31.2
SVD-SPPMI 73.5 70.0 66.3 23.5

the vector representations, and SVD-SPPMI computes the
SVD of the modified version — the positive shifted PMI matrix
[8]. The context window size and the dimension of vectors
in SVD-SPMI and SVD-SPPMI are the same as those in
word2vec.

B. Evaluation methods

We empirically validate that word2vec can capture multiple
degrees of similarities on two different tasks — word similarity
and word analogy.

a) Word similarity: We evaluate the performance on
word similarity task of word2vec on various datasets includ-
ing: the WordSim353 from [11] (this dataset is partitioned into
two datasets: WordSim Similarity and WordSim Relatedness
[12]), the Mechanical Turk from [13] and the Rare Words from
[14]. All datasets have word pairs, each of which has a human-
assigned similarity score. The word vectors are evaluated
by measuring the Spearman’s rank correlation coefficients
between the distances between word vectors and the human
ratings.

b) Word analogy: We evaluate the performance on word
analogy task of word2vec on MSR dataset and Google dataset.
In MSR’s analogy dataset [15] there are 8,000 morpho-
syntactic analogy questions. In Google’s dataset [5], there
are 19,544 questions, half of which are of the same kind
as in MSR and the other half are semantic questions, such
as capital/cities. After filtering questions containing the out-
of-vocabulary words, there are 7,118 and 19,258 remaining
questions in MSR’s dataset and Google’s dataset, respectively.

C. Results

We present results on the word similarity task and on the
word analogy task in Table II and Table III, respectively. The
results indicate that SG is better at capturing the similarities
between words and pairs of words than the straight forward
SVD approaches. Even though it is not clear where the perfor-
mance improvement comes from, we guess it could potentially
come from the weights on the low dimension factorization —
the more frequent #(w, c) is, the closer u(w)Tv(c) is to the
optimal value ch.

V. CONCLUSION

In this report, we present word2vec, an algorithm to embed
words in real space, and study the quality of the representa-
tions on word similarity and word analogy tasks. We observe
that the representations, even though they are trained using a
simple model architecture, are able to capture the similarity

TABLE III
ACCURACY(X100) ON WORD ANALOGY TASKS EVALUATING USING
GOOGLE’S DATASET AND MSR’S DATASET.

model | Google | MSR

SG 69.4 52.0
SVD-SPMI 52.6 35.6
SVD-SPPMI 53.2 24.9

between words and word pairs in an unsupervised fashion.
We show some theoretical justifications for this property by
interpreting the distributional hypothesis from linguistics in a
probabilistic view, and empirically validate the property that
the multiple degrees of similarity between words are captured
by the distances between the corresponding vectors.
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