
Decentralized Payment Systems: Principles and Design

Editors: Giulia Fanti and Pramod Viswanath

January 19, 2019

2

Contributing Authors

Chapters 1 and 2
Giulia Fanti, CMU
Pramod Viswanath, UIUC

Chapter 3
Vivek Bagaria, Stanford
Sreeram Kannan, UW Seattle
David Tse, Stanford
Giulia Fanti, CMU
Pramod Viswanath, UIUC

Chapter 4
Giulia Fanti, CMU
Jiantao Jiao, UC Berkeley
Sewoong Oh, UW Seattle
Pramod Viswanath, UIUC

Chapter 5
Salman Avestimehr, USC
Sreeram Kannan, UW Seattle
Pramod Viswanath, UIUC

Chapter 6
Mohammad Alizadeh, MIT
Giulia Fanti, CMU
Pramod Viswanath, UIUC

Chapter 7
Giulia Fanti, CMU
Leonid Kogan, MIT
Sewoong Oh, UW Seattle
Pramod Viswanath, UIUC

Chapter 8
Giulia Fanti, CMU
Andrew Miller, UIUC
Pramod Viswanath, UIUC

Contents

1 Introduction 7
1.1 Requirements . 8
1.2 Outline . 10

2 Unit-e: Summary of Design 11
2.1 The Architecture of Cryptocurrencies . 11
2.2 Unit-e’s design . 12

3 Prism: Consensus near Physical Limits 17
3.1 Introduction . 17

3.1.1 Performance measures . 17
3.1.2 Physical limits . 18
3.1.3 Main contribution . 19
3.1.4 Approach . 21
3.1.5 Outline of paper . 26

3.2 Related work . 26
3.2.1 High-forking protocols . 26
3.2.2 Decoupled consensus . 27
3.2.3 Hybrid blockchain-BFT consensus . 28

3.3 Model . 28
3.3.1 Mining and communication model . 28
3.3.2 Network model . 29

3.4 Approaching physical limits: throughput . 30
3.4.1 Baselines: Bitcoin and GHOST . 30
3.4.2 Prism 1.0: throughput-optimal protocol . 33
3.4.3 Analysis . 35
3.4.4 Transaction scheduling . 35
3.4.5 Throughput-Latency tradeoff . 36
3.4.6 Discussions . 37

3.5 Near physical limits: latency and throughput . 38
3.5.1 Bitcoin latency . 39
3.5.2 Prism . 40
3.5.3 Prism: model . 44
3.5.4 Total transaction ordering at optimal throughput 45
3.5.5 Fast confirmation of ledger list and honest transactions 46

3.6 Discussions . 52
3.6.1 Prism: incentives . 52

3

4 CONTENTS

3.6.2 Prism: smart contracts . 52
3.6.3 Prism: Proof-of-Stake . 53

3.7 Acknowledgement . 53

4 Barracuda: Consensus-Aware P2P Networking 55
4.0.1 Primer . 56
4.0.2 Contributions . 56

4.1 Related Work . 57
4.2 Model . 58

4.2.1 Modeling block generation . 59
4.2.2 Network model and fork choice rule . 60

4.3 Block Throughput Analysis . 61
4.4 `-Barracuda . 63

4.4.1 Main result . 65
4.4.2 Connections to balls-in-bins example . 66

4.5 System and implementation issues . 67
4.5.1 Effect of polling delay . 68
4.5.2 Heterogeneous networks . 68
4.5.3 Polling partial blocktrees . 69
4.5.4 Incentive Structure . 69
4.5.5 Security Implications . 70

4.6 Relation to Prism . 73
4.7 Proofs of the main results . 73

4.7.1 Proof of Theorem 5 . 73
4.7.2 Proof of Theorem 6 . 75
4.7.3 Proof of Theorem 7 . 76
4.7.4 Proof of Theorem 8 . 78

4.8 Acknowledgement . 78

5 Polyshard: Scalable Storage and Computation 79
5.1 Sharding: benefits and limitations . 80
5.2 Coding vs. Replication . 82
5.3 Coded Sharding . 83

5.3.1 System Model . 84
5.4 PolyShard . 85

5.4.1 Storage encoding in PolyShard . 85
5.4.2 Coded verification in PolyShard . 87
5.4.3 Optimality of PolyShard . 88

5.5 Simulation Results . 89
5.6 Discussion . 91

5.6.1 Integration into blockchain systems . 91
5.6.2 Modelling cross-shard transactions . 92
5.6.3 Relationship to verifiable computing . 92
5.6.4 Future research directions . 92

5.7 Acknowledgement . 93

CONTENTS 5

6 Spider: Efficient Routing for Payment Channel Networks 95
6.1 Background . 96

6.1.1 Payment Channels . 96
6.1.2 Payment Channel Networks . 97

6.2 Related Work . 97
6.3 Imbalance-Aware Routing . 98

6.3.1 A Motivating Example . 99
6.3.2 Limits on Throughput . 99
6.3.3 Algorithms . 103

6.4 The Spider Network . 105
6.4.1 Spider Hosts . 106
6.4.2 Spider Routers . 107

6.5 Preliminary Evaluation . 107
6.5.1 Setup . 107
6.5.2 Results . 108

6.6 Discussion and Future Work . 110
6.7 Acknowledgement . 111

7 Economics 113
7.1 Valuation . 114

7.1.1 A Simple Model with Fee-Based Rewards . 115
7.1.2 An Extended Model with Increasing Token Supply 117

7.2 Block Rewards . 119
7.2.1 The economic implications of block rewards 119
7.2.2 Block Reward Schedule: Design Considerations 121
7.2.3 Equitability in PoS block reward schemes . 122

7.3 Transaction Fees . 128
7.3.1 Fee management today . 129
7.3.2 Design considerations . 132

7.4 Acknowledgement . 136

8 Privacy and Identity Management 137
8.1 Blockchain-Level Privacy . 138

8.1.1 Zero Knowledge Schemes . 139
8.1.2 Classes of Proof Schemes . 141

8.2 Network-Level Privacy . 142
8.2.1 Models . 143
8.2.2 Related Work . 145
8.2.3 Lower Bounds . 147
8.2.4 Dandelion . 148
8.2.5 Proofs . 149

8.3 Acknowledgement . 154

6 CONTENTS

Chapter 1

Introduction

Giulia Fanti, CMU
Pramod Viswanath, UIUC

The need to build a decentralized trust system is broad and pressing. For centuries, mutually
distrustful parties have collaborated to build empires, economies, and social structures. However,
these collaborations and interactions have historically been managed with opaque systems that are
susceptible to corruption and extreme imbalance of power. For example, consider the social contract
between a government and its population. A specific party (the government) is endowed with
disproportionate power; if that party is corrupted, it is difficult for the system to revert to a state
that is acceptable to all parties. Decentralized trust systems are digital systems in which multiple
parties can collaborate on specific tasks without requiring parties to trust one another. An example of
a task that requires decentralized trust is that of running a payment system. Although decentralized
computer systems have traditionally posed substantial technical challenges (e.g., scalability and
security in peer-to-peer networks), three main technological trends are facilitating the proliferation of
decentralized trust systems today: ubiquitous Internet connectivity, low-cost computing and storage,
and the development of blockchain technology. Delivering these new mechanisms of trust—and the
wide-ranging possibilities they bring—are of great interest to society at-large.

In this monograph we envision the development of a highly-scalable and fully-decentralized
payment system: Unit-e. Decentralized payment systems inherently exhibit a number of desirable
properties: (i) the diffusion of control among stakeholders; (ii) the ability to engage in trusted
commerce without a centralized intermediary; (iii) the potential to disrupt the rents extracted
by centralized intermediaries facilitating commerce; and (iv) global consistency and transparency
on a shared ledger. Because of the sensitive nature of money, such a payment system requires
decentralization at several layers. The design and development of the system should be decentralized
to ensure that no single party controls the implementation of the system. The algorithms governing
the system should be decentralized to avoid a single party controlling the flow of money during daily
operations. The dissemination of fees should be decentralized to democratize the management of
money. And finally, the governance of the payment system should be decentralized to prevent a single
party from modifying system parameters and algorithms in their favor. The objective for Unit-e is
to satisfy these decentralization constraints in a manner that is both performant and robust.

The original vision for Bitcoin was to build precisely such a payment system. In many ways, it
was successful; Bitcoin has achieved high levels of decentralization compared to centralized money
supplies, and remarkable levels of awareness for cryptocurrencies, although merchant adoption
has been nearly non-existent. Nonetheless, Bitcoin’s architectural choices have constrained both

7

8 CHAPTER 1. INTRODUCTION

performance and scalability, thereby limiting its utility as an everyday payment unit. This has
led to questions about the intrinsic value of both Bitcoin and digital currencies in general [89].
These doubts are primarily based on the present low usage of Bitcoin, which can be addressed by
recent proposals to build substantially faster blockchains than Bitcoin’s. The scaling improvements
have been largely enabled by architectural choices that emphasize scalability—often by choosing
centralization, which goes counter to the core tenet of decentralized trust systems. Building a truly
decentralized and efficient payment unit is a core challenge, and indeed, despite the plethora of
digital tokens in existence today, there is still no candidate that can be used for the regular exchange
of value in the daily lives of ordinary people.

Unit-e Unit-e is a cryptocurrency that specializes exclusively on payments, with a strong emphasis
on performance and state-of-the-art, decentralized scalability. Whereas blockchains offering smart
contracts must solve the problem of full, decentralized state-machine replication, lightweight payment
transactions offer massive parallelism. Consequently, we narrow the objectives of a general purpose
blockchain system, and tackle these questions in a holistic, first-principles manner. We note that
although focused on payments, we find that much of the research output involved in the design of
Unit-e also provides programmability (e.g. through smart contracts written in Turing or pseudo-
Turing complete languages); we discuss these ramifications in the appropriate sections throughput
the manifesto. To become a ubiquitous global payment system, Unit-e is designed to meet the
following five requirements in a fully-decentralized manner:

1. Security. The system should prevent unauthorized or invalid payments from being executed.

2. Latency. Transactions should be processed seamlessly, on the timescale of seconds.

3. Throughput. The network as a whole should be able to confirm up to thousands of transac-
tions per second.

4. Usability. The system should be accessible at all times, offer low and predictable fees and a
low cost of operating the network and provide a seamless and predictable user experience.

5. Privacy. The system should prevent unauthorized parties from accessing transaction logs.

A key challenge is to meet these requirements in an efficient, scalable, decentralized platform.
This manifesto represents the output of such a research engagement and it highlights key insights

that are fundamental to the building of a truly scalable decentralized payment system. Specifically,
we draw inspiration from information theory, networking, coding theory, game theory, and economics,
in addition to more well-known connections to distributed systems and cryptography.

1.1 Requirements

We begin this chapter by revisiting our requirements in greater detail and providing benchmark
performance figures. Then, we discuss the technical building blocks needed to deliver the desired
figures of merit, formulating basic and fundamental questions of core scientific and engineering
relevance to blockchains.

1.1. REQUIREMENTS 9

Security. If implemented naively, blockchain systems can introduce many security concerns related
to usability, implementation issues, incentives, and fault-tolerance. From an algorithmic design
standpoint, we wish to protect against two main types of security violations. The first involves
unauthorized users making payments with other users’ funds. The second involves users double
spending their own money. Both attacks amount to theft, but the second threat is unique to digital
money. Assuming a secure codebase, unauthorized transactions are organically prevented through the
use of asymmetric cryptography. Double spends, on the other hand, should be specifically prevented
by decentralized consensus mechanism. Tackling this challenge in a low-latency, high-throughput
system is particularly challenging and a key focus of Unit-e’s design.

Low Latency. Latency is critical in a consumer-facing payment system, particularly for point-of-
sale transactions. Unit-e therefore aims to achieve confirmation latencies on the order of 15 seconds
for on-chain transactions, and 2-4 seconds for off-chain transactions. Although some cryptocurrencies
achieve comparable latencies today, they do so at the expense of decentralization. We find that this
tradeoff is not fundamental; it is possible to achieve fast confirmation using decentralized algorithms.
We sidestep this challenge through a ground-up redesign of consensus mechanisms, coupled with
new routing algorithms for payment channel networks.

On the consensus front, we develop new algorithms with strong theoretical performance guarantees,
which are able to approach the limits of what is physically possible in a blockchain. Our process for
designing such algorithms involves carefully and systematically deconstructing blockchains into their
core functionalities and rebuilding them from scratch. A key intuition is that in order to get good
throughput and latency, the processes of proposing and confirming blocks should be algorithmically
separated. Our design of secure and efficient consensus algorithms is discussed in Chapter 3.

In parallel with fast on-chain proof-of-stake (PoS) consensus, we implement a payment channel
network targeted towards high-volume, low-value transactions (e.g. point-of-sale transactions).
Payment channel networks are overlay networks that use on-chain consensus to set up escrow
accounts (or channels) between pairs of users. By exploiting clever cryptographic constructs, users
can route transactions over a path of these channels, even if the two endpoints do not share a channel
themselves. The key benefit is that users can verify transactions instantaneously without waiting
for confirmation from the blockchain. This significantly reduces confirmation latency compared to
on-chain transactions; the main delay stems from passing the transaction to the recipient, which is a
fast, point-to-point operation that can take as little as a second for direct channels.

Throughput. A closely-related concept to latency is throughput—the number of transactions
processed per second. We are targeting throughputs of 5,000-10,000 transactions per second. For
comparison, note that Visa’s networks process almost 1,700 transactions per second on average,
and an order of magnitude more at its peak [179]. Also for comparison, Bitcoin’s current average
throughput is estimated between 3.3 and 7 transactions per second, and Ethereum reaches between
10-30 transactions per second. Bridging this large gap is technically nontrivial and requires significant
innovation. As an aside, we note that the target throughput metrics are already at the physical
limits of a typical modern P2P network; a 20 Mbps network physically cannot handle substantially
more transactions per second without making severe compromises (typically in security).

To achieve our target throughput figures, we rely on a combination of novel consensus mechanisms,
entirely new ways of sharding, and payment channel networks. We design novel consensus algorithms
(Chapter 3) and new peer-to-peer (P2P) networking algorithms that breathe in sync with the
informational imperatives of the consensus algorithms (Chapter 4). This allows us to achieve optimal
throughput (and latency and security, simultaneously), constrained only by the physical limits of the

10 CHAPTER 1. INTRODUCTION

Security Latency Throughput Usability Privacy
3: Consensus Algorithms × × × ×
4: Network-aware Consensus × × × ×
5: Storage and Computation × ×
6: Payment Channel Networks × ×
7: Economics × ×
8: Privacy ×

Table 1.1: Relation between desired properties and the topics in each chapter.

networking layer, for on-chain transactions. We propose new sharding algorithms based on coding
the blockchain data which achieve optimal tradeoffs in security, storage, and computation; this is
conducted in Chapter 5. Finally, we design new payment channel networks in Chapter 6, where
we propose a new routing algorithm that achieves up to 50% higher transaction throughput than
state-of-the-art routing proposals, without sacrificing latency.

Usability. Usability is critical to a payment system, since customers must be able to make payments
whenever they wish. In principle, the distributed, peer-to-peer network of Unit-e nodes gives some
protection against random network fluctuations. In practice, Bitcoin has been extraordinarily reliable
over its existence for nearly a decade; measurements have shown a network reliability exceeding
99.9999% since 2011. The incentive mechanisms of Unit-e —discussed in Chapter 7— are designed
to motivate and reward participant nodes towards similar levels of availability.

Privacy. Privacy is one of the primary challenges associated with using a cryptocurrency as a
real payment system. By design, cryptocurrencies are designed to be transparent; the blockchain is
inherently a public, verifiable record of transactions. However, this can lead to significant privacy
violations if people are to use the cryptocurrency for everyday transactions. To navigate this
tradeoff, Unit-e will incorporate privacy protections against blockchain-level attacks (e.g., Zcash,
a privacy-preserving cryptocurrency, provides a starting point of our design). Unit-e also protects
against network-level attacks by proposing a novel privacy solution called Dandelion that protects
against network adversaries linking users’ transactions to their IP addresses (even with the data
being encrypted) [34].

1.2 Outline

Our goal is to take a first-principles, full-stack approach to designing Unit-e’s payment system. In this
manifesto, we provide a comprehensive set of solutions to the key requirements set up formally earlier,
as well as setting the stage for continued research on blockchains. Given the vast subject matter
we have found it natural to divide the solution space into several chapters. Table 1.1 summarizes
the connection between the figures of merit and the different chapters. The chapters cover state
of the art research in blockchains conducted under the collective experience and knowledge gained
by the diverse disciplines of information theory, coding theory, communication theory, distributed
algorithms, economics, and data networking. A summary of the main findings of all the chapters is
provided next.

Chapter 2

Unit-e: Summary of Design

Giulia Fanti, CMU
Pramod Viswanath, UIUC

The goal of this section is to summarize the design and research contributions of Unit-e. Whereas
the previous section outlined our technical requirements, we begin this section with an abstraction
of the architectural components of a cryptocurrency. Each chapter of this manifesto will address one
piece of this abstraction through a first-principles, ground-up design.

2.1 The Architecture of Cryptocurrencies

Blockchains are often represented conceptually by a layered model, much like the OSI networking
model. In designing Unit-e, we use this layer-based model as a starting point, and expand it to include
components that are specifically relevant to cryptocurrencies. As shown in Figure 2.1, Layer 1
technologies refer to the core blockchain; this includes everything from consensus mechanisms to data
structures to the networking stack. Traditionally, the bulk of blockchain development and research has
addressed layer 1. Layer 2 instead describes technologies that use an underlying blockchain to build
applications. Although layer 2 technologies cannot exist without layer 1, certain layer 2 technologies
could prove essential for the long-term viability and scalability of blockchains. Payment channel
networks—such as Bitcoin’s Lightning network and Ethereum’s Raiden network—are prominent
exemplar technologies.

The layer abstraction is useful for reasoning about the development and structure of blockchains.
However, some aspects of cryptocurrencies span multiple layers and are not easily categorized.
Three such aspects are privacy, economics, and governance. Privacy refers to the ability of users to
make transactions without revealing information about this transaction to other users. Financial
systems in particular have stringent privacy requirements, which are not necessarily satisfied by
naive blockchain designs. Moreover, privacy requirements exist at both layers 1 and 2, so privacy
technologies are not naturally captured by the layer model. Hence we view privacy as encompassing
both layers in Figure 2.1. Economics refers to the mechanisms that incentivize users to offer storage,
computation, and bandwidth needed for daily operations. It also refers to the tenuous relation
between cryptocurrencies and fiat currencies, and how to price one in terms of the other. Since
economics depend closely on algorithmic decisions regarding layers 1 and 2, as well as the privacy
layer, we think of economics as encompassing all of them. Finally, governance refers to the processes
and rules for making decisions about the network, ranging from technical recommendations to
disaster recovery. Governance can affect all aspects of the blockchain, and therefore encompasses

11

12 CHAPTER 2. UNIT-E: SUMMARY OF DESIGN

Figure 2.1: Abstract model of cryptocurrencies.

all of the previous components. Although governance is critical to the success of any project, it is
not a research topic in the traditional sense, and hence we do not discuss it further in this research
manifesto.

2.2 Unit-e’s design

Armed with this abstraction, we systematically tackle each component of the architecture. Our
manifesto begins with the core layer 1 technologies: consensus, storage, and computation. Next, we
cover payment channel networks at layer 2, followed by economics and privacy. For each of these
technologies, we first consider what performance levels are possible according to the laws of physics.
Next, we propose algorithms that are tailored to meet those physical limits. In the following, we
summarize the contents and research contributions of each of these chapters.

Chapter 3: Consensus

For a given security level, two key performance metrics characterize a blockchain consensus protocol:
throughput and latency. In a decentralized setting, these measures are limited by underlying physical
network attributes—namely, communication capacity and speed-of-light propagation delay. We
begin this chapter by showing that existing cryptocurrencies operate far from these physical limits.
A natural question is whether any consensus algorithm can achieve performance metrics close to the
physical limits. We answer this question in the affirmative by presenting Prism, a new blockchain
protocol that achieves 1) security against up to 50% adversarial nodes; 2) optimal throughput up
to the capacity C of the network; 3) order-optimal confirmation latency for honest transactions
proportional to the propagation delay D, with confirmation error probability exponentially small in
the bandwidth-delay product CD; 4) eventual total ordering of all transactions. Our approach to
the design of this protocol is based on deconstructing the blockchain into its basic functionalities
and systematically scaling up these functionalities to approach their physical limits. We begin by
presenting Prism in the proof-of-work setting, then discuss how to extend the intuitions underlying it
to a proof-of-stake consensus algorithm.

2.2. UNIT-E’S DESIGN 13

Prism builds on the following intuition: to achieve high throughput, a system should produce
blocks frequently. However, naively increasing the block production rate leads to forking, which
hinders transaction confirmation and reduces the security of the protocol. To resolve this tension,
we architecturally separate the act of producing new blocks from the act of confirming them. Other
systems have proposed decoupling various aspects of consensus. However, Prism’s decoupling in
particular leads to a heavily-structured directed acyclic block-graph (DAG) that simultaneously
facilitates analysis, while giving optimal latency and throughput guarantees. This DAG is illustrated
in Figure 2.2.

Figure 2.2: Prism is a consensus mechanism that explicitly deconstructs the various roles that blocks
play in a blockchain: logging transactions, proposing transactions, and voting on other blocks. Prism
achieves optimal transaction throughput and latency, while satisfying strong security guarantees.

Chapter 4: Network-Aware Consensus

In Chapter 3, we proposed a new consensus protocol to meet the physical limits of a fixed network.
Here, by ‘network’, we mean the entire networking stack, ranging from the hardware to the topology
to the relaying protocols. In Chapter 3, this whole stack is represented with a simple model for
worst-case block delay, described in Section 3.3. This model is fairly standard in the consensus
literature, but it abstracts away most of the nuances that characterize delays in real networks. In
Chapter 4, we consider a more detailed, random network model informed by measurements of real
cryptocurrencies. Armed with this more sophisticated network model, we propose a new networking
protocol that improves throughput for any consensus algorithm from a broad class of protocols,
including Nakamoto consensus and Prism. This protocol, called Barracuda, requires every proposer
node to poll its peers for new blocks and update its local view of the blocktree before proposing a
new block. This deceptively simple polling procedure gives the proposer more information about
the global blocktree, thereby reducing the probability of the proposer’s new block causing a fork.
In fact, we show that if each proposer polls ` nodes before proposing, for small values of `, the
end effect is the same as if the entire network had been a factor of ` faster in mean block delay.
Notably, this benefit comes without any hardware upgrades or other substantial changes to the
network. Barracuda is therefore a useful primitive for improving blockchain throughput and latency
that operates in parallel to the consensus algorithm improvements from Chapter 3.

Chapter 5: Scalable Storage and Computation

Chapter 3 showed how to approach the physical limits on latency and throughput. In Chapter 5, we
focus on approaching physical limits on storage and computation efficiency. A trivial upper bound

14 CHAPTER 2. UNIT-E: SUMMARY OF DESIGN

is one where storage and computational capacity scale linearly in the number of nodes. Put more
simply, doubling the number of nodes should also double the amount of data the system can store
and computation it can execute. Current blockchain designs operate far from this fundamental limit;
indeed, in existing systems, more user participation actually leads to lower storage and computational
efficiency. This reverse scalability arises in part because of the global requirements of cryptocurrencies:
all (or many) users are expected to store and process the blockchain, so the resulting storage and
computational costs increase with time and user participation. Current proposals for improving
scalability (called sharding) address this tradeoff by improving storage and computational efficiency;
however, they typically do so at the cost of security. The more shards exist in a system, the easier it
becomes for an adversary to overtake any single shard. As before, a natural question is whether one
can simultaneously achieve optimal storage efficiency, computational efficiency, and security.

In this chapter, we answer this question affirmatively by presenting PolyShard, a storage and
computation solution that growsmore efficient with more users without sacrificing security. PolyShard
combines classical ideas from coded storage and coded computation with recent breakthrough results
on Lagrange-coded computing to circumvent the tradeoffs that characterize most sharding systems.
The key intuition is that it mixes up data from different users and transactions in a way that allows
perfect recovery, illustrated intuitively in Figure 2.3. Notably, PolyShard simultaneously achieves
an optimal tradeoff between security, storage, and computational costs, performing within a small
constant factor of the limits imposed by physics.

Figure 2.3: PolyShard is a sharding solution that uses ideas from coding theory to simultaneously
achieve optimal guarantees in security, storage efficiency, and computational efficiency. The key
intuition is that nodes should not store replicated data; instead, they should store coded linear
combinations of data.

Chapter 6: Payment Channel Networks

In Chapters 3 and 5 we propose layer 1 algorithms that meet physical limits on throughput, latency,
storage, computation, and security. These physical limits apply specifically to distributed consensus
systems (i.e., layer 1). In some cases, layer 2 scalability solutions are subject to more lenient physical
constraints; this can lead to further efficiency gains if harnessed properly.

A notable example is payment channel networks (PCNs). PCNs improve the scalability of

2.2. UNIT-E’S DESIGN 15

cryptocurrencies by removing the need to involve the blockchain with every transaction; to achieve
this, users escrow money on the blockchain ahead of time, and use cryptographic data structures
to quickly and efficiently draw from these escrows later. Examples of PCNs include the Lightning
network in Bitcoin and the Raiden network in Ethereum. Despite their promise, payment networks
presents numerous technical challenges that have yet to receive much attention from the research
community. In particular, the routing algorithms used in today’s PCNs are naive compared to
routing in more mature networks, like the Internet or data centers.

In Chapter 6 we present Spider, a networking solution for PCNs that exploits tried-and-tested
ideas from the networking literature. Spider uses packet-switched, imbalance-aware routing to reduce
costs and rebalancing frequency within a PCN. In other words, it reduces the amount of money that
must be escrowed to support a given transaction load. We find that for stable transaction workflows
Spider achieves within a small factor of optimal throughput. In simulation, Spider achieves up to
50% higher transaction throughput compared to state-of-the-art algorithms, without sacrificing
transaction processing delay.

Chapter 7: Economics

Economics are a central, open question in the design of cryptocurrencies: what is the value of
a cryptocurrency? How should we design reward mechanisms to incentivize rational players to
participate in blockchain systems? These questions are typically answered in an ad-hoc manner,
motivated primarily by philosophical or qualitative arguments. The goal of Chapter 7 is to provide
a framework for answering these questions quantitatively.

A common view is that cryptocurrencies should be valued according to their functionality. So a
payment token like Unit-e should be valued according to the fiat value of transactions it processes.
However, translating this high-level thought into a precise valuation is challenging; typically, token
values are tied to token velocity, which is difficult to pin down. Moreover, existing models have
primarily covered proof-of-work cryptocurrencies, where the high hardware and electricity costs
materially affect the value of the network. These models do not extend to proof-of-stake tokens,
where physical costs are much smaller.

In this chapter, we design quantitative models for valuing proof-of-stake payment tokens based on
conventional asset valuation techniques. These models rely on one key observation: in proof-of-stake
cryptocurrencies, users deposit tokens to participate in consensus protocols that secure the network.
As compensation for participating in these protocols, they receive rewards in the form of transaction
fees. Thus, the value of a single deposited token is determined by the cumulative future rewards
the owner will receive from the consensus mechanism. By assuming transaction fees are a fixed
percentage of transaction value, we can tie the overall token value to the fiat value of transactions
executed on the network.

Chapter 8: Privacy and Identity Management

The notion of identity is critical to financial transactions, both to customers and merchants. A
key observation of cryptocurrencies is that payment systems do not need to know the identities
of their participants; this is similar to cash and barter system economies. In this chapter we
explore the fundamental challenges arising from the need to maintain strong identity management
between relevant parties (i.e., merchants and customers), while cutting out unnecessary information
leakage to the middleman. We study these challenges in two parts: the first part involves identity
management among network participants, such as merchants and clients. The second part deals with
the technically much harder problem of identity management in the blockchain. This latter aspect

16 CHAPTER 2. UNIT-E: SUMMARY OF DESIGN

is the specific focus of Chapter 8; we study privacy both at the blockchain level (i.e. preventing
transaction leakage) and at the network level (preventing linkage between transactions and IP
addresses).

We start the chapter by describing existing techniques for providing blockchain data privacy
using zero-knowledge techniques. We summarize primary scalability challenges, and outline the
tradeoffs between different approaches, including zk-SNARKS and zk-STARKS. Next, we discuss the
landscape of network-level attacks, including a summary of existing attacks and analysis. Finally, we
present a proposed solution for network-level privacy called Dandelion. Dandelion prevents network
adversaries from linking transactions to IP addresses; intuitively, it achieves this by changing the
way that transactions are relayed over the P2P network to an asymmetric spreading pattern, shown
in Figure 2.4. We show that Dandelion achieves optimal privacy guarantees at low latency cost, and
discuss practical considerations for implementing Dandelion in a low-latency cryptocurrency like
Unit-e.

Figure 2.4: Dandelion is a transaction relaying mechanism that prevents network adversaries from
linking a transaction to the IP address of the transaction source. It spreads content in two phases:
the stem phase passes the transaction along a random walk over an underlying network. The fluff
phase diffuses the transaction to the rest of the network.

Chapter 3

Prism: Consensus near Physical Limits

Vivek Bagaria, Stanford
Sreeram Kannan, UW-Seattle

David Tse, Stanford
Giulia Fanti, CMU

Pramod Viswanath, UIUC

3.1 Introduction

In 2008, Satoshi Nakamoto invented the concept of a blockchain, a mechanism to maintain a
distributed ledger for an electronic payment system, Bitcoin [130]. Honest nodes mine blocks on top
of each other by solving Proof-of-Work (PoW) cryptographic puzzles; by following a longest chain
protocol, they can come to consensus on a transaction ledger that is difficult for an adversary to
alter. Solving the puzzle effectively involves randomly trying a hash inequality until success. Since
Bitcoin’s invention, much work has been done on improving Nakamoto’s design; however, it remains
unclear what is the best performance achievable by blockchain protocols. In this chapter, we explore
the performance limits of blockchain protocols and propose a new protocol, Prism, that performs
close to those limits. Our focus in this chapter is on Proof-of-Work systems, because the research on
these systems are more well-established and hence there are clear baselines to compare our results to.
Nevertheless, we will find in the next chapter that many of the ideas are transferrable to designing a
Proof-of-Stake version of the protocol.

3.1.1 Performance measures

There are four fundamental performance measures of a PoW blockchain protocol:

1. the fraction β of hashing power the adversary can control without compromising system
security;

2. the throughput λ, number of transactions confirmed per second;

3. the confirmation latency, τ , in seconds;

17

18 CHAPTER 3. PRISM: CONSENSUS NEAR PHYSICAL LIMITS

4. the probability ε that a confirmed transaction will be removed from the ledger in the future.
(log 1/ε is sometimes called the security parameter in the literature1.)

For example, Bitcoin is secure against an adversary holding up to 50% of the total network hash
power (β = 0.5), has throughput λ of the order of several transactions per seconds and confirmation
latency of the order of tens of minutes to hours. In fact, there is a tradeoff between the confirmation
latency and the confirmation error probability: the smaller the desired confirmation error probability,
the longer the needed latency is in Bitcoin. For example, Nakamoto’s calculations [130] show that
for β = 0.3, while it takes a latency of 10 blocks (on the average, 100 minutes) to achieve an error
probability of 0.04, it takes a latency of 30 blocks (on the average, 300 minutes) to achieve an error
probability of 10−4. This latency arises because in order to provide a low error probability, blocks
must be deep in the underlying blockchain to prevent the adversary from growing a longer side chain
and overwriting the block in question.

3.1.2 Physical limits

Bitcoin has strong security guarantees, being robust against an adversary with up to 50% hashing
power. However, its throughput and latency performance are poor; in particular high latency is
required to achieve very reliable confirmation. Much effort has been expended to improve the
performance in these metrics while retaining the security guarantee of Bitcoin. But what are the
fundamental bounds that limit the performance of any blockchain protocol?

Blockchains are protocols that run on a distributed set of nodes connected by a physical network.
As such, their performance is limited by the attributes of the underlying network. The two most
important attributes are C, the communication capacity of the network, and D, the speed-of-light
propagation delay across the network. Propagation delay D is measured in seconds and the capacity
C is measured in transactions per second in this manuscript, since a transaction is the basic unit of
information in a payment system. Nodes participating in a blockchain network need to communicate
information with each other to reach consensus; the capacity C and the propagation delay D limit
the rate and speed at which such information can be communicated. These parameters encapsulate
the effects of both fundamental network properties (e.g., hardware, topology), as well as resources
consumed by the network’s relaying mechanism, such as validity checking of transactions or blocks.
Assuming that each transaction needs to be communicated at least once across the network, it is
clear that λ, the number of transactions which can be confirmed per second, is at most C, i.e.

λ < C. (3.1)

One obvious constraint on the confirmation latency τ is that

τ > D. (3.2)

Another less obvious constraint on the confirmation latency comes from the network capacity and the
reliability requirement ε. Indeed, if the confirmation latency is τ and the block size is B transactions,
then at most

C

B
· τ

mined blocks can be communicated across the network during the confirmation period for a given
transaction. These mined blocks can be interpreted as confirmation votes for a particular transaction
during this period; i.e. votes are communicated at rate C/B and τ ·C/B votes are accumulated over

1All logarithms in this chapter are taken with respect to base e.

3.1. INTRODUCTION 19

duration τ . This number is maximized at Cτ , when the block size is smallest possible, i.e. B = 1. On
average, a fraction β < 0.5 of these blocks are adversarial, but due to the randomness in the mining
process, there is a probability, exponentially small in Cτ , that there are more adversarial blocks
than honest blocks; if this happens, confirmation cannot be guaranteed. Hence, this probability is a
lower bound on the achievable confirmation error probability, i.e.

ε = exp{−O(Cτ)}. (3.3)

Turning this equation around, we have the following lower bound on the latency for a given reliability
requirement ε:

τ = Ω

(
1

C
· log

1

ε

)
. (3.4)

Comparing the two constraints (3.2) and (3.4), we see that if

CD � log
1

ε
,

the latency is limited by the propagation delay; otherwise, it is limited by the confirmation reliability
requirement. The quantity CD is analogous to the key notion of bandwidth-delay product in
networking (see eg. [97]); it is the number of “in-flight" transactions in the network.

To evaluate existing blockchain systems with respect to these limits, consider a global network with
communication links of capacity 20 Mbits/second and round-the-world speed-of-light propagation
delay D of 0.2 seconds. If we take a transaction of size 100 bytes, then C = 25, 000 transactions per
second. The bandwidth-delay product CD = 5000 is very large. Hence, the confirmation latency is
limited by the propagation delay of 0.2 seconds, but not by the confirmation reliability requirement
unless it is astronomically small. Real-world blockchain systems operate far from these physical
network limits. Bitcoin, for example, has λ of the order of 10 transactions per second, τ of the
order of minutes to hours, and is limited by the confirmation reliability requirement rather than the
propagation delay. Ethereum has λ ≈ 15 transactions per second and τ ≈ 3 minutes to achieve an
error probability of 0.04 for β = 0.3 [36].

3.1.3 Main contribution

The main contribution of this work is a new blockchain protocol, Prism, which has the following
provable performance guarantees:

1. security: Prism is secure up to an adversary power of 50%, i.e. for any β < 0.5 and for
arbitrary adversarial action2, it can achieve an eventual total ordering of the transactions, with
consistency and liveness guarantees.

2. throughput: For arbitrary adversarial action, Prism can achieve a throughput

λ = (1− β)C transactions per second.

3. latency: For any β < 0.5 and for arbitrary adversarial action, Prism can confirm honest
transactions (without public double spends) with an expected latency

E[τ] < max

{
a1(β)D,

a2(β)

C
log

1

ε

}
seconds,

with confirmation reliability at least 1 − ε. Here, a1(β) and a2(β) are constants depending
only on β (defined in (3.28) and (3.29)).

20 CHAPTER 3. PRISM: CONSENSUS NEAR PHYSICAL LIMITS

Adversary: 𝛽

𝐶

Throughput

(1 − 𝛽)𝐶

1 −
1
𝑒 𝐶

0.50.49

Bitcoin

Prism (optimal)

Bitcoin operating
point

0.05𝐶

(a) Throughput

𝑂(𝐷)

Bitcoin

Prism (order optimal)
Latency

Security parameter:
log (

)

𝑂(𝐶𝐷)

Slope
𝑂(D)

Slope 𝑂 (
+

𝑂(1)

(b) Latency

Figure 3.1: Main results. (a) Throughput vs adversarial fraction β for Prism and Bitcoin. The red
curve is an optimized upper bound of Bitcoin’s throughput, derived in Section 3.4.1. Note that the
throughput of Prism is a positive fraction of the network capacity all the way up to β = 0.5, but the
throughput of Bitcoin vanishes as a fraction of the capacity as β → 0.5. (b) Confirmation latency
vs. security parameter for Prism and Bitcoin. The red curve is a lower bound on Bitcoin ’s latency,
derived in Section 3.5.1. The latency of Prism is independent of the security parameter value up to
order CD and increases very slowly after that (with slope 1/C). For Bitcoin, latency increases much
more rapidly with the security parameter.

3.1. INTRODUCTION 21

The results are summarized in Figure 3.1. Some comments:

• The security of Prism is as good as Bitcoin: Prism can be robust to an adversary with hashing
power up to β = 0.5.

• Since 1− β is the fraction of honest hashing power, Prism ’s throughput is optimal assuming
each transaction needs to be communicated across the network.

• Prism achieves a confirmation latency for honest transactions matching, in order, to the two
physical limits (3.2) and (3.4). In particular, if the desired security parameter log 1

ε � CD,
the confirmation latency is of the order of the propagation delay and independent of log 1/ε.
Put it another way, one can achieve latency close to propagation delay with a confirmation
error probability exponentially small in the bandwidth-delay product CD.

• For a total ordering of all transactions (including double spends), on the other hand, the trade
off between latency and the security parameter is similar to that of Bitcoin.

3.1.4 Approach

A critical parameter of any PoW blockchain protocol is the mining rate, i.e. the rate at which
puzzles are successfully solved (also called the PoW solution rate). The mining rate can be easily
controlled via adjusting the difficulty of the puzzle, i.e. the threshold at which the hash inequality
needs to be satisfied. The mining rate has a profound impact on both the transaction throughput
and confirmation latency. Large mining rate can potentially increase the transaction throughput by
allowing transactions to be processed quicker, and can potentially reduce the confirmation latency by
increasing the rate at which votes are casted to confirm a particular transaction. However, increasing
the mining rate has the effect of increasing the amount of forking in the blocktree, because blocks
mined by different nodes within the network delay cannot be mined on top of each other and are
hence forked. This de-synchronization slows down the growth rate of the longest chain, making the
system more vulnerable to private chain attacks, and decreasing the security of the protocol. Indeed,
one reason why Bitcoin is highly secure is that the mining rate is set to be very small, one block per
10 minutes. At the current Bitcoin block size of 1 Mbytes, this corresponds to a generated traffic of
about 13 kbits/second, much less than capacity of typical communication links [170]. Thus, Bitcoin
’s performance is security-limited, not communication-limited, and far away from the physical limits.

To increase the mining rate while maintaining security, one line of work in the literature has
used more complex fork choice rules and/or added reference links to convert the blocktree into more
complex structures such as a directed acyclic graph (DAG). This allows a block to be confirmed by
other blocks that are not necessarily its descendents on a main chain. (Figure 3.2). Examples of
such works are GHOST [168], Inclusive [112], Spectre [167], Phantom[166] and Conflux [114]. However,
as discussed in more details in the related work section, GHOST, Phantom, and Conflux all have
security issues, and Spectre does not provide total ordering of transactions. It is fair to say that
handling a highly forked blocktree is challenging.

In this work, we take a different approach. We start by deconstructing the basic blockchain
structure into its atomic functionalities, illustrated in Figure 3.3. The selection of a main chain in a
blockchain protocol (e.g., the longest chain in Bitcoin) can be viewed as electing a leader block among
all the blocks at each level of the blocktree, where the level of a block is defined as its distance (in
number of blocks) from the genesis block. Blocks in a blockchain then serve three purposes: they
elect leaders, they add transactions to the main chain, and they vote for ancestor blocks through

2The precise class of allowable adversarial actions will be defined in the formal model.

22 CHAPTER 3. PRISM: CONSENSUS NEAR PHYSICAL LIMITS

Figure 3.2: The DAG approach to increasing the mining rate.

Figure 3.3: Deconstructing the blockchain into transaction blocks, partially ordered proposal blocks
arranged by level, and voter blocks organized in a voter tree. The main chain is selected through
voter blocks, which vote among the proposal blocks at each level to select a leader block. For
example, at level 3, block b is elected the leader over block a.

3.1. INTRODUCTION 23

Figure 3.4: Prism. Throughput, latency and reliability are scaled to the physical limits by increasing
the number of transaction blocks and the number of parallel voting chains per proposal block.

parent link relationships. We explicitly separate these three functionalities by representing the
blocktree in a conceptually equivalent form. In this representation, blocks are divided into three
types: proposer blocks, transaction blocks and voter blocks. The voter blocks vote for transactions
indirectly by voting for proposer blocks, which in turn link to transaction blocks. Proposer blocks
are grouped according to their level in the original blocktree, and each voter blocktree votes among
the proposer blocks at the same level to select a leader block among them. The elected leader blocks
can then bring in the transactions to form the final ledger. The voter blocks are organized in their
own blocktree and support each other through parent links. Thus, the parent links in the original
blocktree have two implicit functionalities which are explicitly separated in this representation: 1)
they provide a partial ordering of the proposal blocks according to their levels, and 2) they help the
voting blocks to vote for each other.

This alternative representation of the traditional blockchain, although seemingly more complex
than the original blockchain representation, provides a natural path for scaling the performance of
blockchain protocols to approach physical limits (Figure 3.4). To increase the transaction throughput,
one can simply increase the number of transaction blocks that a proposer block points to without
compromising the security of the blockchain. This number is limited only by the physical capacity of
the underlying communication network. To provide fast confirmation, one can increase the number
of parallel voting trees, with many voters voting on the proposal blocks in parallel, until reaching the
physical limit of confirming with speed-of-light latency and extremely high reliability. Note that even
though the overall block generation rate has increased tremendously, the number of proposal blocks
per level remains small and manageable, and the voting blocks are organized into many separate
voting chains with low block mining rate per chain and hence little forking. The overall structure,
comprising of the three kinds of blocks and the links between them, is a DAG, but a structured
DAG.

This complexity management presupposes a way to provide sortition in the mining process: when
miners mine for blocks, they should not know in advance whether the block will become a proposal

24 CHAPTER 3. PRISM: CONSENSUS NEAR PHYSICAL LIMITS

block, a transaction block, or a voting block, and if it is a voting block, it should not know in advance
what particular chain the voting block will be in. Otherwise an adversary can focus its hashing
power to attack a particular part of the structure. This sortition can be accomplished by using the
random hash value when a block is successfully mined; this is similar to the 2-for-1 PoW technique
used in [79], which is also used in Fruitchains [137] for the purpose of providing fairness in rewards.
In fact, the principle of decoupling functionalities of the blockchain, central to our approach, has
already been applied in Fruitchains, as well as other works such as BitcoinNG. This line of work will
be discussed in depth in Section 3.2, but its focus is only on decoupling the transactions-carrying
functionality. In our work, we broaden this principle to decouple all functionalities.

In Bitcoin, the irreversibility of a block in the longest chain is achieved by a law of large numbers
effect: the chance that an adversary with less that 50% hashing power can grow a private chain
without the block and longer than the public chain diminishes with the depth of the block in the
public chain. This is the essence of the random walk analysis in Nakamoto’s original paper [130] and
is also implicit in the formal security analysis of Bitcoin in [79] (through the definition of typical
execution). The law of large numbers allows the averaging of the randomness of the mining process,
so that the chance of the adversary getting lucky and mining many blocks in quick succession is small.
This averaging is achieved over time, and comes at the expense of long latency, which increases with
the desired level of reliability.

Prism also exploits the law of large numbers, but over the number of parallel voter trees instead
of over time. Due to the sortition mechanism, the mining processes of both the adversary and the
honest nodes are independent across the voting trees. By having many such trees, many votes
are cast on the proposer blocks at a given level, and the chance of an adversary with less than
50% hashing power being able to reverse many of these votes decreases exponentially with m, the
number of voter trees. The number of voter trees is m, and hence the rate of vote generation, is
limited only by the physical capacity C of the network. Thus, we can attain irreversibility of a large
fraction of the votes with high probability (approaching 1 exponentially fast in the bandwidth-delay
product CD) without waiting for a long time. We show that this irreversibility of votes allows fast
confirmation of a final leader block among a list of proposer blocks at a given level. In particular, it
is guaranteed that the adversary cannot propose another block in the future that has enough votes
to become the final leader block at that level. The ability to do this for all levels up to a given level
generates a list of transaction ledgers, one of which must be a prefix of the eventual totally-ordered
ledger (Figure 3.5). Together with liveness of honest transactions, we show that this “list decoding"
capability is sufficient for fast confirmation of all honest transactions3. If a given block obtains a
substantial enough majority of votes, then the list can be narrowed to contain only that block, which
can then be declared the leader block. In the worst case, when votes are tied between two or more
proposer blocks at the same level (due to active intervention by the adversary, for example), the
irreversibility of all of the votes and a content-dependent tie-breaking rule is needed to come to
global consensus on a unique leader block; this requires higher latency. Hence, Prism requires high
latency in the worst case to guarantee total ordering of all transactions.

The above discussion gives some intuition behind Prism, but a formal analysis is needed to
rigorously establish security, latency and throughput performance guarantees. Such a formal analysis
was done on Bitcoin in [79] in a synchronous round-by-round model and subsequently extended in
[136] to an asynchronous model with an upper bound on block network delay. In particular, [79]
pioneered the backbone protocol analysis framework where it was shown that two key properties,
the common-prefix property and the chain-quality property, of the Bitcoin backbone guarantee

3List decoding is a concept in coding theory. Instead of decoding to a unique codeword, list decoding generates a
list of possible codewords which is guaranteed to contain the true codeword.

3.1. INTRODUCTION 25

Figure 3.5: List ledger confirmation. An example where one can fast-confirm that the final ledger is
one of three possibilities. Honest transactions that appear in all three ledgers can be fast-confirmed.
Double spends cannot appear in all ledgers and are therefore not fast-confirmed, although one of
them will be slow-confirmed.

26 CHAPTER 3. PRISM: CONSENSUS NEAR PHYSICAL LIMITS

persistence and liveness of the ledger maintained by Bitcoin respectively. We leverage this framework
to provide a formal analysis of Prism in the synchronous round-by-round model (we conjecture that
similar results can be established in the more sophisticated asynchronous model of [136]). Technically,
the most challenging part of the analysis is on fast latency confirmation, where we show that: 1) the
common-prefix property of the vote trees guarantees vote persistence, so that a large fraction of the
votes will not be reversed; 2) the chain-quality of the main chains of the vote trees guarantees vote
liveness, so that a large fraction of the vote trees will contain honest votes on the proposer blocks at
each level of the proposal tree.

3.1.5 Outline of paper

In Section 3.2, we discuss other lines of work in relation to our approach. In Section 3.3, we review
the synchronous model used in [79] and introduce our network model that ties the blockchain
parameters to physical parameters of the underlying network. In Section 3.4, we focus on throughput,
and discuss a simplified version of the protocol, Prism 1.0, which achieves full security and optimal
throughput. Since Prism 1.0 lacks voter blocktrees, it has latency equivalent to Bitcoin. In Section
3.5, we add vote trees to the protocol, and perform a formal analysis of its security and fast latency.
The result is a protocol, Prism, which can achieve full security, optimal throughput and near physical
limit latency on ledger list decoding and confirmation of honest transactions. In Section 3.6, we will
discuss the issue of incentivization, as well as applications of our results to Proof-of-Stake and smart
contracts systems.

3.2 Related work

In this section, we discuss and compare our approach to several lines of work.

3.2.1 High-forking protocols

As discussed in the introduction, one approach for increasing throughput and decreasing latency is
the use of more sophisticated fork choice and voting rules to deal with the high-forking nature of
the blocktree. Examples of such high-forking protocols include GHOST [168], Inclusive [112], Spectre
[167], Phantom [166], and Conflux [114]. The earliest of these schemes, GHOST, handles forking
through a fork-choice rule that builds on the heaviest subtree [168]. The authors observed that in
order to improve throughput, we must increase the block mining rate, f . However, as f grows, so
too does the number of blocks mined in parallel, which are wasted under Bitcoin’s longest-chain fork
choice rule, thereby reducing security. GHOST’s heaviest-subtree rule allows the system to benefit
from blocks that were mined in parallel by honest nodes since such blocks are counted in the main
chain calculation. While it was shown in [168] that GHOST is secured against a 50% purely private
attack, it turns out that GHOST is vulnerable to a public-private balancing attack [132], where the
adversary can use minimal effort to split the work of the honest nodes across two subtrees of equal
weight, and then launch a private attack. It turns out that counting side-chain blocks in selecting
the main chain allows the adversary to withhold earlier mined blocks and use them at later times to
balance the growth of the two subtrees. We present an analysis of this attack in the Appendix and
show that this attack restricts the mining rate f of GHOST to be similar to that of Bitcoin, thus
minimizing the advantage of GHOST.

To improve security at high mining rates, another popular idea is to add reference links between
blocks in addition to traditional parent links, resulting in a DAG-structured blockchain. Each block
in a DAG can reference multiple previous blocks instead of a unique ancestor (as in Bitcoin). The

3.2. RELATED WORK 27

pertinent challenges are how to choose the reference links and how to obtain a total ordering of
blocks from the observed DAG in a way that is secure. In a family of protocols, Inclusive, Spectre and
Phantom, every block references all previous orphan blocks. These reference links are interpreted in
differing ways to give these different protocols. For example, in [112], the key observation is that the
reference link structure provides enough information to emulate any main-chain protocol, such as
the longest-chain or GHOST protocol, while in addition providing the ability to pull in stale blocks
into a valid ledger. However, the security guarantee remains the same as that of Bitcoin (namely,
tending to zero as the mining rate grows), and it does not achieve optimal throughput.

Spectre is an innovative scheme that builds upon the the DAG idea to achieve low confirmation
time by interpreting the reference links as votes to compare between pairs of blocks [167]. However,
the fast confirmation is restricted to honest transactions and the system does not guarantee liveness for
double-spends as well as not having the ability to confirm smart contracts that need a totally-ordered
ledger. Since complete ordering is important for core blockchain applications (e.g., cryptocurrencies),
a later work, Phantom, builds on Spectre to achieve consensus on a total ordering of transactions by
having participants topologically sort their local DAGs [166]. The authors suggest that by combining
Spectre and Phantom, one may be able to achieve low confirmation latency for honest transactions
as well as eventual total ordering. However, a recent work [114] demonstrates a liveness attack on
Phantom. Furthermore, the proposed hybrid scheme cannot confirm non-contentious smart contracts
with fast latency. Although Prism uses a DAG to order transactions, it diverges from prior DAG
schemes by separating block proposal from block ordering in the protocol. This helps because an
adversarial party that misbehaves during block proposal does not affect the security of transaction
ordering, and vice versa; it provides a degree of algorithmic sandboxing.

Conflux is another DAG-based protocol whose goal is to increase throughput [114]. However,
Conflux’s reference links are not used to determine where to mine blocks or how to confirm them;
they are only used to include side-chain blocks into the main chain to improve throughput. The
main chain itself is selected by the GHOST rule. Due to the vulnerability of GHOST to the balancing
attack, the secured throughput of Conflux is limited to Bitcoin levels. (See discussions in Section
3.4.6.)

3.2.2 Decoupled consensus

Our design approach is based on the principle of decoupling the various functionalities of the
blockchain. This decoupling principle has already been applied in various earlier works, but mainly
in decoupling the transactions. We review these works here.

BitcoinNG [63] elects a single leader to propose a predetermined number of transaction blocks,
called an epoch. At the end of this epoch, a new leader is elected. Thus, there is a decoupling of
proposal blocks and transaction blocks, the goal being to increase the throughput. BitcoinNG is
vulnerable to various security attacks, such as bribery or DDoS attacks, whereby an adversary can
corrupt a block proposer after learning its identity. In contrast, Prism does not reveal the identity of
a block proposer a priori.

In BitcoinNG, if the leader is malicious, it may try to double spend transaction blocks during its
epoch. Although this event is handled by the BitcoinNG confirmation rule, which only confirms
transactions once they are deep enough in the chain of keyblocks, the confirmation rule incurs a
latency comparable to Bitcoin’s. ByzCoin [104] and its predecessor DiscCoin [57] address this point
by using Byzantine fault-tolerant protocols in an architecture similar to BitcoinNG’s. Like BitcoinNG,
ByzCoin separates time into epochs, where each epoch is associated with a new leader and validation
committee; these are determined by the blockchain. In a given epoch, the leader proposes frequent
transaction blocks, which the committee commits (and signs). In parallel, a separate chain of

28 CHAPTER 3. PRISM: CONSENSUS NEAR PHYSICAL LIMITS

infrequent, PoW keyblocks mark the end of each epoch, and the composition of the next committee.
Transaction blocks contain pointers to both the most recent transaction block and keyblock; all
blocks are collectively signed [171], which prevents forking among transaction blocks. Notably,
ByzCoin transaction blocks are not mined but are put on the chain by the committee leader, and
confirmed by a fixed committee. Hence, the leader and/or committee nodes remain subject to DDoS
or bribery attacks.

The objective of Fruitchains [137] is to provide better chain quality compared to Bitcoin; at a high
level, chain quality refers to the fraction of blocks in the main chain belonging to the adversary. In
Bitcoin, adversaries can augment this fraction relative to their computational power by using strategic
mining and block release policies, such as selfish mining [64, 156, 133]. Fruitchains mechanically
resembles Nakamoto consensus, except miners now mine separate mini-blocks, called fruits, for each
transaction. Fairness is achieved because the fraction of fruits a miner can mine is proportional to
its computational power. As in BitcoinNG , the fruits (transactions) are decoupled from the proposal
blocks in the blocktree, but for a different reason: to improve fairness.

3.2.3 Hybrid blockchain-BFT consensus

Another line of work to improve throughput and latency combines ideas from Byzantine fault tolerant
(BFT) along with blockchains. Hybrid consensus uses a combination of traditional mining under a
longest-chain fork choice rule with Byzantine fault tolerant (BFT) consensus [138]. The basic idea is
that every k blocks, a BFT protocol is run by an elected committee of nodes. Hybrid consensus
is designed to provide responsiveness, which describes systems whose performance depends on the
actual network performance rather than an a priori bound on network delays. The authors show
that no responsive protocol can be secure against more than 1/3 adversarial power, and hybrid
consensus achieves this bound. In this work, our focus is not on being responsive to network delay,
but close to the propagation delay physical limit and small error probability.

A closely-related protocol called Thunderella includes a slow Nakamoto consensus blockchain,
as well as a faster confirmation chain that is coordinated by a leader and verified by a BFT voting
protocol [140]. Thunderella achieves low latency under optimistic conditions, including having a
honest leader and a β < 0.25, while having consistency under worst case condition (β = 0.5). In
contrast, our protocol achieves low latency under all conditions, but for list-decoding and confirmation
of honest transactions.

Along similar lines, ByzCoin separates time into epochs, where each epoch is associated with
a new leader and validation committee; these are determined by the blockchain. Each epoch runs
a BFT-style algorithm where the leader proposes frequent transaction blocks, which are signed by
the committee. In parallel, a separate chain of infrequent, PoW keyblocks mark the end of each
epoch, and the composition of the next committee. Transaction blocks contain pointers to both the
most recent transaction block and keyblock; all blocks are collectively signed [171], which prevents
forking among transaction blocks. Notably, ByzCoin transaction blocks are not mined but are put
on the chain by the committee leader, and confirmed by a fixed committee. Hence, the leader and/or
committee nodes remain subject to DDoS or bribery attacks.

3.3 Model

3.3.1 Mining and communication model

Let N denote the set of participating nodes in the network. Each transaction is a cryptograph-
ically secure payment message. When a transaction arrives at the network, it is assumed to be

3.3. MODEL 29

instantaneously broadcast to all nodes in the network. A block consists of an ordered list of B
transactions and a few reference links to other blocks. Each node n ∈ N controls pn fraction of total
hashing power and it creates blocks from the transactions and mines them with Poisson process rate
fpn blocks per second. There are two types of nodes – honest nodes, H ⊂ N , who strictly follow
the protocol, and the adversarial nodes, N/H, who are allowed to not follow the protocol. The
adversarial nodes control β fraction of hashing power i.e,

∑
v∈N/H pv = β, whereas the honest nodes

control the other 1− β fraction of hashing power4. As a consequence, the honest nodes mine blocks
with Poisson process rate

∑
v∈H fpv = (1− β)f and the adversarial nodes mine blocks with Poisson

process rate
∑

v∈N/H fpv = βf . Without loss of generality we can assume a single adversarial node
with β fraction of hashing power.

The nodes exchange blocks via a broadcast channel. The time taken transmitting a block from
one honest node to another honest node is assumed to be ∆ seconds. On the other hand, the
adversary can transmit and receive blocks with arbitrary delay, up to delay ∆.

To simplify our analysis, we discretize the above continuous-time model into the discrete-time
round-by-round synchronous model proposed in [79]. Each round in this model corresponds to ∆
seconds in the continuous-time model above. In the rth round, let H[r] and Z[r] be the number
of blocks mined by the honest nodes and by the adversarial nodes respectively. The random
variables H[r] and Z[r] are Poisson distributed with means (1− β)f∆ and βf∆ respectively and
are independent of each other and independent across rounds. The H[r] blocks are broadcast to all
the nodes during the round, while the adversary may choose to keep some or all of the Z[r] blocks
in private. The adversary may also choose to broadcast any private block it mined from previous
rounds. The adversary is allowed to first observe H[r] and then take its action for that round. At
the end of each round, all nodes in the network have a common view of the public blocktree.

An important random variable is Y [r], which equals 1 when H[r] = 1 and 0 otherwise. This
is the indicator random variable for whether the rth round is a uniquely successful round, i.e. a
round in which only one block is mined by the honest nodes [79]. Note that Y [r] has a Bernoulli
distribution with parameter (1−β)f∆e−(1−β)f∆. Another important random variable is X[r], which
equals 1 when H[r] ≥ 1. We denote H[r1, r2] :=

∑r2
r=r1+1H[r], similarly for X,Y and Z.

The location of the H[r] honest blocks in the block data structure after the rth round is protocol-
dependent. In Bitcoin, for example, all honest blocks are appended to the longest chain of the public
blocktree from the previous round. Adversarial blocks can instead be mined on any public or private
block from the previous round.

Following the Bitcoin backbone protocol model [79], we consider protocols that execute for a
finite number of rounds, rmax which we call the execution horizon. We note that we do not consider
cryptographic failure events, such as insertion in the blockchain, since it has been demonstrated
already in the backbone protocol paper that for a polynomial number of rounds rmax in the hash-
length, these events have negligible probability.

3.3.2 Network model

To connect to the physical parameters of the network, we assume a very simple network model. The
network delay ∆ is given by:

∆ =
B

C
+D, (3.5)

i.e. there is a processing delay of B/C followed by a propagation delay of D seconds. This is the
same model used in [168], based on empirical data in [56], as well in [149]. However, here, we put an

4β for bad.

30 CHAPTER 3. PRISM: CONSENSUS NEAR PHYSICAL LIMITS

Figure 3.6: Throughput efficiency versus β tradeoff of baseline protocols and Prism 1.0 . The tradeoffs
for the baseline protocols are upper bounds, while that for Prism 1.0 is exact.

additional qualification: this expression is valid only assuming the network is stable, i.e. the total
workload of communicating the blocks is less than the network capacity. In terms of our parameters:

fB < C. (3.6)

For a given block size, (3.6) imposes a physical constraint on the total mining rate f . This stability
constraint sets our model apart from prior work, which has traditionally assumed infinite network
capacity; in particular, this gives us a foothold for quantifying physical limits on throughput and
latency.

Note that the protocols discussed in this manuscript can be used in any network setting. This
simple network model is only used as a common baseline to evaluate how well a particular protocol
performs relative to the physical limits. In particular, the delay model (3.5) ignores queuing delay
due to randomness of the times of the block transmission across the network.

3.4 Approaching physical limits: throughput

In this section, we study the optimal throughput λ achievable under worst-case adversarial behavior
for a given adversarial power β. The main results are summarized in Figure 3.6, which show plots
of λ̄ := λ/C versus β for various protocols. The metric λ̄ is the throughput as a fraction of the
network capacity and is a measure of the efficiency of a protocol. The plot shows upper bounds on
the efficiency of two baseline blockchain protocols, Bitcoin and GHOST (a version of GHOST is used
in Ethereum). Note that the throughput efficiency of both protocols vanishes as β approaches 0.5.
In contrast, we design a protocol, Prism 1.0, which attains a throughput efficiency of 1− β. This
efficiency does not vanish as β approaches 0.5 and is in fact the best possible if only honest nodes
are working. We will see that the difference between Prism 1.0 and the two baseline protocols is that
while the throughput of the two baseline protocols are security-limited for large β, the throughput of
Prism 1.0 is only limited by the physical network capacity for all β < 0.5.

3.4.1 Baselines: Bitcoin and GHOST

We derive upper bounds on the achievable throughput under worst-case adversarial behavior of
two key baselines: Bitcoin and GHOST. Throughput can be altered by tuning two parameters: the

3.4. APPROACHING PHYSICAL LIMITS: THROUGHPUT 31

mining rate f and block size B. We are interested in the maximum achievable throughput efficiency
(λ̄ := λ

C), optimized over B and f . To simplify notation, we suppress the dependence of λ̄ on β.

3.4.1.1 Bitcoin

The security and consensus properties of Bitcoin have been studied by Nakamoto [130], and formally
by [79] in the synchronous model, followed by the analysis of [136] in the asynchronous model. These
works and others (e.g., [168, 102]) show that choice of f and B in Nakamoto consensus has tradeoffs.
As the mining rate f grows, forking increases and the maximum tolerable adversarial fraction β
shrinks, Similarly, as the block size B grows, the network delay ∆ also grows, which causes forking.

An upper bound on the worst case throughput (worst case over all adversary actions) is the rate
at which the longest chain grows when no adversary nodes mine. The longest chain grows by one
block in a round exactly when at least one honest block is mined. Hence the rate of growth is simply
P(H(r) > 0), i.e.

1− e−(1−β)f∆ blocks per round, (3.7)

Notice that (3.7) is monotonically increasing in f ; hence to maximize throughput, we should choose
as high a mining rate as possible.

However, we are simultaneously constrained by security. For Bitcoin’s security, [79] shows that
the main chain must grow faster in expectation than any adversarial chain, which can grow at rates
up to βf∆ in expectation. Hence we have the following (necessary) condition for security:

1− e−(1−β)f∆ > βf∆. (3.8)

Equation (3.8) gives the following upper bound on f∆, the mining rate per round:

f∆ < f̄BTC(β),

where f̄BTC(β) is the unique solution to the equation:

1− e−(1−β)f̄ = βf̄ . (3.9)

This yields an upper bound on the throughput, in transactions per second, achieved by Bitcoin as:

λBTC ≤ [1− e−(1−β)f̄BTC(β)]B/∆

= βf̄BTC(β)B/∆, (3.10)

where the last equality follows from (3.9). Substituting in ∆ = B/C +D and optimizing for B, we
get the following upper bound on the maximum efficiency of Bitcoin :

λ̄BTC ≤ βf̄BTC(β),

achieved when B � CD and ∆� D.
Another upper bound on the throughput is obtained by setting f at the capacity limit: f = C/B

(cf. (3.6)). Substituting into (3.7) and optimizing over B, this yields

λ̄BTC ≤ 1− eβ−1,

achieved when f∆ = 1, B � CD and ∆� D.
Combining the above two bounds, we get:

λ̄BTC ≤ min
{
βf̄BTC(β), 1− eβ−1

}

32 CHAPTER 3. PRISM: CONSENSUS NEAR PHYSICAL LIMITS

This is plotted in Figure 3.6. Note that for large values of β, the first upper bound is tighter; this
is a security-limited regime, in which the throughput efficiency goes to zero as β → 0.5. This is a
manifestation of the (well-known) fact that to get a high degree of security, i.e. to tolerate β close
to 0.5, the mining rate of Bitcoin must be small, resulting in a low throughput. Bitcoin currently
operates in this regime, with the mining rate one block per 10 minutes; assuming a network delay of
1 minute, this corresponds to a tolerable β value of 0.49 in our model.

For smaller β, the second upper bound is tighter, i.e. this is the communication-limited regime.
The crossover point is the value of β such that

1− eβ−1 = β,

i.e., β ≈ 0.43.

3.4.1.2 GHOST
The GHOST [168] protocol uses a different fork choice rule, which uses the heaviest-weight subtree
(where weight is defined as the number of blocks in the subtree), to select the main chain. To analyze
the throughput of GHOST, we first observe that when there are no adversarial nodes working, the
growth rate of the main chain of GHOST is upper bounded by the growth rate of the main chain
under the longest chain rule. Hence, the worst-case throughput of GHOST, worst-case over all
adversary actions, is bounded by that of Bitcoin, i.e.

1− e−(1−β)f∆ blocks per round, (3.11)

(cf. (3.7)). Notice that once again, this bound is monotonically increasing in f and we would like to
set f largest possible subject to security and network stability constraints. The latter constraint
gives the same upper bound as (3.4.1.1) for Bitcoin:

λ̄GHOST ≤ 1− eβ−1. (3.12)

We now consider the security constraint on f . Whereas our security condition for Bitcoin
throughput was determined by a Nakamoto private attack (in which the adversary builds a longer
chain than the honest party), a more severe attack for GHOST is a balancing attack, analyzed in
Appendix A. As shown in that analysis, the balancing attack implies that a necessary condition on
f for robustness against an adversary with power β is given by:

E[|H1[r]−H2[r]|] > βf∆, (3.13)

where H1[r], H2[r] are two independent Poisson random variables each with mean (1 − β)f∆/2.
Repeating the same analysis as we did for Bitcoin, we get the following upper bound on the maximum
efficiency of GHOST:

λ̄GHOST ≤ βf̄GHOST(β), (3.14)

where f̄GHOST(β) is the value of f∆ such that (3.13) is satisfied with equality instead of inequality.
Combining this expression with the network stability upper bound, we get:

λ̄GHOST ≤ min
{
βf̄GHOST(β), 1− eβ−1

}
. (3.15)

The throughput is plotted in Figure 3.6. As in Bitcoin, there are two regimes, communication-limited
for β small, and security-limited for β large. Interestingly, the throughput of GHOST goes to zero as
β approaches 0.5, just like Bitcoin. So although GHOST was invented to improve the throughput-
security tradeoff of Bitcoin, the mining rate f still needs to vanish as β gets close to 0.5. The reason
is that although GHOST is indeed secure against Nakamoto private attacks for any mining rate f
[168], it is not secure against balancing attacks for f above a threshold as a function of β. When β
is close to 0.5, this threshold goes to zero.

3.4. APPROACHING PHYSICAL LIMITS: THROUGHPUT 33

Figure 3.7: Prism 1.0. Decoupling the transaction blocks from the core blocks in the Bitcoin blockchain.

3.4.2 Prism 1.0: throughput-optimal protocol

We propose a protocol, Prism 1.0, that achieves optimal throughput efficiency λ̄ = 1− β, which does
not vanish as β approaches 0.5. We will build on Prism 1.0 in Section 3.5 to obtain our full protocol
Prism.

Forking is the root cause of Bitcoin ’s and GHOST’s inability to achieve optimal throughput. In
designing Prism 1.0, our key insight is that we can create a secure blockchain by running Bitcoin
at low mining rate with little forking, but incorporate additional transaction blocks, created via
sortition, through reference links from the Bitcoin tree (Figure 3.7). This allows us to decouple
the throughput from the mining rate f , and can increase the former without increasing the latter.
In the context of the overall deconstruction approach (Figure 3.4), this decoupling is achieved by
decoupling the transaction blocks from the core blockchain. Let us call the blocks in the core Bitcoin
blockchain core blocks. Later, when we discuss latency, we will further split the functionalities of the
core blocks into proposer and voter blocks to build a more complex consensus protocol, but for now
we will just run Bitcoin as the basic consensus mechanism.

We now describe the structure of Prism 1.0.

1. There are two hash-threshold parameters αc and αt, such that αc ≤ αt. A node mines blocks
using a nonce. If the hash is less than the stringent threshold αc, the block is a core block. If
the hash is less than the relaxed threshold αt but greater than αc, the block is transaction
block. This is a sortition of blocks into two types of blocks, and the adversary does not know
which type of block it is mining until after the block has been mined.

2. The core blocks are used to determine the structure of the main chain. Each core block will
reference several transaction blocks, that are then assumed to be incorporated into the ledger.

34 CHAPTER 3. PRISM: CONSENSUS NEAR PHYSICAL LIMITS

3. A block consists of the following data items.

(a) Public key for reward

(b) Transactions

(c) The hash pointer to the current core block on which it is mining.

(d) Hash pointers (references) to transaction blocks that the miner knows of and that have
not been referenced in the current main chain.

(e) Nonce, which is mined by miners.

If the block is a transaction block, then the hash-pointers to the current core block as well as
the hash-pointers to transaction blocks are not used. If the block is a core block, then the list of
transactions is not utilized. We note that the structure of the block shown in Figure 3.7 allows us
to only package the information necessary for each type of block. The ordered list of transaction
blocks is produced by ordering the transaction blocks in the order in which they are referenced by
the core blocks in the main chain. For example, if the core blocks are c1, .., ck, and R(ci) denotes
the list of referenced transaction blocks by ci, then the ordered list is given by R(c1), .., R(ck). From
the ordered list of blocks, we produce an ordered list of transactions. From this ordered list of
transactions, the ledger is produced by sanitizing this list to ensure that no transaction appears
twice, and for every double spend, only the first spend is kept in the sanitized ledger.

Now that the key components of the protocol have been mentioned, we now explain how the
protocol is run by various nodes.

• Each new transaction is broadcast to all the nodes in the network.

• Each node maintains a queue of outstanding transactions. The input to the queue is observed
transactions. A transaction is cleared from the queue if the node knows of a transaction block
containing the transaction.

• Each node maintains a blocktree of observed core blocks and transaction blocks.

• A node attempts to mine its new block(s) on top of the current longest chain of core blocks in
its local blocktree.

1. The node includes in its block all transactions from its transaction queue that are valid
with respect to the ledger formed from the current longest chain of the core blocktree.

2. The node gives reference links to all transaction blocks not currently referenced by its
core main chain.

• A node that hears of a block determines its validity by checking the hash. Unlike in Bitcoin,
there is no transaction validity check for a block, since the ledger is sanitized later.

In the context of the round-by-round synchronous model, the H[r] honest blocks mined in the rth
round are now split into Hc[r] ∼ Poiss((1−β)fc∆) honest core blocks and Ht[r] ∼ Poiss((1−β)ft∆)
honest transaction blocks, where fc + ft = f . Similarly, the Z[r] adversarial blocks mined in the rth
round are split into Zc[r] ∼ Poiss(βfc∆) adversarial core blocks and Zt[r] ∼ Poiss(βft∆) adversarial
transaction blocks. The parameters fc and ft can be specified by choosing the appropriate value of
the hash threshold αc.

3.4. APPROACHING PHYSICAL LIMITS: THROUGHPUT 35

3.4.3 Analysis

We now analyze the proposed protocol in our network model. It is clear that the security of the
protocol is the same as the security of the Bitcoin core blockchain. By setting fc to be appropriately
small (depending on β), we know that we can keep the core blockchain secure. More specifically,
[79] gives one such sufficient condition, obtained by requiring that the rate of arrival of uniquely
successful rounds exceeds the rate of work of the adversary:

fc∆ <
1

1− β
ln

1− β
β

(3.16)

Under this condition, [79] showed that the longest chain satisfies the common-prefix property as
well as has positive chain quality. Similar to the argument in Conflux [114], the honest blocks in
the longest chain can provide a total ordering of all the blocks, not just the core blocks. Hence, the
throughput is given by the overall mining rate f = fc + ft. By choosing ft such that we are at the
capacity limit, i.e. f = C/B, we can get a total throughput of (1− β)C/B blocks per second, or
(1− β)C transactions per second, assuming a worst case where only honest blocks carry transactions.

This seems to give us the optimal throughput efficiency λ̄ = 1− β. However, there is a catch:
blocks that are mined in the same round may contain the same transactions, since transactions
are broadcast to the entire network. In the worst case, we have to assume that blocks mined at
the same round contain an identical set of transactions. In this case, mining more than one block
per round does not add to the (useful) throughput. Hence, the throughput, in terms of number of
non-redundant blocks, is simply:

P(H[r] > 0) = 1− e−(1−β)f∆ blocks per second.

Comparing to (3.7), we see that this is exactly the longest chain growth rate of Bitcoin. Since Prism
1.0 can operate at f = C/B, we are achieving exactly the communication-limited throughput of
Bitcoin (c.f. (3.12)), i.e.

λ̄ = 1− eβ−1, β ∈ [0, 0.5).

The difference with the throughput-security tradeoff of Bitcoin is that Prism 1.0 is operating at
the communication-limited regime for β all the way up to 0.5; there is no security-limited regime
anymore. This is because we have decoupled transaction blocks from the core blockchain and the
throughput is not security limited. In particular, the throughput does not go to zero as β goes to
0.5. But we are still not achieving the optimal throughput efficiency of λ̄∗ = 1− β.

3.4.4 Transaction scheduling

To achieve optimal throughput, one can minimize the transaction redundancy in the blocks by
scheduling different transactions to different blocks. Concretely, one can split the transactions
randomly into q queues, and each honest block is created from transactions drawn from one randomly
chosen queue. Thinking of each transaction queue as a color, we now have transaction blocks of q
different colors.

We will only have honest blocks with redundant transactions if two or more blocks of the same
color are mined in the same round. The number of honest blocks of the same color mined at the same
round is distributed as Poisson with mean (1− β)f∆/q, and so the throughput of non-redundant
blocks of a given color is

1− e−(1−β)f∆/q blocks per round.

36 CHAPTER 3. PRISM: CONSENSUS NEAR PHYSICAL LIMITS

The total throughput of non-redundant honest blocks of all colors is

q
[
1− e−(1−β)f∆/q

]
blocks per round. (3.17)

For large q, this approaches
(1− β)f∆ blocks per round,

which equals (1− β)C transactions per second when we set f = C/B. Thus, we achieve the optimal
throughput efficiency

λ̄∗ = 1− β.
This performance is shown in the upper plot in Figure 3.6.

Interestingly, this maximum throughput of Prism 1.0 can be achieved whatever the choice of the
block size B. In contrast, the block size B has to be set large compared to the bandwidth-delay
product CD to optimize the throughput in both Bitcoin and GHOST. This extra degree of freedom
in Prism 1.0 has significant implications on the tradeoff between throughput and transaction latency,
which we turn to next.

3.4.5 Throughput-Latency tradeoff

So far we have focused on achieving the maximum throughput of Prism 1.0, without regard to latency.
But transaction latency is another important performance metric. The overall latency experienced
by a transaction in Prism 1.0 is the sum of two components:

1. Processing latency τp: the latency from the time the transaction enters the transaction
queue to the first time a block containing that transaction is mined.

2. Confirmation latency τ : the latency from the time the transaction is first mined to the
time it is confirmed.

We will discuss in great depth the confirmation latency in Section 3.5, but for now let us focus on
the processing latency τp. It turns out that there is a tradeoff between the throughput λ and the
processing latency τp.

We can calculate τp by considering the dynamics of an individual transaction queue. Let us
make the simplifying assumption that transactions enter this queue at a deterministic rate. For a
given total throughput λ and q, the number of transaction queues, the arrival rate into this queue is
λ/q transactions per second. For stability, these transactions must also be cleared at a rate of λ/q.
Thus it takes time qB/λ seconds to clear a block of B transactions from the queue and enters the
blockchain. Hence,

τp =
qB

λ
seconds. (3.18)

On the other hand, from (3.17), we see that the throughput λ, at the capacity limit, is given by

λ = q
[
1− e−(1−β)C∆/(Bq)

] B
∆

transactions per second (3.19)

We see that increasing with the number of transaction queues q increases the throughput but
also increases the processing latency, as the effective arrival rate decreases. Hence tuning q can effect
a tradeoff between throughput and latency. To see the tradeoff explicitly, we can eliminate q from
(3.18) and (3.17) and obtain:

λ̄ =
1− β

τ̄p log

(
1

1− 1
τ̄p

) 1 < τ̄p <∞, (3.20)

3.4. APPROACHING PHYSICAL LIMITS: THROUGHPUT 37

Figure 3.8: Tradeoff between λ̄ and τ̄p for different values of β. Throughput is normalized as a
fraction of the network capacity, and the processing latency is normalized as a multiple of the
speed-of-light propagation delay.

where τ̄p :=
τp
∆ .

We see that as τ̄p goes to infinity, the throughput efficiency λ̄ approaches 1− β, the maximum
throughput derived in previous section. This maximum throughput does not depend on the choice
of the block size B, and this fact is consistent with our previous observation. However, for a given
latency τp, the throughput achieved depends on the network delay ∆, which does depend on the
block size B. By choosing the block size B small such that B � CD, ∆ achieves the minimum
value of the propagation delay D, optimizing the tradeoff. Under this choice of the block size B,
(3.20) becomes a tradeoff between λ̄, the throughput as a fraction of network capacity, and τ̄p, the
processing latency as a multiple of the propagation delay (Figure 3.8). Thus Prism 1.0 is achieving
throughput and processing latency simultaneously near their physical limits. Note that Bitcoin and
GHOST are not only sub-optimal in their maximum throughput, their throughput-latency tradeoff
is also much worse. In particular, to achieve a non-zero throughput efficiency, the block size of
these protocols is much larger than the bandwidth-delay product CD, and as a consequence, the
processing latency of these protocols needs to be much larger than the propagation delay.

The remaining question is whether the confirmation latency can also be made close to the
propagation delay. This is not the case in Prism 1.0 since its confirmation latency is the same as
that of Bitcoin. This latency scales with log 1/ε, where ε is the confirmation error probability; this
security parameter log 1/ε can be many multiples of the network delay. The question is whether we
can improve upon Prism 1.0 to make the confirmation latency of the same order as the processing
latency. This will be addressed in Section 3.5.

3.4.6 Discussions

We discuss the relationships of our protocol with several existing protocols.

1. Conflux[114] separates links into two types: main-chain links and reference links, but all the
blocks go into the same blocktree. As a result, the Conflux’s security is limited by GHOST,
and because Conflux is not done in conjunction with transaction scheduling, its throughput-β
tradeoff is exactly the same as that of GHOST shown in Figure 3.6. In contrast, Prism 1.0 not
only separates links into two types but also separates blocks into two types: core blocks, which

38 CHAPTER 3. PRISM: CONSENSUS NEAR PHYSICAL LIMITS

go into the core blockchain, and transaction blocks, which are referenced by the core blocks.
This separation allows the protocol to have high security and high throughput simultaneously.

2. Prism 1.0 can be viewed as similar to BitcoinNG [63] but avoiding the risk of bribery attacks
since the core block does not control which transactions to put into the ledger. Moreover, the
core blocks incorporate transaction blocks from various nodes, thus increasing decentralization
and fairness, unlike BitcoinNG where the leaders are entitled to propose blocks till a new leader
comes up.

3. Fruitchains [137] was designed as a mechanism to increase reward fairness and Prism 1.0 is
designed for a totally different purpose of maximizing throughput, but the structure of Prism
1.0 has similarity to Fruitchains. The transaction blocks are roughly analogous to fruits, though
there are a few differences. The fruits hang-off an earlier block in Fruitchains for short-term
reward equitability, but we do not need that for throughput optimality. The 2-for-1 mining
protocol [79, 137] used in Fruitchains is somewhat different from our protocol. But more
importantly, as we saw, transaction scheduling is crucial for achieving optimal throughput but
is not present in Fruitchains.

4. Our two-threshold protocol is also similar to the ones used in mining pools [111]. Indeed, in
mining-pools, partial Proof-of-Work using a higher hash threshold is used by participants to
prove that they have been working (since they may be unable to generate full proof-of-work
messages at regular intervals).

5. Our protocol is reminiscent of an approach called subchains [149] or weak blocks [20, 172].
Both methods employ blocks with lower hash threshold (“weak blocks”) along with regular
blocks. However, unlike our protocol, these weak blocks have to form a chain structure. Thus,
if the PoW rate of weak blocks is increased significantly, it will lead to high forking on the
weak blocks, thus leading to lower throughput.

6. We note that a version of transaction scheduling appears in Inclusive [112] for incentive
compatibility. In order to maximize the reward gained, selfish users select a random subset of
transactions to include in the ledger. In our protocol, we show this is required to maximize
transaction throughput, even with altruistic users.

3.5 Near physical limits: latency and throughput

Prism 1.0 scales throughput to the network capacity limit by decoupling transaction blocks from the
core blockchain, so that we can run Bitcoin on the core blockchain for high security and simultaneously
maximize throughput by having many transaction blocks. However, the confirmation latency of
Prism 1.0 is the same as Bitcoin, which is poor. In this section, our goal is to upgrade Prism 1.0 to
design Prism, which has fast latency (on list ledger decoding and on honest transactions) as well as
high throughput. The key idea is to further decouple the core blocks into proposer and voter blocks.

We start by describing the latency of Bitcoin, our baseline, in Section 3.5.1. In Section 3.5.2,
we specify the Prism protocol. There are two parts to the specification: 1) the backbone (in the
spirit of [79]), which specifies how the proposer blocks and voter blocks are organized, 2) how the
transactions are linked from the proposer blocks. In Section 3.5.3, we provide a formal model for
Prism based on a refinement of the model in Section 3.3. In Section 3.5.4, we prove several key
properties of the Prism backbone, analogous to the common-prefix and chain-quality properties of
Bitcoin proved in [79], and use it to show that it can achieve total ordering of all transactions and

3.5. NEAR PHYSICAL LIMITS: LATENCY AND THROUGHPUT 39

has optimal throughput. Finally in 3.5.5, we show that Prism can achieve ledger list confirmation
and honest transaction confirmation with fast latency.

3.5.1 Bitcoin latency

Bitcoin runs the longest chain protocol where each node mines blocks on the longest chain. These
blocks have two roles: proposing to become a leader and voting on its ancestor blocks for them to be
elected leaders. In this protocol, a current main chain block remains in the future main-chain with
probability 1− ε if on the order of log 1/ε successive blocks are mined over it. It can be shown that
at a mining rate of f , it takes on average [25]:

E[τ] =
O(1)

(1− 2β)2f
log

1

ε
seconds

to provide 1− ε reliability to confirm blocks and the transactions in it. Since the expected latency τ
is inversely proportional to the mining rate f , one might believe that increasing the mining rate will
reduce latency. However, in the previous sections we have seen that naively increasing the mining
rate will also increase forking, which reduces security in terms of β. To be more precise, Equation
(3.8) limits the mining rate per round f̄ := f∆ to satisfy:

1− e−(1−β)f̄ > βf̄.

For β close to 0.5, this leads to the following upper bound on f̄ :

f̄ <
1− 2β

(1− β)2
.

Therefore, this imposes a lower bound on the the expected latency of

E[τ] >
O(1)∆(1− β)2

(1− 2β)3
log

1

ε
seconds. (3.21)

Recall that physical limits impose two lower bounds on the latency: (1) the propagation delay D,
and (2) 1/C log 1/ε. The above lower bound on Bitcoin latency is far from these physical limits,
for two reasons. First, the network delay ∆ = B/C + D depends on the block size B as well as
the propagation delay. From the analysis of the throughput of Bitcoin, we know from (3.10) that
to have decent throughput, the block size B should be chosen to be significantly larger than the
bandwidth-delay product CD. But this implies that the network delay ∆ is significantly larger
than the propagation delay. Second, the Bitcoin latency lower bound’s dependency on the security
parameter is much larger than 1/C log 1

ε . This is because the mining rate f of Bitcoin is limited by
security and hence the voting rate is much less than what is allowed by the network capacity.

By decoupling transaction blocks from the blockchain, we learnt from our analysis of Prism
1.0 that we can choose the block size B small to keep the network delay near the speed-of-light
propagation delay while achieving optimal throughput. Prism inherits this property of Prism 1.0,
which overcomes the first reason why Bitcoin’s latency is far from the physical limit. The focus of
the remaining section is the design and analysis of a voting architecture to overcome the second
issue, i.e. to increase the voting rate to the physical capacity limit.

40 CHAPTER 3. PRISM: CONSENSUS NEAR PHYSICAL LIMITS

Figure 3.9: Prism : Separating proposer and voter roles.

3.5.2 Prism

3.5.2.1 Prism: backbone

We begin by describing Prism’s backbone, or blockchain architecture; this architecture specifies how
blocks relate to each other, and which blocks find a place in the final ledger. We describe how
individual blocks are packed with transactions in Section 3.5.2.2. Each block in Bitcoin acts as both
a proposer and a voter, and this couples their proposing and voting functionalities. As a result, the
security requirements of the proposer role upper bounds the mining rate, which in turn upper bounds
the voting rate. In the spirit of deconstructing the blockchain, we decouple these roles as illustrated
in Figure 3.9. The backbone of Prism has two types of blocks: proposer and voter blocks. The role
of the proposer block is to propose an extension to the transaction ledger. The voter blocks elect a
leader block by voting among the proposer blocks at the same level. The sequence of leader blocks on
each level determine the ledger. The voter blocks are mined on many independent blocktrees, each
mined independently at a low mining rate. The voter blocktrees follow the longest chain protocol to
provide security to the leader election procedure which in turn provides security to the transaction
ledger. We now state the Prism backbone protocol from a node’s local view:

• Proposer blocks: Proposer blocks are mined on a proposer blocktree as shown in Figure 3.9,
using the longest-chain rule. The level of a proposer block is defined as the length of its path
from the genesis block. Each proposer block includes a reference link to an existing proposer
block to certify its level.

• Voter blocks: Voter blocks are mined independently on m separate voter trees, as shown in
Figure 3.9. Each of these blocktrees has its own genesis block and nodes mine on the longest
chain. Each voter block votes one or more proposer blocks using reference links.

• Vote Interpretation: Each voter blocktree votes only on one proposer block at each level in the
proposer blocktree. The vote of the voter blocktree is decided by the vote cast by the earliest

3.5. NEAR PHYSICAL LIMITS: LATENCY AND THROUGHPUT 41

Figure 3.10: Prism: Honest users mine a proposer block pnew at a level one deeper than the current
deepest level—in this example, pnew has level 5. The voter block vnew is mined on the longest chain.
It votes (via reference links) to all proposer block on level {3, 4} because its ancestors have votes
only till level 2. Since v1 is not part of the main chain, its vote will not be taken into account for
leader block election.

voter block along its main chain. Thus the proposer blocks on each level has m votes in total.
A voter block voting on multiple proposer blocks at the same level is invalid.

• Voting rule: The ancestor blocks of a voter block are all the blocks on its path to the genesis
block. A voter block has to vote on a proposer block on all the levels which have not been
voted by its ancestors voter blocks.

• Leader blocks: The proposer block that receives the most votes on each level is the) leader
block for that level. The sequence of leader blocks across the levels is called the leader sequence.

• Sortition: A block is mined before knowing whether it will become a proposer block or a voter
block. In case it becomes a voter block, the miner will not know a priori which voter tree it
will be part of. This is enforced by using a sortition scheme, similar to the sortition described
earlier in Prism 1.0 between core and transaction blocks, except now the hash range is divided
into m+ 1 instead of 2 intervals. This division is adjusted to ensure that the proposer tree has
proposer rate fp and each of the m voter trees have block mining rate fv, with a total mining
rate f = fp +mfv. By the security property of the hash function, a miner cannot know which
range it will land in. This ensures that the adversarial power is uniformly distributed across
the different voter trees and hence we assume the adversarial hash power is β in each of the
voter trees as well as the proposer chain.

• Choice of parameters: Our protocol can operate with general settings of the parameters, but for
good performance we set some specific numbers here. We set the block size B = 1 transaction,
which as we discussed earlier is a good choice both for latency and for throughput. Under

42 CHAPTER 3. PRISM: CONSENSUS NEAR PHYSICAL LIMITS

Figure 3.11: Summary of the block structure and the sortition procedure.

the assumption that CD � 1, the network delay ∆ = D, the smallest possible. To minimize
latency, we want to maximize the vote generation rate, i.e. we set f = C, the capacity limit.
The mining rate f̄v := fvD on each voting tree is chosen such that each voting tree is secure
under the longest chain rule and according to (3.16) it should satisfy

f̄v <
1

1− β
log

1− β
β

. (3.22)

We also set the proposer and voter mining rates to be the same, i.e. fp = fv. This is not
necessary but simplifies the notation in the sequel. This implies that

m =
CD

f̄v
− 1

≥ (1− β)

log(1−β
β)
· CD − 1 (3.23)

i.e. the number of voting trees is at least proportional to the bandwidth-delay product CD.
This number is expected to be very large, which is a key advantage of the protocol. The only
degree of freedom left is the choice of f̄v. We will return to this issue in Section 3.5.5 when we
discussed the fast confirmation latency of Prism.

3.5.2.2 Prism: transaction structure
Having presented the Prism backbone protocol, we now proceed to describe how transactions are
embedded into this backbone structure. We also give more details on the content of the blocks. In

3.5. NEAR PHYSICAL LIMITS: LATENCY AND THROUGHPUT 43

Prism, the structure of the block has to be fixed prior to determining whether the block will be a
proposer-block or a voter-block; therefore both blocks will have the same fundamental structure.

Block contents: Any block needs to contain the following data items:

1. Hash of Voter / Proposal Metadata The block includes the hash of voter metadata as well as
the hash of proposal metadata. Once it is known which type of block it becomes, then that
particular metadata is attached to the block.

2. Transactions: Each block contains transactions that are not in the current ledger, and
furthermore are not included in any of the referred blocks. The honest nodes utilize transaction
scheduling given in Section 3.4.4 to choose a random subset of transactions.

3. Nonce: The nonce is a string discovered during PoW mining that seals the block; a valid
nonce ensures that the hash value of the block (concatenated with the nonce) is less than a
predetermined threshold. Our sortition mechanism uses the value of the hash to decide what
type of block it becomes. In particular, we produce a sortition as follows:

• Hash < αp ⇒ Block is a proposer.

• (i− 1)αv + αp < Hash < iαv + αp ⇒ Block belongs to voter blocktree i .

• The proposer PoW rate fp will be proportional to αp, and PoW rate on any voter blocktree
fv is proportional to αv.

Voter Block Metadata: The voter block meta-data needs to contain two items: votes on the
proposal blocks as well as where the parent block on the voter blocktree where it needs to be
attached.

1. Votes: The votes are of the form (`, p`) for ` ∈ {`min, `max} where p` is a hash of a proposer-
block on level `. The honest strategy is to vote on the block on level ` that it heard about the
earliest. Also, for honest nodes `max is the highest level that the node knows of, and `min is
the smallest level for which some blocktree has not yet voted.

2. Parent link: A voter block specifies one parent in each voter blocktree, bi, i = 1, 2, ...,m. Honest
nodes specify bi as the leaf node in the longest chain of blocktree i. For efficiency, instead
of storing all the m potential parents in the block, these potential parents are specified in a
Merkle tree and only the root of the Merkle tree is specified in the block. If a block ultimately
ends up in voter blocktree i, then it provides a proof of membership of bi in the Merkle tree
and is attached to voter block bi.

Proposal Block Metadata: A proposal block needs to contain two metadata items, described as
follows.

1. Certificate of level: A block that wants to be proposed for level ` contains a hash of a block in
level `− 1.

2. Reference links: A proposal block p contains a list of reference links R(p) to other blocks. The
honest strategy is to include a reference link to each proposal and voter block that is a leaf in
the DAG. Here, the directed acyclic graph (DAG) is defined on the set of nodes equal to all
the proposer and voter blocks. The edges include reference links from the proposer blocks to
the voter blocks as well as the links from each voter block to its parent.

44 CHAPTER 3. PRISM: CONSENSUS NEAR PHYSICAL LIMITS

3.5.2.3 Generating the ledger

Given a sequence of proposer-blocks, p1, ..., p`, the ledger is defined as follows (our ledger construction
procedure is similar to the one in Conflux [114]). Each proposer-block pi defines an epoch; that
epoch includes all the blocks referenced from that proposer block pi, as well as all other blocks
reachable from pi but not included in the previous epochs. In each epoch the list of blocks is sorted
topologically (according to the DAG), and ties are broken deterministically based on the content
of the block. The ledger comprises the list of blocks ordered by epoch. Since the transactions in
the reference blocks may have been mined independently, there may be redundant transactions or
double-spends in the ledger of transactions. Any end-user can create a sanitized version of this
ledger by keeping only the first time a given transaction output is spent. We note that this approach
decouples transaction validation from mining, unlike in Bitcoin, where nodes only include valid
transactions with respect to the current ledger.

All blocks
Total Ordering

Leader Blocks + Referenced blocks Ledger

Step 1 Step 2

Propose block

Reference Link

Referenced blocks

Epochs

Figure 3.12: Prism: Generating the ledger. The proposer blocks for a given proposer block sequence
are highlighted in blue, and the referenced blocks are shown in green. Each shade of grey corresponds
to an epoch. In Step 1, all the blocks are incorporated, and in Step 2, they are expanded out to give
a list of transactions.

3.5.3 Prism: model

We provide a formal model of Prism based on a refinement of the round-by-round synchronous model
in Section 3.3.

Let Hi[r] and Zi[r] be the number of voter blocks mined by the honest nodes and by the
adversarial nodes in round r on the i-th voting tree respectively, where i = 1, 2, ..,m. Note that

3.5. NEAR PHYSICAL LIMITS: LATENCY AND THROUGHPUT 45

by the sortition process, Hi[r], Zi[r] are Poisson random variables with means (1 − β)fv∆ and
βfv∆ respectively, and are independent, and independent across trees and across rounds. Similarly,
Hp[r], Zp[r] are the numbers of proposer blocks mined by the honest nodes and by the adversarial
nodes in round r respectively, they are also Poisson, with means (1− β)fp∆ and βfp∆ respectively.
They are independent, and independent of all the other random variables. We will define Xi[r]
(Xp[r]), which is 1 if Hi[r] ≥ 1 (Hp[r] ≥ 1) and zero otherwise. and define Yi[r] (Y p[r]), which is 1
if Hi[r] = 1 (Hp[r] = 1) and zero otherwise. We denote Hi[r1, r2] :=

∑r2
r=r1+1Hi[r], similarly for

Zi, Xi and Yi. The interval [r1, r2] denotes rounds {r1 + 1, r1 + 2, · · · , r2 − 1, r2}.
The adversary decides to release blocks (either kept in private or just mined) in each tree (either

the proposer tree or one of the voter trees) after observing all the blocks mined by the honest nodes
in all trees in that round. It can also decide which proposal block each honest voter votes on (but it
cannot remove the vote or violate protocol, e.g., by changing the proposal block level of the vote.)
The adversary is powerful as it can observe what is happening in all the trees to make a decision on
its action in any individual tree. In particular, this adversarial power means that the evolution of the
trees are correlated even though the mining processes on the different trees are independent because
of the sortition procedure. This fact makes the analysis of Prism more subtle, as we need to prove
some kind of law of large numbers across the voter trees, but can no longer assume independence.

As in our basic model (which follows [79]), all the nodes have a common view of the (public)
trees at the end of each round.

3.5.4 Total transaction ordering at optimal throughput

In this subsection, we show that Prism can achieve total transaction ordering for any β < 0.5.
Following the framework of [79], we do so by first establishing two backbone properties: common-
prefix and quality of a certain leader sequence of proposer blocks, analogous to the longest chain
under Bitcoin.

The blockchain runs for rmax rounds, which we assume to be polynomial in m i.e, rmax = poly(m).
Let P(r) denote the set of proposer blocks mined by round r. Let P`(r) ⊆ P(r) denote the set of
proposer blocks mined on level ` by round r. Let the first proposer block on level ` be mined in
round R`. Let Vp(r) denote the number of votes on proposer block p ∈ P(r) at round r. Recall that
only votes from the main chains of the voting trees are counted. The leader block on level ` at round
r, denoted by p∗` (r), is the proposer block with maximum number of votes in the set P`(r) i.e,

p∗` (r) := argmax
p∈P`(r)

Vp(r),

where tie-breaking is done in a hash-dependent way.
A proposer sequence up to level ` at round r is given by [p1, p2, · · · , p`], where pj ∈ Pj(r).

The leader sequence up to level ` at round r, denoted by LedSeq `(r), is a proposer sequence with
pj = p∗j (r), in other words

LedSeq `(r) := [p∗1(r), p∗2(r), · · · , p∗` (r)]. (3.24)

The leader sequence at the end of round rmax, the end of the horizon, is the final leader sequence,
LedSeq `(rmax).

The leader block p∗` (r) for a fixed level ` can change with round r due to the adversary displacing
some of the votes from their voter chains. However as r increases, changing p∗`(r) is harder as the
votes are embedded deeper in their respective voter chains. The theorem below characterizes this
phenomenon.

46 CHAPTER 3. PRISM: CONSENSUS NEAR PHYSICAL LIMITS

Theorem 1 (Leader sequence common-prefix property). Suppose β < 0.5. For a fixed level `, we
have

LedSeq `(r) = LedSeq `(rmax) ∀r ≥ R` + r(ε) (3.25)

with probability 1 − ε, where r(ε) = 1024
f̄v(1−2β)3 log 8mrmax

ε , and R` is the round in which the first
proposer block on level ` was mined.

Proof. See Appendix in [25].

Theorem 1 is similar in spirit to Theorem 15 of [79], which establishes the common-prefix property
of the longest chain under the Bitcoin backbone protocol. Hence, the leader sequence in Prism plays
the same role as the longest chain in Bitcoin. Note however that the leader sequence, unlike the
longest chain, is not determined by parent-link relationships between the leader blocks. Rather, each
leader block is individually determined by the (many) votes from the voter chains.

The common-prefix property of Bitcoin ’s longest chain guarantees consistency of the ledger
produced by the protocol. Similarly, the common-prefix property of the leader sequence guarantees
consistency of the ledger produced by Prism . Ledger liveness of Bitcoin , on the other hand, is
guaranteed by the chain-quality property. The proposer block mining policy (Section 3.5.2.1) is to
mine each proposer block at the highest level available, with a reference link to a parent block that
certifies the new block’s level. If we define a tree with proposer blocks and these reference links as
the edges, then the users are in fact mining over the longest proposer chain. Therefore, intuitively,
the chain-quality guarantees of Theorem 16 in [79] should hold for the leader sequence, resulting in
the liveness of the Prism ledger. This result is formalized below and proved in [25].

Theorem 2 (Liveness). Assume β < 0.5. Once a transaction enters into a mined block, w.p 1− ε it
will eventually be pointed to by a permanent leader sequence block after a finite expected latency.

Together, Theorem 1 and Theorem 2 guarantee that Prism achieves a consistent and live total
ordering of all transactions, but requiring a confirmation latency of order log m

ε for a confirmation
error probability of ε. Just like the longest chain in the core tree of Prism 1.0, the leader sequence
blocks of Prism orders all the transactions in the transaction blocks they refer to. In conjunction
with transaction scheduling, Prism, just like Prism 1.0, achieves a worst-case optimal throughput of
(1− β)C transactions per second.

While being able to achieve a total ordering of transactions at optimal throughput is an important
property of a consensus protocol, this goal was already accomplished in the simpler Prism 1.0, using
the longest chain protocol on the core tree. The use of a more sophisticated voting structure in
Prism is to meet a more ambitious goal: fast confirmation latency near physical limit. We turn to
this goal in the next subsection.

3.5.5 Fast confirmation of ledger list and honest transactions

3.5.5.1 An example

Let us start with an example to get a feel for why we can confirm with latency much shorter than
Bitcoin latencies.

Suppose CD = 5000, D = 0.2 seconds and f̄v = 0.1 (corresponding to a tolerable β = 0.49), so we
have m ≈ 5000/0.1 = 50, 000 votes at each level and votes are mined at rate 1−e−f̄v = 1−e−0.1 ≈ 0.1
votes per round per voter chain. Two proposer blocks are mined from genesis at round 1 and appear
in public at level 1. At the next round, on average, 0.1 · 50, 000 = 5000 votes are generated to vote
on these two proposer blocks. At the round after that, only the voter chains that have not voted in

3.5. NEAR PHYSICAL LIMITS: LATENCY AND THROUGHPUT 47

the last round can generate new votes, and on the average 0.1 · (50000− 5000) = 4500 votes will be
generated. The total number of chains that have not voted after r rounds is:

m(1− 0.1)r,

decreasing exponentially with r. After 20 rounds, or 4 seconds, about 6000 chains have not voted.
That means at least one of the two proposer blocks has at least (50, 000− 6000)/2 = 22, 000 votes.

At this point:

1. If the adversary later presents a proposer block that it has mined in private at this level, then
it can gather at most 6000 votes and therefore not sufficient to displace both these two public
blocks and become a leader block. Thus, no private attack is possible, and we are ensured that
anytime in the future one of the two proposer blocks already in public will be a leader block.

2. If one of the public proposer blocks has significantly more votes than the other block, by much
more than 6000, then we can already confirm that the current leader block will remain the
leader forever, because there are not enough new votes to change the ordering.

Interestingly, when these events occur, an observer observing the public blockchain knows that it
occurs. Moreover, we know that the first event will definitely occur after r rounds, where r is the
smallest number of rounds such that

m(1− 0.1)r <
m−m(1− 0.1)r

2
,

i.e. r = 12 rounds.
The above analysis gives some evidence that fast confirmation is possible, but the analysis is

simplistic, due to three reasons:

1. 1− e−f̄v is the growth rate of each voter chain if every node follows the protocol. However,
some fraction of the voter blocks on the chains may belong to adversarial nodes who decide
not to vote on any proposer block; in fact, this fraction may be greater than β due to selfish
mining [64, 156, 133]. Thus, the number of outstanding votes calculated above may be on
under-estimation. However, we do know that the longest chain’s quality is non-zero (Theorem
16 of [79]). Hence, the qualitative behavior of the voting dynamics remain the same but the
voting rate has to be reduced to account for adversarial behavior.

2. The above analysis assumes that votes that have already been cast cannot be reversed. That is
not true because the adversary can grow private chains to reverse some of the votes. However,
because the adversary power is limited, the fraction of such votes that can be reversed is also
limited. Moreover, as we wait longer, the fraction of votes that can be reversed in the future
also gets smaller because the votes get embedded deeper in their respective chains. This needs
to be accounted for, but again the qualitative picture from the simplistic analysis remains
unchanged: after waiting for a finite number of rounds, one can be sure that the eternal leader
block will be one of a list of current public proposer blocks.

3. The simplistic analysis assumes the total number of votes that are mined at each round is
deterministic, at the mean value. In reality, the actual number of votes mined at each round is
random, fluctuating around the mean value. However, due to a law of large numbers effect,
which we will formally show, the fluctuations will be very small, since there are large number
of voting chains. This justifies a deterministic view of the dynamics of the voting process.

48 CHAPTER 3. PRISM: CONSENSUS NEAR PHYSICAL LIMITS

Vo

te
s

Private hidden block

𝑝" 𝑝# 𝑝$ 𝑝% 𝑝& 𝑝'()*+,-	

Πℓ(𝑟) : Confirmed proposer list

V1(r)
<latexit sha1_base64="rzQb3Vz44H3z7CPjK0NcmHNHfr4=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCvZREBD0WvXisYD+gDWGzmbRLN5uwu1FK7E/x4kERr/4Sb/4bt20O2vpg4PHeDDPzgpQzpR3n2yqtrW9sbpW3Kzu7e/sHdvWwo5JMUmjThCeyFxAFnAloa6Y59FIJJA44dIPxzczvPoBULBH3epKCF5OhYBGjRBvJt6uDTIQgAyLzztR36/LMt2tOw5kDrxK3IDVUoOXbX4MwoVkMQlNOlOq7Tqq9nEjNKIdpZZApSAkdkyH0DRUkBuXl89On+NQoIY4SaUpoPFd/T+QkVmoSB6YzJnqklr2Z+J/Xz3R05eVMpJkGQReLooxjneBZDjhkEqjmE0MIlczciumISEK1SatiQnCXX14lnfOG6zTcu4ta87qIo4yO0QmqIxddoia6RS3URhQ9omf0it6sJ+vFerc+Fq0lq5g5Qn9gff4AwDWTpQ==</latexit><latexit sha1_base64="rzQb3Vz44H3z7CPjK0NcmHNHfr4=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCvZREBD0WvXisYD+gDWGzmbRLN5uwu1FK7E/x4kERr/4Sb/4bt20O2vpg4PHeDDPzgpQzpR3n2yqtrW9sbpW3Kzu7e/sHdvWwo5JMUmjThCeyFxAFnAloa6Y59FIJJA44dIPxzczvPoBULBH3epKCF5OhYBGjRBvJt6uDTIQgAyLzztR36/LMt2tOw5kDrxK3IDVUoOXbX4MwoVkMQlNOlOq7Tqq9nEjNKIdpZZApSAkdkyH0DRUkBuXl89On+NQoIY4SaUpoPFd/T+QkVmoSB6YzJnqklr2Z+J/Xz3R05eVMpJkGQReLooxjneBZDjhkEqjmE0MIlczciumISEK1SatiQnCXX14lnfOG6zTcu4ta87qIo4yO0QmqIxddoia6RS3URhQ9omf0it6sJ+vFerc+Fq0lq5g5Qn9gff4AwDWTpQ==</latexit><latexit sha1_base64="rzQb3Vz44H3z7CPjK0NcmHNHfr4=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCvZREBD0WvXisYD+gDWGzmbRLN5uwu1FK7E/x4kERr/4Sb/4bt20O2vpg4PHeDDPzgpQzpR3n2yqtrW9sbpW3Kzu7e/sHdvWwo5JMUmjThCeyFxAFnAloa6Y59FIJJA44dIPxzczvPoBULBH3epKCF5OhYBGjRBvJt6uDTIQgAyLzztR36/LMt2tOw5kDrxK3IDVUoOXbX4MwoVkMQlNOlOq7Tqq9nEjNKIdpZZApSAkdkyH0DRUkBuXl89On+NQoIY4SaUpoPFd/T+QkVmoSB6YzJnqklr2Z+J/Xz3R05eVMpJkGQReLooxjneBZDjhkEqjmE0MIlczciumISEK1SatiQnCXX14lnfOG6zTcu4ta87qIo4yO0QmqIxddoia6RS3URhQ9omf0it6sJ+vFerc+Fq0lq5g5Qn9gff4AwDWTpQ==</latexit><latexit sha1_base64="rzQb3Vz44H3z7CPjK0NcmHNHfr4=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCvZREBD0WvXisYD+gDWGzmbRLN5uwu1FK7E/x4kERr/4Sb/4bt20O2vpg4PHeDDPzgpQzpR3n2yqtrW9sbpW3Kzu7e/sHdvWwo5JMUmjThCeyFxAFnAloa6Y59FIJJA44dIPxzczvPoBULBH3epKCF5OhYBGjRBvJt6uDTIQgAyLzztR36/LMt2tOw5kDrxK3IDVUoOXbX4MwoVkMQlNOlOq7Tqq9nEjNKIdpZZApSAkdkyH0DRUkBuXl89On+NQoIY4SaUpoPFd/T+QkVmoSB6YzJnqklr2Z+J/Xz3R05eVMpJkGQReLooxjneBZDjhkEqjmE0MIlczciumISEK1SatiQnCXX14lnfOG6zTcu4ta87qIo4yO0QmqIxddoia6RS3URhQ9omf0it6sJ+vFerc+Fq0lq5g5Qn9gff4AwDWTpQ==</latexit>

Blocks

Vn(r)
<latexit sha1_base64="rrlwtXCtThC1lHl0w3Ar6b2eLxg=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCvZREBD0WvXisYD+gDWGzmbRLN5uwu1FK7E/x4kERr/4Sb/4bt20O2vpg4PHeDDPzgpQzpR3n2yqtrW9sbpW3Kzu7e/sHdvWwo5JMUmjThCeyFxAFnAloa6Y59FIJJA44dIPxzczvPoBULBH3epKCF5OhYBGjRBvJt6uDTIQgAyLzztQXdXnm2zWn4cyBV4lbkBoq0PLtr0GY0CwGoSknSvVdJ9VeTqRmlMO0MsgUpISOyRD6hgoSg/Ly+elTfGqUEEeJNCU0nqu/J3ISKzWJA9MZEz1Sy95M/M/rZzq68nIm0kyDoItFUcaxTvAsBxwyCVTziSGESmZuxXREJKHapFUxIbjLL6+SznnDdRru3UWteV3EUUbH6ATVkYsuURPdohZqI4oe0TN6RW/Wk/VivVsfi9aSVcwcoT+wPn8AHW+T4g==</latexit><latexit sha1_base64="rrlwtXCtThC1lHl0w3Ar6b2eLxg=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCvZREBD0WvXisYD+gDWGzmbRLN5uwu1FK7E/x4kERr/4Sb/4bt20O2vpg4PHeDDPzgpQzpR3n2yqtrW9sbpW3Kzu7e/sHdvWwo5JMUmjThCeyFxAFnAloa6Y59FIJJA44dIPxzczvPoBULBH3epKCF5OhYBGjRBvJt6uDTIQgAyLzztQXdXnm2zWn4cyBV4lbkBoq0PLtr0GY0CwGoSknSvVdJ9VeTqRmlMO0MsgUpISOyRD6hgoSg/Ly+elTfGqUEEeJNCU0nqu/J3ISKzWJA9MZEz1Sy95M/M/rZzq68nIm0kyDoItFUcaxTvAsBxwyCVTziSGESmZuxXREJKHapFUxIbjLL6+SznnDdRru3UWteV3EUUbH6ATVkYsuURPdohZqI4oe0TN6RW/Wk/VivVsfi9aSVcwcoT+wPn8AHW+T4g==</latexit><latexit sha1_base64="rrlwtXCtThC1lHl0w3Ar6b2eLxg=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCvZREBD0WvXisYD+gDWGzmbRLN5uwu1FK7E/x4kERr/4Sb/4bt20O2vpg4PHeDDPzgpQzpR3n2yqtrW9sbpW3Kzu7e/sHdvWwo5JMUmjThCeyFxAFnAloa6Y59FIJJA44dIPxzczvPoBULBH3epKCF5OhYBGjRBvJt6uDTIQgAyLzztQXdXnm2zWn4cyBV4lbkBoq0PLtr0GY0CwGoSknSvVdJ9VeTqRmlMO0MsgUpISOyRD6hgoSg/Ly+elTfGqUEEeJNCU0nqu/J3ISKzWJA9MZEz1Sy95M/M/rZzq68nIm0kyDoItFUcaxTvAsBxwyCVTziSGESmZuxXREJKHapFUxIbjLL6+SznnDdRru3UWteV3EUUbH6ATVkYsuURPdohZqI4oe0TN6RW/Wk/VivVsfi9aSVcwcoT+wPn8AHW+T4g==</latexit><latexit sha1_base64="rrlwtXCtThC1lHl0w3Ar6b2eLxg=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCvZREBD0WvXisYD+gDWGzmbRLN5uwu1FK7E/x4kERr/4Sb/4bt20O2vpg4PHeDDPzgpQzpR3n2yqtrW9sbpW3Kzu7e/sHdvWwo5JMUmjThCeyFxAFnAloa6Y59FIJJA44dIPxzczvPoBULBH3epKCF5OhYBGjRBvJt6uDTIQgAyLzztQXdXnm2zWn4cyBV4lbkBoq0PLtr0GY0CwGoSknSvVdJ9VeTqRmlMO0MsgUpISOyRD6hgoSg/Ly+elTfGqUEEeJNCU0nqu/J3ISKzWJA9MZEz1Sy95M/M/rZzq68nIm0kyDoItFUcaxTvAsBxwyCVTziSGESmZuxXREJKHapFUxIbjLL6+SznnDdRru3UWteV3EUUbH6ATVkYsuURPdohZqI4oe0TN6RW/Wk/VivVsfi9aSVcwcoT+wPn8AHW+T4g==</latexit>

V n(r)
<latexit sha1_base64="jcW7HNCfgt7Mb9uMvrhVpfS8OT0=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBahbkoigi6LblxWsA9oQ5hMJ+3QySTMTJQS+yluXCji1i9x5984abPQ1gMDh3Pu4d45QcKZ0o7zbZXW1jc2t8rblZ3dvf0Du3rYUXEqCW2TmMeyF2BFORO0rZnmtJdIiqOA024wucn97gOVisXiXk8T6kV4JFjICNZG8u3qIDZ2ns46M1/U5Zlv15yGMwdaJW5BalCg5dtfg2FM0ogKTThWqu86ifYyLDUjnM4qg1TRBJMJHtG+oQJHVHnZ/PQZOjXKEIWxNE9oNFd/JzIcKTWNAjMZYT1Wy14u/uf1Ux1eeRkTSaqpIItFYcqRjlHeAxoySYnmU0MwkczcisgYS0y0aatiSnCXv7xKOucN12m4dxe15nVRRxmO4QTq4MIlNOEWWtAGAo/wDK/wZj1ZL9a79bEYLVlF5gj+wPr8ATgDk/M=</latexit><latexit sha1_base64="jcW7HNCfgt7Mb9uMvrhVpfS8OT0=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBahbkoigi6LblxWsA9oQ5hMJ+3QySTMTJQS+yluXCji1i9x5984abPQ1gMDh3Pu4d45QcKZ0o7zbZXW1jc2t8rblZ3dvf0Du3rYUXEqCW2TmMeyF2BFORO0rZnmtJdIiqOA024wucn97gOVisXiXk8T6kV4JFjICNZG8u3qIDZ2ns46M1/U5Zlv15yGMwdaJW5BalCg5dtfg2FM0ogKTThWqu86ifYyLDUjnM4qg1TRBJMJHtG+oQJHVHnZ/PQZOjXKEIWxNE9oNFd/JzIcKTWNAjMZYT1Wy14u/uf1Ux1eeRkTSaqpIItFYcqRjlHeAxoySYnmU0MwkczcisgYS0y0aatiSnCXv7xKOucN12m4dxe15nVRRxmO4QTq4MIlNOEWWtAGAo/wDK/wZj1ZL9a79bEYLVlF5gj+wPr8ATgDk/M=</latexit><latexit sha1_base64="jcW7HNCfgt7Mb9uMvrhVpfS8OT0=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBahbkoigi6LblxWsA9oQ5hMJ+3QySTMTJQS+yluXCji1i9x5984abPQ1gMDh3Pu4d45QcKZ0o7zbZXW1jc2t8rblZ3dvf0Du3rYUXEqCW2TmMeyF2BFORO0rZnmtJdIiqOA024wucn97gOVisXiXk8T6kV4JFjICNZG8u3qIDZ2ns46M1/U5Zlv15yGMwdaJW5BalCg5dtfg2FM0ogKTThWqu86ifYyLDUjnM4qg1TRBJMJHtG+oQJHVHnZ/PQZOjXKEIWxNE9oNFd/JzIcKTWNAjMZYT1Wy14u/uf1Ux1eeRkTSaqpIItFYcqRjlHeAxoySYnmU0MwkczcisgYS0y0aatiSnCXv7xKOucN12m4dxe15nVRRxmO4QTq4MIlNOEWWtAGAo/wDK/wZj1ZL9a79bEYLVlF5gj+wPr8ATgDk/M=</latexit><latexit sha1_base64="jcW7HNCfgt7Mb9uMvrhVpfS8OT0=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBahbkoigi6LblxWsA9oQ5hMJ+3QySTMTJQS+yluXCji1i9x5984abPQ1gMDh3Pu4d45QcKZ0o7zbZXW1jc2t8rblZ3dvf0Du3rYUXEqCW2TmMeyF2BFORO0rZnmtJdIiqOA024wucn97gOVisXiXk8T6kV4JFjICNZG8u3qIDZ2ns46M1/U5Zlv15yGMwdaJW5BalCg5dtfg2FM0ogKTThWqu86ifYyLDUjnM4qg1TRBJMJHtG+oQJHVHnZ/PQZOjXKEIWxNE9oNFd/JzIcKTWNAjMZYT1Wy14u/uf1Ux1eeRkTSaqpIItFYcqRjlHeAxoySYnmU0MwkczcisgYS0y0aatiSnCXv7xKOucN12m4dxe15nVRRxmO4QTq4MIlNOEWWtAGAo/wDK/wZj1ZL9a79bEYLVlF5gj+wPr8ATgDk/M=</latexit>

Vn(r)
<latexit sha1_base64="1hywYbywf7YqCOBqaw0OL58rnsM=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWsB/QhrLZbtqlm03cnQgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqAScJ9yM6VCIUjKKVOllr2ldVfd4vV9yaOwdZJV5OKpCj0S9/9QYxSyOukElqTNdzE/QzqlEwyaelXmp4QtmYDnnXUkUjbvxsfu+UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGbPk4HQnKGcWEKZFvZWwkZUU4Y2opINwVt+eZW0LmqeW/PuLyv1mzyOIpzAKVTBgyuowx00oAkMJDzDK7w5j86L8+58LFoLTj5zDH/gfP4AltyPqA==</latexit><latexit sha1_base64="1hywYbywf7YqCOBqaw0OL58rnsM=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWsB/QhrLZbtqlm03cnQgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqAScJ9yM6VCIUjKKVOllr2ldVfd4vV9yaOwdZJV5OKpCj0S9/9QYxSyOukElqTNdzE/QzqlEwyaelXmp4QtmYDnnXUkUjbvxsfu+UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGbPk4HQnKGcWEKZFvZWwkZUU4Y2opINwVt+eZW0LmqeW/PuLyv1mzyOIpzAKVTBgyuowx00oAkMJDzDK7w5j86L8+58LFoLTj5zDH/gfP4AltyPqA==</latexit><latexit sha1_base64="1hywYbywf7YqCOBqaw0OL58rnsM=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWsB/QhrLZbtqlm03cnQgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqAScJ9yM6VCIUjKKVOllr2ldVfd4vV9yaOwdZJV5OKpCj0S9/9QYxSyOukElqTNdzE/QzqlEwyaelXmp4QtmYDnnXUkUjbvxsfu+UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGbPk4HQnKGcWEKZFvZWwkZUU4Y2opINwVt+eZW0LmqeW/PuLyv1mzyOIpzAKVTBgyuowx00oAkMJDzDK7w5j86L8+58LFoLTj5zDH/gfP4AltyPqA==</latexit><latexit sha1_base64="1hywYbywf7YqCOBqaw0OL58rnsM=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBahXkoigh6LXjxWsB/QhrLZbtqlm03cnQgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqAScJ9yM6VCIUjKKVOllr2ldVfd4vV9yaOwdZJV5OKpCj0S9/9QYxSyOukElqTNdzE/QzqlEwyaelXmp4QtmYDnnXUkUjbvxsfu+UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGbPk4HQnKGcWEKZFvZWwkZUU4Y2opINwVt+eZW0LmqeW/PuLyv1mzyOIpzAKVTBgyuowx00oAkMJDzDK7w5j86L8+58LFoLTj5zDH/gfP4AltyPqA==</latexit>

Figure 3.13: In the above example, public proposer block p1 has the largest lower confidence bound,
which is larger than the upper confidence bound of the private block. So list confirmation is possible
and the list confirmed is Π`(r) = {p1, p2, p3}.

3.5.5.2 Fast list confirmation

We convert the intuition from the above example to a formal rule for fast confirming a list of proposer
blocks, which then allows the confirmation of a list of proposer sequences. The idea is to have
confidence intervals around the number of votes cast on each proposer block. Figure 3.13 gives an
example where there are 5 proposal blocks in public at a given level, and we are currently at round
r. The confidence interval [Vn(r), V n(r)] for the votes on proposer block pn bounds the maximum
number of votes the block can lose or gain from votes not yet cast and from the adversary reversing
the votes already cast. In the running there is also potentially a private hidden block, with an upper
bound on the maximum number of votes it can accumulate in the future. We can fast confirm a
list of proposal blocks whenever the upper confidence bound of the private block is below the lower
confidence bound of the public proposal block with the largest lower confidence bound.

More formally: Let P`(r) = {p1, p2...} be the set of proposer blocks at level ` at round r. Let
U(r) be the number of voter blocktrees which have not voted for any proposer block in P`(r). Let
V d
n (r) be the number of votes at depth d or greater for proposer block pn at round r. Let V d

−n(r)
be the the number of votes at depth d or greater for a proposer blocks in the subset P`(r)− {pn}.
Define:

δd := max

(
1

4f̄vd
,

1− 2β

8 logm

)

3.5. NEAR PHYSICAL LIMITS: LATENCY AND THROUGHPUT 49

Figure 3.14: A possible scenario by the final round.

and

Vn(r) := max
d≥0

(
V d
n (r)− 2δdm

)
+
,

V n(r) := Vn(r) +

(
V−n(r)−max

d≥0

(
V d
−n(r)− 2δdm

)
+

)
+ U(r),

Vprivate(r) := 0,

V private(r) := m−
∑

pn∈P`(r)

Vn(r).

Proposer list confirmation policy: If

max
n

Vn(r) > V private(r),

then we confirm the list of proposer blocks Π`(r), where

Π`(r) := {pn : V n(r) > max
i

Vi(r)}.

The following theorem shows that one can confirm proposer lists up to level ` with an expected
latency independent of ε; moreover the final leader sequence is contained in the product of the
confirmed lists.

Theorem 3 (List common-prefix property). Suppose β < 0.5. Suppose the first proposer block

at level ` appears at round R`. Then w.p. 1 − r2
maxe

− (1−2β)m
16 logm , we can confirm proposer lists

Π1(r),Π2(r), . . . ,Π`(r) for all rounds r ≥ R` +Rconf
` , where

E[Rconf
`] ≤ 2808

(1− 2β)3f̄v
log

50

(1− 2β)
+

256

(1− 2β)6f̄vm2
. (3.26)

50 CHAPTER 3. PRISM: CONSENSUS NEAR PHYSICAL LIMITS

Moreover, w.p. 1− r2
maxe

− (1−2β)m
16 logm ,

p∗`′(rmax) ∈ Π`′(r) ∀`′ ≤ ` and r ≥ R` +Rconf
` .

Proof. See Appendix of [25].

Let us express the latency bound (3.26) in terms of physical parameters. If we set the voting
rate f̄v equal to the largest possible given the security constraint (3.22):

f̄v =
1

1− β
log

1− β
β

,

then according to (3.23), we have

m =
(1− β)

log(1−β
β)
· CD − 1.

With this choice of parameters, and in the regime where the bandwidth-delay product CD is large
so that the second term in (3.26) can be neglected, the expected latency for list confirmation is
bounded by

c1(β)D seconds,

i.e. proportional to the propagation delay. Here,

c1(β) :=
2808(1− β)

(1− 2β)3 log 1−β
β

log
50

(1− 2β)

and is positive for β < 0.5. The confirmation error probability is exponentially small in CD. This is
the constant part of the latency versus security parameter tradeoff of Prism in Figure 3.1.

Since CD is very large in typical networks, a confirmation error probability exponentially small
in CD is already very small. To achieve an even smaller error probability ε we can reduce the voting
rate f̄v smaller below the security constraint (3.22) and increase the number of voting chains. More
specifically, we set

f̄v =
CD

log 1
ε

, (3.27)

resulting in

m = log
1

ε
− 1 ≈ log

1

ε

yielding the desired security parameter. Indeed, the above equation for f̄v is valid only if the security

condition for f̄v is satisfied, i.e., when ε < e
−CD(1−β)

log
1−β
β .

Again neglecting the second term in (3.26), the corresponding latency bound is

c2(β)

C
log

1

ε
seconds,

where
c2(β) :=

2808

(1− 2β)3
log

50

(1− 2β)
.

This is the linearly increasing part of the tradeoff curve for Prism in Figure 3.1, with slope inversely
proportional to the network capacity C.

Some comments:

3.5. NEAR PHYSICAL LIMITS: LATENCY AND THROUGHPUT 51

Processing Latency
Confirmation Latency 1

Confirmation Latency 2

Round 𝑟: 𝑡𝑥 is part of
a transaction block

Proposer block referring
𝑡𝑥 is mined at a level ℓ

Leader block list at
level ℓ is confirmed

All leader block lists up
to level ℓ are confirmed

Transaction 𝑡𝑥
is broadcast

Figure 3.15: Components of the latency: a) Processing latency is addressed in Section 3.4.5, b)
Confirmation latency 1 is analyzed in Theorem 4, and c) Confirmation latency 2 is analyzed in
Theorem 3.

• We have shown that latency and confirmation reliability can be traded off by choosing different
values of f̄v and m. But these are protocol parameters. We believe that one can achieve a
similar tradeoff by changing the confirmation rule while fixing these protocol parameters. This
would allow the recipient of a transaction to choose the level of security guarantee that they
require and wait accordingly. A detailed analysis of this adaptive confirmation rule is left for
future work.

• While the latency bounds exhibit the correct qualitative behavior, the constants involved are
rather large. This is due to two reasons. First, our proofs are optimized for clarity rather
than yielding the best constants. In particular, we structure the proofs to mirror as close as
possible the backbone protocol framework of [79]. Second, in our analysis, we give full power
to the adversary in choosing which proposer blocks the honest voter blocks vote on. Thus the
bounds need to account for the worst case, where the number of votes on the proposer blocks
are very close. With a less crude model, one can improve the bounds considerably. We expect
the actual latency to be much smaller than our bounds, but this conjecture is best validated
by experiments rather than more theory.

3.5.5.3 Fast confirmation of honest transactions

In the previous subsection we have shown that one can fast confirm a list of proposer block sequences
which is guaranteed to contain the prefix of the final totally ordered leader sequence. As discussed in
Section 3.5.2.3, each of these proposer block sequence creates an ordered ledger of transactions using
the reference links to the transaction blocks. In each of these ledgers, double-spends are removed
to sanitize the ledger. If a transaction appears in all of the sanitized ledgers in the list, then the
transaction is guaranteed to be in the final total ordered sanitized ledger, and the transaction can be
fast confirmed. (See Figure 3.5.) All honest transactions without double-spends eventually have
this list-liveness property; When only a single honest proposer block appears in a level and becomes
the leader, it will add any honest transactions that have not already appeared in at least one of the
ledgers in the list. Due to the positive chain-quality of the leader sequence (Theorem 2, this event of
“uniquely honest" level eventually occurs. The latency of confirming honest transactions is therefore
bounded by the sum of the latency of list confirmation in Theorem 3 plus the latency of waiting for
this event to occur(Figure 3.15. The latter is given by the following theorem.

52 CHAPTER 3. PRISM: CONSENSUS NEAR PHYSICAL LIMITS

Theorem 4 (List-liveness). Assume β < 0.5. If a honest transaction without double spends is mined
in a transaction block in round r, then w.p. 1 − r2

maxe
− m

16 logm it will appear in all of the ledgers
corresponding to proposer block sequences after an expected latency no more than

2592

(1− 2β)3f̄v
log

50

(1− 2β)
rounds.

The proof is available in Appendix of [25].

Figure 3.15 shows the various components of the overall latency we analyzed. We can see that the
confirmation latency from the time an honest transaction enters a blocks to the time it is confirmed
is bounded by the sum of the latencies in Theorem 3 and 4. Repeating the analysis in the previous
subsection, we see that this latency is bounded by:

max{a1(β)D,
a2(β)

C
log

1

ε
} seconds,

where

a1(β) :=
5400(1− β)

(1− 2β)3 log 1−β
β

log
50

(1− 2β)
(3.28)

a2(β) :=
5400

(1− 2β)3
log

50

(1− 2β)
. (3.29)

3.6 Discussions

3.6.1 Prism: incentives

Our discussion on Prism has mostly focussed on honest users and adversarial behavior. Here we briefly
discuss rational behavior, and the accompanying reward structure that incentivizes rational users to
participate in the system without deviating from the proposed protocol. There are straightforward
approaches to add a reward structure to Prism. Each block, whether a voter block or a proposal
block, that finds its place in the ledger is assigned a block reward. To allocate transaction fees, we
follow the method proposed in Fruitchains [137]. The transaction fees are distributed among the
past Q blocks, where Q is a design parameter. In Prism, all blocks eventually find a place in the
ledger, and thus the proportion of blocks contributed by a miner to the ledger is proportional to the
hash rate of the miner. For large values of Q, our design ensures that incentives are fairly distributed
and there is no gain in pursuing selfish-mining type attacks [156].

3.6.2 Prism: smart contracts

Most of our discussion on Prism has focused on transactions. However, we point out here that
Prism is not restricted to processing transactions and can be extended to process complex smart
contracts. Smart contracts are pieces of code which are executed based on the current state of the
ledger. Importantly, they can depend on the history of the ledger, including on the timing of various
events recorded on the ledger. While many of the basic blockchain protocols such as longest-chain
consensus or GHOST protocol can accommodate smart contracts, newer schemes such as Spectre
and Avalanche are specific to transactions and do not confirm smart contracts. We note that Prism
is naturally able to confirm the output and final-state of every smart contract at the ε-dependent
latency since we get total order. We also note that this is the behavior desired in hybrid algorithms
like Phantom+ Spectre .

3.7. ACKNOWLEDGEMENT 53

We note that Prism has an additional attractive property for smart contracts - the ability to
confirm several smart contracts at a short latency (proportional to propagation delay). Since Prism
is able to confirm a list of ledgers within a short latency, this can be exploited to confirm some
smart contracts. If a smart contract will execute to the same final state and output in all the ledgers
in this list, then this output and final state can be confirmed for the smart contract even before
confirming a unique ledger. We recall that Prism guarantees short confirmation time for honest
transactions. Analogous to the notion of honest transactions, we can define a notion of uncontested
smart contracts, where there is no alternate view of how the events happened in any of the blocks.
Such uncontested smart contracts can then be shown to be confirmed within a short ε-independent
latency proportional to the propagation delay - thus enhancing the scope and utility of Prism beyond
payment systems.

3.6.3 Prism: Proof-of-Stake

In this paper we have described Prism in the proof-of-work (PoW) setting that scales the throughput
by three orders of magnitude over Bitcoin . Despite this significant increase, PoW is nevertheless
energy inefficient (Bitcoin consumes as much energy as medium sized countries [55]) and a leading
alternative is the so-called proof-of-stake (PoS) paradigm. PoS restricts involvement in the consensus
protocol to nodes that deposit a requisite amount of stake, or currency, into the system. This stake
is used as a security deposit in case the nodes misbehave – for instance, by trying to unduly influence
the outcome of consensus. PoS is appealing for several reasons, including the fact that it can be
much more energy-efficient than PoW and also because it can be more incentive-compatible.

There are two key issues associated with designing a PoS version of Prism. First, a cryptographi-
cally secure source of randomness, that is distributed and verifiable, is needed to replace the source of
randomness currently used in Prism – this includes the various mining steps, transaction scheduling
and sortition operations. Second, PoS does not have the conservation of work that is implicit in PoW
and this allows adversaries to “mine" at no cost in parallel and only report the outcomes that can be
successfully verified – this exposes new security vulnerabilities (popularly known as the “grinding" [3]
and “nothing at stake" attacks [116, 101]) and a PoS design of Prism will have to contend with this
attack. Both these obstacles can be successfully surmounted and will be the topic of a forthcoming
paper [23].

3.7 Acknowledgement

We thank Mohammad Alizadeh and Andrew Miller for their comments on an early draft. The
chapter includes material in [25].

54 CHAPTER 3. PRISM: CONSENSUS NEAR PHYSICAL LIMITS

Chapter 4

Barracuda: Consensus-Aware P2P
Networking

Giulia Fanti, CMU
Jiantao Jiao, UC Berkeley
Sewoong Oh, UW Seattle
Pramod Viswanath, UIUC

The previous chapter presented Prism, a consensus protocol that achieves latency and throughput
approaching the physical limits of a given network. The network’s properties could be determined
by many factors, ranging from hardware to relaying algorithms, but the properties were ultimately
treated as static. This view of peer-to-peer (P2P) networks is very common in the blockchain
community: the network is treated as a static interface over which consensus protocols can be built.
To some extent, this is a good approximation; it is difficult and expensive to change the network’s
hardware, for example. However, other aspects of the network are more flexible, like the network
topology and the relaying algorithms. In this chapter, we discuss a method for improving the
throughput of a given consensus algorithms by co-designing the corresponding networking protocols.
To understand these innovations, we start by summarizing some of the modeling decisions from
Chapter 3.

In designing Prism, we made several implicit assumptions about the behavior of the underlying
P2P network. In particular, we assumed a model of network block propagation that is based on
a very common push-based design for P2P networks. In push-based relay networks, blocks are
communicated to the rest of the network (roughly) as follows: each peer with a given block attempts
to push the block to its connected peers. If a target recipient has not seen the block yet, it downloads
the block, checks that the block is valid, and starts the relay process anew with its own peers. Our
communication models in Chapter 3 are implicitly based on such a push-based relay network, whose
delay characteristics were measured by Decker and Wattenhofer in [58]. This assumption manifests
itself in two parameters from Chapter 3: the network delay D and the network capacity C. Since our
fundamental upper bound on throughput is precisely (1− β)C transactions/second for adversarial
fraction β, increasing C can enable higher throughput.

In practice, there is no fundamental reason to use a push-based P2P network. Indeed, it is well-
known in the distributed systems literature that push-based protocols are suboptimal for spreading
information in a network [96]. In this chapter, we show how to boost the performance of a given
consensus mechanism on a given network by simply changing the relay mechanism. We introduce a
protocol called Barracuda, which combines the usual push-based relay mechanism with a lightweight

55

56 CHAPTER 4. BARRACUDA: CONSENSUS-AWARE P2P NETWORKING

polling primitive, in which select nodes selectively poll their neighbors to learn of new blocks [67]. We
show that for a broad class of consensus mechanisms, this simple modification leads to substantial
improvements in throughput; the final effect is to artificially boost the speed of the network. Notice
that while Chapter 3 proposed an entirely new consensus protocol, this chapter asks how to improve
the performance of a given consensus protocol using techniques at a lower layer—the network layer.
For example, Barracuda can be combined with Bitcoin’s Nakamoto consensus just as it can be
combined with Prism. To explain the problem more precisely, we start with a brief description
of blockchain functionality; to make the chapter self-contained, this description will contain some
material that was discussed in Chapter 3.

4.0.1 Primer

The core problem in blockchain systems is determining (and agreeing on) the next block in the data
structure. Many leading cryptocurrencies (e.g., Bitcoin, Ethereum, Cardano, EOS, Monero) handle
this problem by electing a proposer who is responsible for producing a new block and sharing it with
the network. This proposer election happens via a distributed, randomized protocol chosen by the
system designers. For example, in Bitcoin, mining is the proposer election protocol.

In proof-of-stake (PoS) systems, a proposer is elected with probability proportional to their stake
in the system. This election process typically happens at fixed time intervals (e.g., every 10 seconds).
When a node is elected proposer, its job is to propose a new block, which contains a hash of the
previous block’s contents. Hence the proposer must choose where in the blockchain to append her
new block. Most blockchains use a longest chain fork choice rule, under which the proposer always
appends her new block to the end of the longest chain of blocks in the proposer’s local view of the
blocktree. If there is no network latency and no adversarial behavior, this rule ensures that the
blockchain will always be a perfect chain. However, in a network with random delays, it is possible
that the proposer may not have received all blocks when she is elected. As such, she might propose a
block that causes the blockchain to fork (e.g. Figure 4.2). In longest-chain blockchains, this forking
is eventually resolved with probability 1 because one fork eventually overtakes the other.

Forking occurs in almost all major blockchains, and it implies that blockchains are often not chains
at all, but blocktrees. For many consensus protocols (particularly chain-based ones like Bitcoin’s),
forking reduces throughput, because blocks that are not on the main chain are discarded. It also
has security implications; even protocols that achieve good block throughput in the high-forking
regime have thus far been prone to security vulnerabilities (which has been resolved in a recent work
[24], which also guarantees low latency). Nonetheless, forking is a significant obstacle to practical
performance in existing blockchains. There are two common approaches to mitigate forking. One
is to improve the network itself, e.g. by upgrading hardware and routing. This idea has been the
basis for recent projects like the Falcon network [4] and Bloxroute [102]. The other is to design
consensus algorithms that tolerate network latency by making use of forked branches. Examples
include GHOST [168], SPECTRE [167], and Inclusive/Conflux [112, 114]. In this paper, we design a
P2P protocol called Barracuda that effectively reduces forking for a wide class of existing consensus
algorithms.

4.0.2 Contributions

Our contributions in this work are threefold.

1. We propose a probabilistic model for the evolution of a blockchain in proof-of-stake cryptocur-
rencies, where the main source of randomness comes from the network delay. This captures
the network delays measured in real world P2P cryptocurrency networks [59]. This model has

4.1. RELATED WORK 57

two main differences with the model in Chapter 3. First, it is random, whereas the model in
Chapter 3 was worst-case. Second, it models the delay of each block to each individual recipient,
whereas the model from Chapter 3 models the worst-case delay to all recipients. Simulations
under our new model explain the gap observed in real-world cryptocurrencies between the
achievable block throughput and the best block throughput possible in an infinite-capacity
network. Our model differs from that of prior theoretical papers, which typically assume a
worst-case network model that allows significant simplification in the analysis [79, 168]. We
analyze the effect of average network delay on system throughput and provide a lower bound
on the block throughput.

2. To mitigate the effect of forking from network delays, we propose a new block proposal
algorithm called Barracuda, under which nodes poll ` randomly-selected nodes for their local
blocktree information before proposing a new block. We show that for small values of `,
Barracuda has approximately the same effect as if the entire network were a factor of ` faster.
Notably, this benefit emerges without actually changing any inherent network properties, like
bandwidth or hardware. The analysis also has connections to load balancing in balls-and-bins
problems, which is of independent interest.

3. We provide guidelines on how to implement Barracuda in practice in order to provide robustness
against several real-world factors, such as network model mismatch and adversarial behavior.

Outline. We begin by describing a stochastic model for blocktree evolution in Section 4.2; we
analyze the block throughput of this model in Section 4.3. Next, we present Barracuda and analyze
its block throughput in Section 4.4. We describe real-world implementation issues in Section 4.5,
such as how to implement polling and analyzing adversarial robustness. Finally, we discuss how to
integrate Barracuda with Prism in Section 4.6.

4.1 Related Work

This section will discuss related approaches for reducing forking. It overlaps substantially with
the related work of Chapter 3 (Section 3.2), but is included here for completeness. There are
three main approaches in the literature for reducing forking. The first is to reduce the diversity of
proposers. The second is to embrace forking, and use the forks to enhance throughput. The third is
to algorithmically resolve forking before moving to the next block.

(1) Reducing proposer diversity. Forking is caused by the delay associated with the most
recently-proposed block reaching the next proposer(s). A natural circumvention is to make the
proposer(s) of consecutive blocks one and the same. This approach is proposed by Bitcoin-NG
[63]: proposers use the longest-chain fork choice rule, but within a given time epoch, only a single
proposer can propose blocks. This allows the proposer to quickly produce blocks without worrying
about network delay or forking. Although Bitcoin-NG has high throughput, it exhibits a few
problems. First, whenever a single node is in charge of block proposal for an extended period of
time, attackers may be able to learn that node’s IP address and take it down. Second, it suffers
from high confirmation delay. To confirm a transaction in a longest-chain protocol, we require a
threshold number of independently-selected proposers to append blocks to the chain containing
that transaction. Since Bitcoin-NG elects a new proposer only once every epoch, this takes time
comparable to Nakamoto consensus. Despite these problems, the idea of having a fixed proposer is

58 CHAPTER 4. BARRACUDA: CONSENSUS-AWARE P2P NETWORKING

also used in other protocols, such as Thunderella [140] and ByzCoin [104], which are also vulnerable
to attacks on the proposer’s IP address.

(2) Embracing forking. A different class of protocols has studied how to use forked blocktrees
to contribute to throughput. Examples include GHOST [168], PHANTOM [166], SPECTRE [167],
and Conflux [114]. GHOST describes a fork choice rule that tolerates honest forking by building
on the heaviest subtree of the blocktree; it is described more carefully in Section 4.2.2. SPECTRE,
PHANTOM, and Conflux instead use existing fork choice rules, but build a directed acyclic graph
(DAG) over the produced blocks; this DAG is used to define an ordering over transactions. A formal
understanding of these DAG-based protocols is still evolving; although the ideas are intuitively
appealing, their security properties are not yet well-understood.

(3) Structured DAGs. A related approach is to allow structured forking. The Prism consensus
mechanism explicitly co-designs a consensus protocol and fork choice rule to securely deal with
concurrent blocks, thereby achieving optimal throughput and latency [24]. The key intuition is to
run many concurrent blocktrees, where a single proposer tree is in charge of ordering transactions,
and the remaining voter trees are in charge of confirming blocks in the proposer tree. Our approach
differs from [24] in that Barracuda is designed to be integrated into existing consensus protocols,
whereas Prism is a completely new consensus protocol. Indeed, since each of the blocktrees in Prism
uses the longest-chain fork choice rule, Barracuda can be used to reduce forking in each individual
Prism blocktree.

(4) Fork-free consensus. Several consensus protocols tackle forking by preventing it entirely.
Examples include Algorand [45, 82], Ripple [11], and Stellar [120]. These systems conduct a full
round of consensus for every block, e.g., using voting-based protocols. Disagreements about the
next block are resolved immediately. Although voting-based consensus protocols consume additional
time upfront for each block, the hope is that they improve overall efficiency by removing the need
to resolve forks later; this hypothesis remains untested. A primary challenge in such protocols is
that Byzantine-fault tolerant voting protocols can be communication-intensive, and require a known
set of participants. Although there has been work addressing some of these challenges [104, 138],
many industrial-grade blockchain systems running on BFT voting protocols require some degree of
centralization for efficiency.

Our approach. Barracuda is complementary to these prior approaches in the sense that it
provides a new networking protocol that consensus algorithms can benefit from. Our approach can
be viewed as a partial execution of a polling-based consensus protocol. Polling has long been used in
classical consensus protocols [50, 14, 75], as well as more recent work specific to blockchains [150].
Our approach differs from these algorithms in part because we do not use polling to reach complete
consensus; rather we use it to reduce the number of inputs to a (separate) consensus protocol. Hence,
Barracuda can be used as an add-on for many consensus protocols, especially those proposed for
proof-of-stake (PoS) cryptocurrencies; we discuss these applications in Section 4.5.

4.2 Model

We propose a probabilistic model for blocktree evolution with two sources of randomness: randomness
in the timing and the proposer of each new block, and the randomness in the delay in transmitting
messages over the network. The whole system is parameterized by the number of nodes n, average

4.2. MODEL 59

propagation delay ∆, proposer waiting time ∆̃, and number of concurrent proposers k. Notice that
this ∆ is an average propagation delay, whereas the ∆ from Chapter 3 represented a worst-case
delay.

4.2.1 Modeling block generation

We model block generation as a discrete-time arrival process, where the tth block is generated at
time γ(t). We previously discussed the election of a single proposer for each block; in practice, some
systems elect multiple proposers at once to provide robustness if one proposer fails or is adversarial.
Hence at time γ(t), k nodes are chosen uniformly at random as proposers, each of which proposes a
distinct block. The index t ∈ Z+ is a positive integer, which we also refer to as time when it is clear
from the context whether we are referring to t or γ(t). The randomness in choosing the proposers is
independent across time and of other sources of randomness in the model. We denote the k blocks
proposed at time t as (t, 1), (t, 2), . . . , (t, k). The block arrival process follows the distribution of a
certain point process, which is independent of all other randomness in the model.

Two common block arrival process are Poisson and deterministic. Under a Poisson arrival process,
γ(t)− γ(t− 1) ∼ Exp(λ) for some constant λ, and γ(t)− γ(t− 1) is independent of {γ(i)}t−1

i=1. In
proof-of-work (PoW) systems like Bitcoin, block arrivals are determined by independent attempts at
solving a cryptographic puzzle, where each attempt has a fixed probability of success. With high
probability, one proposer is elected each time a block arrival occurs (i.e., k = 1), and the arrival
time can be modeled as a Poisson arrival process.

In many PoS protocols (e.g., Cardano [100], Qtum [9], and Particl [8]), time is split into quantized
intervals. Some protocols give each user a fixed probability of being chosen to propose the next block
in each time interval, leading to a geometrically-distributed block arrival time. If the probability of
selecting any proposer in each time slot is smaller than one, the expected inter-block arrival time will
be greater than one, as in Qtum and Particl. Other protocols explicitly designate one proposer per
time slot (e.g., Cardano [39]). Assuming all nodes are active, such protocols can be modeled with a
deterministic interval process, γ(t) = t, for all t ∈ N. The deterministic arrival process may even be
a reasonable approximation for certain parameter regimes of protocols like Qtum and Particl. If the
probability of electing any proposer in a time step is close to one, there will be at least one block
proposer in each time slot with high probability, which can be approximated by a deterministic
arrival process. Regardless, our main results apply to arbitrary arrival processes γ(t), including
geometric and deterministic.

When a block (t, i) is generated by a proposer, the proposer attaches the new block to one of the
existing blocks, which we refer to as the parent block of (t, i). The proposer chooses this parent block
according to a pre-determined rule called a fork-choice rule; we discuss this further in Section 4.2.1.
Upon creating a block, the proposer broadcasts a message containing the following information:

Mt,i = (Block (t, i), pointer to the parent block of (t, i))

to all the other nodes in the system. The broadcasting process is governed by our network model,
which is described in Section 4.2.1.

In this work, we focus mainly on the PoS setting due to subtleties in the practical implementation
of Barracuda (described in Section 4.4). In particular, PoW blockchains require candidate proposers
to choose a block’s contents—including the parent block—before generating the block. But in PoW,
block generation itself takes an exponentially-distributed amount of time. Hence, if a proposer were
to poll nodes before proposing, that polling information would already be (somewhat) stale by the
time the block gets broadcast to the network. In contrast, PoS cryptocurrencies allow block creation
to happen after a proposer is elected; hence polling results can be simultaneously incorporated into

60 CHAPTER 4. BARRACUDA: CONSENSUS-AWARE P2P NETWORKING

a block and broadcast to the network. Because of this difference, PoS cryptocurrencies benefit more
from Barracuda than PoW ones.

Global view of the blocktree. Notice that the collection of all messages forms a rooted tree,
called the blocktree. Each node represents a block, and each directed edge represents a pointer to a
parent block. The root is called the genesis block, and is visible to all nodes. All blocks generated at
time t = 1 point to the genesis block as a parent. The blocktree grows with each new block, since
the block’s parent must be an existing block in the blocktree; since each block can specify only one
parent, the data structure remains a tree. Formally, we define the global blocktree as follows.

Definition 4.2.1 (Global tree). We define the global tree at time t, denoted as Gt, to be a graph
whose edges are described by the set {(Block (j, i), pointer to the parent block of (j, i)) : 1 ≤ j ≤
t, 1 ≤ i ≤ k} with the vertices being the union of the genesis block and all the blocks indexed as
{(j, i) : 1 ≤ j ≤ t, 1 ≤ i ≤ k}.

If there is no network delay in communicating the messages, then all nodes will have the same
view of the blocktree. However, due to network delays and the distributed nature of the system, a
proposer might add a block before receiving all the previous blocks. Hence, the choice of the parent
node depends on the local view of the blocktree at the proposer node.

Local view of the blocktree. Each node has its own local view of the blocktree, depending on
which messages it has received. Upon receiving the message Mt,i, a node updates its local view
as follows. If the local view contains the parent block referred in the message, then the block t is
attached to it. If the local view does not contain the parent block, then the message is stored in an
orphan cache until the parent block is received. Notice that Gt is random and each node’s local view
is a subgraph of Gt.

4.2.2 Network model and fork choice rule

We avoid modeling the topology of the underlying communication network by instead modeling the
end-to-end delay of a message from any source to any destination node. In particular, we assume each
transmission of a block over an edge experiences a delay distributed as an independent exponential
random variable with mean ∆. This exponential delay captures the varying and dynamic network
effects of real blockchain networks, as empirically measured in [59] on Bitcoin’s P2P network. In
particular, this exponential delay encompasses both network propagation delay and processing delays
caused by nodes checking message validity prior to relaying it. These checks are often used to protect
against denial-of-service attacks, for instance.

When a proposer is elected to generate a new block at time γ(t), the proposer waits for time
∆̃ ∈ [0, 1) to make a decision on where to append the new block in its local blocktree. The choice of
parent block is governed by the local fork choice rule. Two of the most common fork choice rules are
the Nakamoto protocol (longest chain) and the GHOST protocol.

• Nakamoto protocol (longest chain). When a node is elected as a proposer, the node
attaches the block to the leaf of the longest chain in the local blocktree. When there is a tie
(i.e., if there are multiple longest chains), the proposer chooses one arbitrarily. Longest chain
is widely-used, including in Bitcoin, ZCash, and Monero.

• GHOST protocol. When a node is elected a proposer, the node attaches the block to the leaf
of the heaviest subtree in the local blocktree. Concretely, the proposer starts from the genesis
block and traverses the tree toward the leaves, until it reaches a leaf block. At each node,

4.3. BLOCK THROUGHPUT ANALYSIS 61

the proposer chooses the offspring with the largest number of descendants (i.e., the heaviest
subtree). Ties are broken arbitrarily. A variant of the GHOST rule is used in Ethereum.

Both the Nakamoto and GHOST protocols belong to the family of local attachment protocols,
where the proposer makes the decision on where to attach the block solely based on the snapshot of
its local tree at time γ(t) + ∆̃, stripping away the information on the proposer of each block. In
other words, we require that the protocol be invariant to the identity of the proposers of the newly
generated block. We show in Section 4.4 that our analysis applies generally to all local attachment
protocols. In practice, almost all blockchains use local attachment protocols; however, some recent
blockchains (e.g., Ripple) construct each new block through a cooperative process between a group
of nodes.

Notice that if ∆ is much smaller than the block inter-arrival time and all nodes obey protocol,
then the global blocktree Gt will be a chain with high probability. On the other hand, if ∆ is much
larger than the block inter-arrival time, then Gt will be a star (i.e. a depth-one rooted tree) with high
probability. To maximize blockchain throughput, it is desirable to design protocols that maximize
the expected length of the longest chain of Gt. Intuitively, a faster network infrastructure with a
smaller ∆ implies less forking.

4.3 Block Throughput Analysis

A key performance metric in blockchains is transaction throughput, or the number of transactions
that can be processed per unit time. Transaction throughput is closely related to a property called
block throughput, also known as the main chain growth rate. Given a blocktree Gt, the length of the
main chain L(Gt) is defined as the number of hops from the genesis block to the farthest leaf. More
precisely,

L(Gt) , max
B∈∂(Gt)

d(B0, B),

where ∂(Gt) denotes the set of leaf blocks in Gt, and d(B0, B) denotes the hop distance between
two vertices B0 and B in Gt. We define block throughput as limt→∞ E[L(Gt)]/t. Block throughput
describes how quickly blocks are added to the blockchain; if each block is full and contains only valid
transactions, then block throughput is proportional to transaction throughput. In practice, this is
not the case, since adversarial strategies like selfish mining [65] can be used to reduce the number of
valid transactions per block. Regardless, block throughput is frequently used as a stepping stone for
quantifying transaction throughput [168, 79, 24].

For this reason, a key objective of our work is to quantify block throughput, both with and
without polling. We begin by studying block throughput without polling under the Nakamoto
protocol fork-choice rule, as in Bitcoin. This has been previously studied in [168, 79, 24], under a
simple network model where there is a fixed deterministic delay between any pair of nodes. This
simple network model is justified by arguing that if all transmissions of messages are guaranteed
to arrive within a fixed maximum delay d, then the worst case of block throughput happens when
all transmissions have delay of exactly d. Such practice ignores all the network effects, for the
sake of tractable analysis. In this section, we focus on capturing such network effect on the block
throughput. We ask the fundamental question of how block throughput depends on the average
network delay, under a more realistic network model where each communication is a realization of
a random exponential variable with average delay ∆. In the following (Theorem 5), we provide a
lower bound on the block throughput, under the more nuanced network model from Section 4.2, and
Nakamoto protocol fork-choice rule. This result holds for a deterministic arrival process. A proof is
provided in Appendix 4.7.1.

62 CHAPTER 4. BARRACUDA: CONSENSUS-AWARE P2P NETWORKING

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

Lower bound
Experimental

mean network delay ∆

A
ve
ra
ge

bl
oc
k
th
ro
ug

hp
ut

Figure 4.1: Block throughput vs. mean network delay for an inter-block time of 1 time unit.

Theorem 5. Suppose there is a single proposer (k = 1) at each discrete time, γ(t) = t ∈ {1, 2, . . .},
with no waiting time (∆̃ = 0). For any number of nodes n, any time t, and any average delay ∆,
under the Nakamoto protocol, we have that

E[LChain(Gt)]

t
≥ exp

(
−C∆

(1− C∆)2

)
,

where C∆ = e
−1
∆ .

Notice that trivially, E[LChain(Gt)]/t ≤ 1, with equality when there is no network delay, ∆ = 0.
Theorem 6 and our experiments in Figure 4.1 suggest that Theorem 5 is tight when ∆� 1. Hence
there is an (often substantial) gap between the realized block throughput and the desired upper
bound. This gap is caused by network delays; since proposers may not have an up-to-date view of
the blocktree due to network latency, they may append to blocks that are not necessarily at the end
of the global main chain, thereby causing the blockchain to fork.

One goal is to obtain a blocktree with no forking at all, i.e., a perfect blockchain with LChain(Gt) =

t. Setting exp
(
−C∆

(1−C∆)2

)
= 1 − 1

t , which implies that E[LChain(Gt)] ≥ t − 1, we obtain that

∆ = Θ(1
log t). The following result shows that if ∆ = O(1

log t), then LChain(Gt) = t with high
probability.

Theorem 6. Fix a confidence parameter δ ∈ (0, 1), k = 1, γ(t) = t. For both the Nakamoto and
GHOST protocols, if

1

∆
≥
(
ln t− log log 1

δ

)
1− ∆̃

, (4.1)

then the probability of the chain Gen− 1− 2− . . .− t happens with probability at least δ − o(1) as
t→∞ and n� t2.

4.4. `-BARRACUDA 63

Conversely, when n� (∆t log t)2 and

1

∆
≤
(
ln t− log log 1

δ

)
1− ∆̃

, (4.2)

then the probability of the chain Gen− 1− 2− . . .− t happens with probability at most δ + o(1) as
t→∞. Here � ignores the dependence on the parameter δ, which is fixed throughout.

This result shows the prevalence of forking. For example, if we conservatively use Bitcoin’s
parameters settings, taking ∆ = 0.017, ∆̃ = 0, and δ = 0.01, equation (4.2) implies that for t & 5
blocks, forking occurs with high probability. Hence forking is pervasive even in systems that choose
system parameters specifically to avoid it.

A natural question is how to reduce forking, and thereby increase block throughput. To this end,
we next introduce a blockchain evolution protocol called Barracuda that effectively reduces forking
without changing the system parameter ∆, which is determined by network bandwidth.

4.4 `-Barracuda

To reduce forking and increase block throughput, we propose `-Barracuda, which works as follows:
upon arrival of a block (t, i), the proposer of block (t, i) selects `− 1 nodes in the network uniformly
at random, and inquires about their local tree.1 The proposer aggregates the information from the
`− 1 other nodes and makes a decision on where to attach block (t, i) based on the local attachment
protocol it follows. One key observation is that there is no conflict between the local trees of each
node, so the Barracuda strategy simply merges totally ` local trees into a single tree with union of
all the edges in the local trees that are polled. Note that we poll `− 1 nodes, such that a total `
local trees are contributing, as the proposers own local tree also contributes to the union.

We assume that when Barracuda polling happens, the polling requests arrive at the polled nodes
instantaneously, and it takes the proposer node time ∆̃ to make the decision on where to attach
the block. To simplify the analysis, we also assume that each node processes the additional polled
information in real time, but does not store the polled information. In other words, the information
a node obtains from polling at time t is forgotten at time t′ > t+ ∆̃. This modeling choice is made
to simplify the analysis; it results in a lower bound on the improvements due to polling since nodes
are discarding information. In practice, network delay affects polling communication as well, and we
investigate experimentally these effects in Section 4.5.1.

To investigate the effect of polling on the block chain, we define appropriate events on the
probabilistic model of block arrival and block tree growth. We denote X ∼ Exp(λ) an exponential
random variable with probability density function pX(t) = λe−λt1(t ≥ 0), and define set [m] ,
{1, 2, . . . ,m} for any integer m ≥ 1. For a message

Mj,i = (Block (j, i), point to the parent block of (j, i)),

denote its arrival time to node m as R(j,i),m. If m is the proposer of block (j, i), then R(j,i),m =

γ(j) + ∆̃. If m is not the proposer of block (j, i), then R(j,i),m = γ(j) + ∆̃ + B(j,i),m, where
B(j,i),m ∼ Exp(1/∆). It follows from our assumptions that the random variables B(j,i),m are mutually
independent for all 1 ≤ j ≤ t, 1 ≤ i ≤ k, 1 ≤ m ≤ n. We also denote the proposer of block (j, i) as
m(j,i). To denote polled nodes, we also write m(j,i) as m

(1)
(j,i), and denote the other `− 1 nodes polled

by node m(j,i) as m(2)
(j,i),m

(3)
(j,i), . . . ,m

(`)
(j,i).

1We use the name Barracuda to refer to the general principle, and `-Barracuda to refer to an instantiation with
polling parameter `.

64 CHAPTER 4. BARRACUDA: CONSENSUS-AWARE P2P NETWORKING

When block (j, i) is being proposed, we define the following random variables. Let random
variable

ej,i,l,r =

1 if by the time (j, i) was proposed, node

m
(l)
(j,i) already received block r

0 otherwise

(4.3)

Here j ∈ [t], i ∈ [k], l ∈ [`], r ∈ {(a, b) : a ∈ [j − 1], b ∈ [k]}. For any r = (a, b), we denote
r[1] = a, r[2] = b.

Since we will aggregate the information from the total ` nodes whenever a proposer proposes, we
also define ej,i,r = 1−

∏`
l=1(1− ej,i,l,r) as the event that when (j, i) was proposed, at least one node

m
(l)
(j,i) has received block r. The crucial observation is that when the proposer tries to propose block

(j, i), the complete information it utilizes for decision is the collection of random variables

{ej,i,r : r[1] ∈ [j − 1], r[2] ∈ [k]}. (4.4)

The global tree at time γ(t) + ∆̃, denoted as Gt, is a tree consisting of kt+ 1 blocks including
the Genesis block. We are interested in the distribution of the global tree Gt. To illustrate how to
compute the probability of a certain tree structure, we demonstrate the computation through an
example where k = 1, t = 3, and ` = 1.

Gen

1

2

3

(a)

Gen

1

2 3

(b)

Gen

1

2

3

(c)

Figure 4.2: Examples of G3 with varying structures.

For simplicity, we denote ej,i,(r[1],r[2]) as ej,r[1] since for this example k = 1. The probability of
some of the configurations of G3 in Figure 4.2a can be written as

PG3 = Figure 4.2a = P (e2,1 = 1, e3,1 = 1, e3,2 = 1) ,

PG3 = Figure 4.2b = P (e2,1 = 1, e3,1 = 1, e3,2 = 0) , and
PG3 = Figure 4.2c = P (e2,1 = 1, e3,1 = 0) .

Note that for the event in Figure 4.2c, it does not matter whether node m(3,1) has received block
(2, 1) or not, as the parent of that block is missing in m(3,1)’s local tree. Block (2, 1) is therefore not
included in the local tree of node m(3,1) at that point in time.

4.4. `-BARRACUDA 65

4.4.1 Main result

Under any local attachment protocol C and any block arrival distribution, the event that EC,t,g =

{Gt = g} depends on the random choices of proposers and polled nodes, {m(l)
(j,i) : j ∈ [t], i ∈ [k], l ∈

[`]}, and the messages received at those respective nodes, {ej,i,r : j ∈ [t], i ∈ [k], r[1] ∈ [j − 1], r[2] ∈
[k]}, and some additional outside randomness on the network delay and the block arrival time. The
following theorem characterizes the distribution of Gt on the system parameters t,∆, `, ∆̃ for a
general local attachment protocol C (including the longest chain and GHOST protocols). We provide
a proof in Section 4.7.3.

Theorem 7. For any local attachment protocol C and any inter-block arrival distribution, define
random variable G̃t which takes values in the set of all possible structures of tree Gt such that 2

P(G̃t = g) ,

E
[
1(EC,t,g)

∣∣{m(l)
(j,i)

}
j∈[t],i∈[k],l∈[`]

are distinct
]
. (4.5)

We have the following results:

(a) There exists a function F independent of all the parameters in the model such that for any
possible tree structure g,

P(G̃t = g) = F
(∆

`
, ∆̃, g, C

)
. (4.6)

(b) The total variation distance between the distribution of Gt and G̃t is upper bounded:

TV
(
PGt , PG̃t

)
≤ (`kt)2

2n
. (4.7)

In the definition in Eq. (4.5), we condition on the event that all proposers and polled nodes are
distinct. This conditioning ensures that all received blocks ej,i,l,r’s at those nodes are independent
over time j. This in turn allows us to capture the precise effect of ` in the main result in Eq. (4.6).
Further, the bound in Eq. (4.7) implies that such conditioning is not too far from the actual evolution
of the blockchains, as long as the number of nodes are large enough: n� (`kt)2. In practice, n need
not be so large, as we show in Figure 4.3. Even with n = 10, 000 < (`kt)2 = 160, 000 for 4-polling,
the experiments support the predictions of Theorem 7.

The main message of the above theorem is that `-Barracuda effectively reduces the network delay
by a factor of `. For any local attachment protocol and any block arrival process, up to a total
variation distance of (`kt)2/n, the distribution of the evolution of the blocktree with `-Barracuda is
the same as the distribution of the evolution of the blocktree with no polling, but with a network
that is ` times faster. We confirm this in numerical experiments (plotted in Figure 4.3), for a choice
of ∆̃ = 0, n = 10, 000, k = 1, t = 100, γ(t) = t, and the longest chain fork choice rule. In the inset
we show the same results, but scaled the x-axis as ∆/`. As predicted by Theorem 7, the curves
converge to a single curve, and are indistinguishable from one another. We used the network model
from Section 4.2.2.

Without polling, the throughput degrades quickly as the network delay increases. This becomes
critical as we try to scale up PoS systems; blocks should be generated more frequently, pushing

2The random variable G̃t is well defined, since the protocol C is assumed not to depend the identity of the proposer
of each block. Hence, the conditional expectation is identical conditioned on each specific {m(l)

(j,i) : j ∈ [t], i ∈ [k], l ∈ [`]}
whenever all tk` nodes in it are distinct.

66 CHAPTER 4. BARRACUDA: CONSENSUS-AWARE P2P NETWORKING

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

4-polling

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

4-polling
3-polling

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

4-polling
3-polling
2-polling

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

4-polling
3-polling
2-polling

no polling

mean network delay ∆

A
ve
ra
ge

bl
oc
k
th
ro
ug

hp
ut

Figure 4.3: Comparing the average block throughput for various choices of ` confirms the theoretical
prediction that `-Barracuda effectively speeds up the network by a factor of `; all curves are
indistinguishable when x-axis is scaled as ∆/` as shown in the inset.

network infrastructure to its limits. With polling, we can achieve an effective speedup of the network
without investing resources on hardware upgrades. Note that in this figure, we are comparing the
average block throughput, which is the main property of interest. We make this connection between
the throughput and ` precise in the following. Define LChain(Gt) to be the length of the longest chain
in Gt excluding the Genesis block. Throughput is defined as E[LChain(Gt)]/t. We have the following
Corollary of Theorem 7.

Corollary 1. There exists a function L(∆/`, ∆̃, C) independent of all the parameters in the model
such that ∣∣∣E[LChain(Gt)]− E

[
L
(∆

`
, ∆̃, C

)] ∣∣∣ ≤ t(`kt)2

2n
. (4.8)

In other words, in the regime that n� t3(k`)2, the expectation of the length of the longest chain
depends on the delay parameter ∆ and the polling parameter ` only through their ratio ∆/`. Hence,
the block throughput enjoys the same polling gain, as the distribution of the resulting block trees.

4.4.2 Connections to balls-in-bins example

In this section, we give a brief explanation of the balls-in-bins problem and the power of two choices
in load balancing. We then make a concrete connection between the blockchain problem and the
power of `-polling in information balancing.

In the classical balls-in-bins example, we have t balls and t bins, and we sequentially throw each
ball into a uniformly randomly selected bin. Then, the maximum loaded bin has load (i.e. number
of balls in that bin) scaling as Θ (log t/log log t) [127]. The result of power of two choices states that

4.5. SYSTEM AND IMPLEMENTATION ISSUES 67

if every time we select ` (` ≥ 2) bins uniformly at random and throw the ball into the least loaded
bin, the maximum load enjoys an near-exponential reduction to Θ (log log t/log `) [127].

Our polling idea is inspired by this power of two choices in load balancing. We make this
connection gradually more concrete in the following. First, consider the case when the underlying
network is extremely slow such that no broadcast of the blocks is received. When there is no polling,
each node is only aware of its local blockchain consisting of only those blocks it generated. There is
a one-to-one correspondence to the balls-in-bins setting, as blocks (balls) arriving at each node (bin)
build up a load (local blockchain). When there are t nodes and t blocks, then it trivially follows that
the length of the longest chain scales as Θ(log t/log log t), when there is no polling.

The main departure is that in blockchains, the goal is to maximize the length of the longest chain
(maximum load). This leads to the following fundamental question in the balls-in-bins problem,
which has not been solved, to the best of our knowledge. If we throw the ball into the most loaded
bin among ` randomly chosen bins at each step, how does the maximum load scale with t and `?
That is, if one wanted to maximize the maximum load, leading to load unbalancing, how much gain
does the power of ` choices give? We give a precise answer in the following.

Theorem 8. Given t empty bins and t balls, we sequentially allocate balls to bins as follows. For
each ball, we select uniformly at random ` bins, and put the ball into the maximally-loaded bin among
the ` chosen ones. Then, the maximum load of the t bins after the placement of all t balls is at most

C · ` · log t

log log t
(4.9)

with probability at least 1− 1
t , where C > 0 is a universal constant.

We provide a proof in Section 4.7.4. This shows that the gain of `-polling in maximizing the
maximum load is linear in `. Even though this is not as dramatic as the exponential gain of the load
balancing case, this gives a precise characterization of the gain in the throughput of `-Barracuda in
blockchains when ∆� 1. This is under a slightly modified protocol where the polling happens in a
bidirectional manner, such that the local tree and the newly appended block of the proposer are also
sent to the polled nodes.

For moderate to small ∆ regime, which is the operating regime of real systems, blocktree evolution
is connected to a generalization of the balls-in-bins model. Now, it is as if the balls are copied and
broadcast to all other bins over a communication network. This is where the intuitive connection
to balls-and-bins stop, as we are storing the information in a specific data structure that we call
blocktrees. However, we borrow the terminology from ‘load balancing’, and refer to the effect of
polling as ‘information balancing’, even though load balancing refers to minimizing the maximum
load, whereas information balancing refers to maximizing the maximum load (longest chain) by
balancing the information throughout the nodes using polling.

4.5 System and implementation issues

We empirically verify the robustness of our proposed protocol under various issues that might come
up in a practical implementation of `-Barracuda. Our experiment consists of n nodes connected via
a network which emulates the end to end delay as an exponential distribution; this model is inspired
by the measurements of the Bitcoin P2P network made in [59].

Each of the n nodes maintains a local blocktree which is a subset of the global blocktree. We
use a deterministic block arrival process with γ(t) = t, i.e. we assume a unit block arrival time
which is also termed as an epoch in this section. This represents an upper bound on block arrivals in

68 CHAPTER 4. BARRACUDA: CONSENSUS-AWARE P2P NETWORKING

real-world PoS systems, where blocks can only arrive at fixed time intervals. At the start of arrival t,
k proposers are chosen at random and each of these proposers proposes a block.

When there is no polling, each proposer chooses the most eligible block from its blocktree to be
a parent to the block it is proposing, based on the fork choice rule. In the case of `-Barracuda, the
proposer sends a pull message to `− 1 randomly chosen nodes, and these nodes send their block tree
back to the proposer. The proposer receives the block trees from the polled nodes after a delay ∆̃,
and updates her local blocktree by taking the union of all received blocktrees. The same fork choice
rule is applied to decide the parent to the newly generated block. In all our experiments we use the
Nakamoto longest chain fork choice rule. We ran our experiments for T = 100 time epochs on a
network with n = 10, 000 nodes with k = 1.

4.5.1 Effect of polling delay

In reality, there is delay between initializing a poll request and receiving the blocktree information.
We expect polling delay to be smaller than the delay of the P2P relay network because polling
communication is point-to-point rather than occurring through the P2P relay network. To understand
the effects of polling delay, we ran simulations in which a proposer polls `− 1 nodes at the time of
proposal, and each piece of polled information arrives after time ∆̃1, ∆̃2, .., ∆̃`−1 ∼ Exp(1

0.1 ∆). The
proposer determines the pointer of the new block when all polled messages are received.

Figure 4.4 shows the effect of such polling delay, as measured by ∆0.8(`), the largest delay ∆
that achieves a block throughput of at least 0.8 under `-Barracuda. More precisely,

∆0.8(`) = max

{
∆ : lim

t→∞

E[L(Gt)]

t
≥ 0.8

}
.

Under this model, polling more nodes means waiting for more responses; the gains of polling hence
saturate for large enough `, and there is an appropriate practical choice of ` that depends on the
interplay between the P2P network speed and the polling delay.

In practice, there is a strategy to get a large polling gain, even with delays: the proposer polls a
large number of nodes, but only waits a fixed amount of time before making a decision. Under this
protocol, polling more nodes can only help; the only cost of polling is the communication cost. The
results of our experiments under this protocol are illustrated in Figure 4.5 (‘no setup delay’ curve).

This implies a gap in our model, which does not fully account for the practical cost of polling.
In order to account for polling costs, we make the model more realistic by assigning a small and
constant delay of 0.01∆ to set up a connection with a polling node, and assume that the connection
setup occurs sequentially for `− 1 nodes. The proposer follows the same strategy as above: waiting
for a fixed amount of time before making the decision. We see that under such model, there is a
finite optimal ` as shown in Figure 4.5.

4.5.2 Heterogeneous networks

The theoretical and experimental evidence of the benefits of `-Barracuda have so far been demon-
strated in the context of a homogeneous network: all the nodes in the network have the same
bandwidth and processing speeds. Further the individual variation in end-to-end delay due to
network traffic is captured by statistically identical exponential random variables. In practice,
heterogeneity is natural (some nodes have stronger network capabilities); we model this by clustering
the nodes into h different groups, based on their average network speed. The speed of a connection
between two nodes is determined by the speed of the slower node. We compare the performance of
`-Barracuda with that of no polling (which has worse performance and serves as a lower bound).

4.5. SYSTEM AND IMPLEMENTATION ISSUES 69

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8 9 10

poll delay
no poll delay

∆0.8(`)

`

Figure 4.4: ∆0.8(`) captures the highest delay ∆ that achieves a desired block throughput of 0.8
under `-Barracuda. With a polling delay of Exp(1/(0.1∆)), the performance saturates after ` = 6
and eventually deteriorates at large `.

We follow the following uniform polling strategy: Let the delay ∆ of a node be a part of the set
D = {∆1,∆2, ..,∆h}; a node’s delay is defined as follows: the average delay of transmitting a block
across the P2P network from node with delay ∆i to a node with delay ∆j is max(∆i,∆j) ∀i ∈ [h].

In Figure 4.6, we show the performance of a heterogeneous network with h = 2: half of the
nodes have delay ∆ and the other half have delay 5∆. Every node has the same proposer election
probability. `-Barracuda gives a gain in the network throughput in line with the prediction of
Theorem 7, even when the underlying network is heterogeneous.

4.5.3 Polling partial blocktrees

The polling studied in this paper requires syncing of the complete local blocktree, which is redundant
and unnecessarily wastes network resources. For efficient bandwidth usage, we propose (`, b)-polling,
where the polled nodes only send the blocks that were generated between times t− 1 and t− b. In
Figure 4.7, we compare the performance of 2-polling and (2,1),(2,3),(2,5)-polling. The experiments
suggest that comparable performance can be achieved with a choice of b that is small, and that
choice increases with network delay.

4.5.4 Incentive Structure

To ensure timely response from polled nodes, we propose appropriate incentive mechanims, motivated
by those used in BitTorrent. When BitTorrent nodes explore their neighbors to get new information,
a reputation system is maintained, where nodes that upload have higher reputation, thus allowing
for faster downloads. Incentive mechanisms for BitTorrent-like P2P networks have been analyzed to
achieve Nash equilibrium as shown by [146]. We propose a reputation system for blockchain polling,

70 CHAPTER 4. BARRACUDA: CONSENSUS-AWARE P2P NETWORKING

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8 9 10

setup delay
no setup delay

∆0.8(`)

`

Figure 4.5: Average delay ∆0.8(`) that achieves desired block throughput 0.8, when `-Barracuda is
used. We assume there is a polling delay of Exp(1/(0.1∆)) but the proposer waits exactly ∆̃ = 0.1∆
time before proposing. When there is no setup delay, polling more nodes is always better. Otherwise,
we see an optimal `, which depends on all system parameters.

where a node replies to a poll request only from a proposer with a higher reputation (tit-for-tat). A
higher reputation is maintained by honestly responding to a polling request.

Another incentive mechanism involves the proposer paying polling fees to the the polled nodes.
The fees can be in the form of a conditional payment, conditioned on the proposed block being
finalized or reaching a depth of m blocks in the blockchain. Let Pc be the probability that block c is
finalized conditioned on the polled node sending its blocktree, and Pnc be the probability that block
is finalized conditioned on the polled node sending nothing. Then the polled node should send its
complete blocktree if:

R(Pc − Pnc) > C

where R is the polling fees/reward and C is the cost of sending blocktree to the proposer. Note that
sending the blocktree only involves sending the difference of the blocktree of the polled node and the
proposer, hence the cost C is relatively small. Sufficiently large fee R ensures that the nodes are
incentivized to respond.

4.5.5 Security Implications

Blockchains are expected to operate in permissionless conditions, so a fraction of the participants
may deviate from the proposed protocol with explicit malicious intent (of causing harm to the key
performance metrics). It is natural to explore potential security vulnerabilities exposed by the
`-Barracuda protocol proposed in this paper. Since push and poll operations are different network
primitives and since the poll operation is performed by proposer nodes, nodes when polled ascertain
who the proposer of a new block is. Such nodes could use this information perhaps initiate a denial
of service attack on the proposer (or launch a bribery attack involving corrupting the proposer

4.5. SYSTEM AND IMPLEMENTATION ISSUES 71

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

4-polling

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

4-polling
2-polling

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

4-polling
2-polling

no polling

mean network delay ∆

A
ve
ra
ge

bl
oc
k
th
ro
ug

hp
ut

Figure 4.6: In a heterogeneous network, we enjoy the same polling gain as in a homogeneous network.
Heterogeneous `-Barracuda provides a speedup of the network by a factor of about `, as shown in
the inset where the x-axis is scaled by ∆/`.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2

no polling
2-polling

(2,5)-polling
(2,3)-polling
(2,1)-polling

mean network delay ∆

A
ve
ra
ge

bl
oc
k
th
ro
ug

hp
ut

Figure 4.7: Sending the latest 5 blocks when polled is sufficient to achieve comparable performance
as sending the entire local blocktree, while occupying significantly less network bandwidth.

of the new block) – these possibilities are similar to (but more muted than) the attacks on the

72 CHAPTER 4. BARRACUDA: CONSENSUS-AWARE P2P NETWORKING

class of consensus protocols summarized under the item on “reducing proposer diversity" (example:
Bitcoin-NG) and the vulnerabilities are no more than faced by this class of blockchain algorithms.
However, a simple modification to the `-Barracuda protocol nullifies even this relatively minor
vulnerability.

Consider the following network protocol design symmetric with respect to polling: we replace
push and poll network primitives by a single block tree information exchange primitive that we
call “information-sync". Each connection/edge information-sync involves exchanging block tree
information in a symmetric way between the pair of nodes. A new sync starts as soon as the previous
sync finishes. When a proposer is elected, it starts `− 1 new sync connections and proposes a block
after completing sync from these `− 1 connections. As we can see those `− 1 nodes will consider
this polling request as just another node asking for a sync, allowing the poll request to hide within
the symmetrical structure. We tested this new protocol for the following parameters: n = 500
and T = 100 for a 4-regular graph with Exp(∆) edge synchronization delays. The performance is
shown in Figure 4.8, where we see that 5-polling offers a significant gains compared to no polling.
Note that the overall gains are somewhat muted as compared to the polling gains on the pure
`-Barracuda protocol setting, as expected: the symmetric network protocol already includes some
polling due to the nature of the information-sync primitive.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5-polling
no polling

mean edge delay ∆

A
ve
ra
ge

bl
oc
k
th
ro
ug

hp
ut

Figure 4.8: 5-polling shows gain over no polling in a homogeneous information sync network

Polling also helps when the network is heterogeneous, as shown in Figure 4.9, which uses the
same node delay distribution as the heterogeneous exponential model discussed in section 4.2. A
node’s delay is defined as follows: the average edge synchronization delay between nodes with delay
∆i and ∆j is max(∆i,∆j) ∀i ∈ [h]. Here both the slower nodes and the faster nodes poll the same
number of nodes.

4.6. RELATION TO PRISM 73

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5-polling
no polling

mean edge delay ∆

A
ve
ra
ge

bl
oc
k
th
ro
ug

hp
ut

Figure 4.9: 5-polling shows gain over no polling in a heterogeneous information sync network

4.6 Relation to Prism

In this chapter, we propose `-Barracuda as a technique for improving block throughput in proof-of-
stake cryptocurrencies. We show that for small `, `-Barracuda has the same effect on block throughput
as if the mean network delay were reduced by a factor of `. This is a simple, lightweight method
of improving throughput without needing to substantially alter either the underlying consensus
protocol or the properties of the network. In particular, this result holds for any local attachment
protocol, including the longest-chain fork choice rule. Since each individual blocktree in Prism uses a
longest-chain fork choice rule, Barracuda can easily be integrated with Prism. Namely, each proposer,
upon being elected, would poll ` neighbors for their views of the m+ 1 blocktrees, where m is the
number of voter trees in Prism. Based on this polled information, the proposer would update its
local view and propose a new block.

4.7 Proofs of the main results

We provide the proofs of the main results in this section.

4.7.1 Proof of Theorem 5

Since k = 1, we denote the proposer of block j as mj . Thus the arrival time of the block j to node
m is given by

Rj,m =

{
j if m = mj

j +Bj,m if m 6= mj

.

74 CHAPTER 4. BARRACUDA: CONSENSUS-AWARE P2P NETWORKING

Here Bj,m ∼ Exp(1/∆) and they are mutually independent random variables for 1 ≤ j ≤ t, 1 ≤ m ≤ n.
Define the event

ej,m,r =

{
1 when block j is proposed, node m has received block r
0 otherwise

Thus whenever node mt is chosen as a proposer for block t, the set of events {et,mt,r : 1 ≤ r ≤ t− 1}
determine the length of the longest chain Lt , LChain(Gt). In particular, if we denote the blocks
that are part of a longest chain Chain(Gt−1) as j1, . . . , jLt−1 , we have that

Lt = Lt−1 + 1, if
Lt−1∏
r=1

et,mt,jr = 1.

In other words, had the node mt received all the blocks that were part of a longest chain at time
t− 1, the length Lt would exceed Lt−1 by 1. Since Lt ≥ Lt−1 with probability 1, we obtain that

E[Lt] ≥ E[Lt−1] + Pet,mt,jr = 1, ∀r ∈ [Lt−1].

Fix any mt ∈ [n]. If mt had not been a proposer for any of the blocks jr, we get that

Pet,mt,jr = 1,∀r ∈ [Lt−1] =

Lt−1∏
r=1

(1− xt−jr), x = e
−1
∆

Hadmt been a proposer before, clearly the above probability is still a lower bound on Pet,mt,jr = 1, ∀r ∈ [Lt−1].
Thus

E[Lt] ≥ E[Lt−1] +

Lt−1∏
r=1

(1− xt−jr) ≥ E[Lt−1] +

∞∏
i=1

(1− xi).

Applying the above inequality recursively, we obtain that

E[LChain(Gt)] ≥ (
∞∏
i=1

(1− xi)) · t.

Thus it suffices to lower bound the Euler function φ(x) ,
∏∞
i=1(1− xi). Using the inequality that

x
1+x ≤ log(1 + x), x ≥ −1, we obtain that

log φ(x) =
∑
i≥1

log(1− xi) =
∑
i≥1

−xi

1− xi

≥
∑
i≥1

−xi

1− x
=
−x

1− x
∑
i≥0

xi =
−x

(1− x)2
.

Thus φ(x) ≥ exp
(
−x

(1−x)2

)
.

4.7. PROOFS OF THE MAIN RESULTS 75

4.7.2 Proof of Theorem 6

We apply Theorem 7 with general ` ≥ 1 and then specialize it to ` = 1 to obtain the theorem
statement. Denote the chain as g, and ej,i,r[1],r[2] as ej,r[1] since here k = 1. The event EC,t,g can be
written as

EC,t,g = 1(e2,1 = 1) · 1(e3,1 = 1, e3,2 = 1)·
. . . · 1(et,1 = 1, et,2 = 1, . . . , et,t−1 = 1). (4.10)

Let Ẽ denote the event that every node has proposed or been polled at most once. Conditioned
on Ẽ, and defining α , e∆̃l/∆, we have

E[1(EC,t,g)|Ẽ] =
t∏

j=2

E[1(ej,1 = 1, ej,2 = 1, . . . , ej,j−1 = 1)|Ẽ] (4.11)

=

t∏
j=2

j−1∏
m=1

(1− e∆̃l/∆e−m`/∆) (4.12)

=
t−1∏
j=1

(1− αe−j`/∆)t−j (4.13)

≤ (1− αe−`/∆)t−1. (4.14)

We now claim that if ` ≥ ∆(ln t−ln ln 1
δ)

1−∆̃
, we have E[1(EC,t,g)|Ẽ] ≥ δ − o(1). Let c = ln 1

δ .

Indeed, in this case, we have αe−`/∆ ≤ ln 1
δ
t . Hence,

E[1(EC,t,g)|Ẽ] ≥
t−1∏
j=1

(
1− cj

tj

)t−j
(4.15)

=
(

1− c

t

)t t−1
t

t−1∏
j=2

(
1− cj

tj

)t−j
(4.16)

(a)

≥ e−c − o(1) (4.17)
= δ − o(1), (4.18)

where (a) follows from 4.7.1 and the fact that limt→∞(1− c/t)t−1 = e−c. Conversely, we show that

if ` ≤ ∆(ln t−ln ln 1
δ)

1−∆̃
, then E[1(EC,t,g)|Ẽ] ≤ δ + o(1).

Indeed, in this case we have αe−`/∆ ≥ ln 1
δ
t , and

E[1(EC,t,g)|Ẽ] ≤ (1− c/t)t−1 (4.19)
= e−c + o(1) (4.20)
= δ + o(1). (4.21)

Lemma 4.7.1. Let c > 0 be fixed. Then we have that

lim
n→∞

n−1∑
k=2

(n− k) log(1− ck

nk
) = 0.

76 CHAPTER 4. BARRACUDA: CONSENSUS-AWARE P2P NETWORKING

Proof. Define fn(·) : N→ R as

fn(k) = (n− k) log(1− ck

nk
)1{2 ≤ k ≤ n− 1}.

For each fixed k ∈ N, we have that limn→∞ fn(k) = 0. Our goal is to show that limn→∞
∫
N fn(k)dµ(k) =

0 where µ(·) is the counting measure on N. In view of dominated convergence theorem, hence it
suffices to show that there exists a g : N→ R such that

|fn(k)| ≤ g(k), k ∈ N and
∫
gdµ <∞.

Note that for 2 ≤ k ≤ n− 1,

|fn(k)| = (n− k)| log(1− ck

nk
)|

(a)

≤ (n− k)
ck

nk

1− ck

nk

≤ nck

nk − ck
,

where (a) follows from the fact that | log(1 − x)| ≤ x
1−x for x ∈ [0, 1]. Let n0 ∈ N be such that

nk0 ≥ 2ck. Hence, for n ≥ n0, we have

|fn(k)| ≤
(

2

c

)(c
n

)k−1
≤
(

2

c

)(
c

n0

)k−1

, g(k).

Clearly
∫
N g(k)dµ(k) <∞. The claim follows.

4.7.3 Proof of Theorem 7

Part (1). One key observation is that, if every node has only been polled or proposed at most
once, i.e„ the set {m(l)

(j,i) : j ∈ [t], i ∈ [k], l ∈ [`]} contains tk` distinct nodes, then conditioned on this

specific sequence {m(l)
(j,i) : j ∈ [t], i ∈ [k], l ∈ [`]}, all the random variables {ej,i,l,r : j ∈ [t], i ∈ [k], l ∈

[`], r[1] ∈ [j − 1], r[2] ∈ [k]} are mutually independent. Furthermore, conditioned on this specific
sequence, we have

E[ej,i,l,r|{m
(l)
(j,i) : j ∈ [t], i ∈ [k], l ∈ [`]}, {γ(i)}ti=1] (4.22)

= 1− e−(γ(j)−γ(r[1])−∆̃)/∆ , (4.23)

for all r such that r[1] ∈ [j − 1], r[2] ∈ [k].
Denote the event of {m(l)

(j,i) : j ∈ [t], i ∈ [k], l ∈ [`]} are distinct as Ẽ. It follows from the definition
of the local attachment protocol C that

E[ej,i,l,r|Ẽ, , {γ(i)}ti=1] = 1− e−(γ(j)−γ(r[1])−∆̃)/∆ (4.24)

for all r such that r[1] ∈ [j − 1], r[2] ∈ [k].
Note that the event EC,t,g = {Gt = g} only depends on {m(l)

(j,i) : j ∈ [t], i ∈ [k], l ∈ [`]} and
{ej,i,r : j ∈ [t], i ∈ [k], r[1] ∈ [j − 1], r[2] ∈ [k]} plus some additional outside randomness. Since

ej,i,r = 1⇔
∑
l∈[`]

ej,i,l,r ≥ 1, (4.25)

4.7. PROOFS OF THE MAIN RESULTS 77

it follows from the independence of ej,i,l,r and equation (4.22) that

E[ej,i,r|Ẽ, {γ(i)}ti=1] = 1− e−(γ(j)−γ(r[1])−∆̃)`/∆ (4.26)

all r such that r[1] ∈ [j − 1], r[2] ∈ [k].
Hence, we have

P(G̃t = g) = E
[
1(EC,t,g)|Ẽ, {γ(i)}ti=1

]
(4.27)

= F ({γ(i)}ti=1,
∆

`
, ∆̃, g, C). (4.28)

Now we show the second part of Theorem 7. Denote by A = {g1, g2, . . . , gA} any collection of
distinct tree structures that Gt may take values in. Then, we have

P(Gt ∈ A|{γ(i)}ti=1)

= E

[
A∑
i=1

1(EC,t,gi)

∣∣∣∣∣{γ(i)}ti=1

]
(4.29)

= P(Ẽ|{γ(i)}ti=1)E[
A∑
i=1

1(EC,t,gi)|Ẽ, {γ(i)}ti=1]

+ (1− P(Ẽ|{γ(i)}ti=1))E[

A∑
i=1

1(EC,t,gi)|Ẽc, {γ(i)}ti=1] (4.30)

= E[
A∑
i=1

1(EC,t,gi)|Ẽ, {γ(i)}ti=1]

+ (1− P(Ẽ|{γ(i)}ti=1))

×

(
E[

A∑
i=1

1(EC,t,gi)|Ẽc, {γ(i)}ti=1]− E[
A∑
i=1

1(EC,t,gi)|Ẽ, {γ(i)}ti=1]

)
(4.31)

= P(G̃t ∈ A)

+ (1− P(Ẽ|{γ(i)}ti=1))

×

(
E[

A∑
i=1

1(EC,t,gi)|Ẽc, {γ(i)}ti=1]− E[
A∑
i=1

1(EC,t,gi)|Ẽ, {γ(i)}ti=1]

)
. (4.32)

It follows from the birthday paradox computation [127, Pg. 92] that

1− P(Ẽ|{γ(i)}ti=1) ≤ kt`(kt`− 1)

2n
, (4.33)

Hence, we have shown that for any measurable set A that Gt or G̃t take values in, we have

|P(Gt ∈ A|{γ(i)}ti=1)− P(G̃t ∈ A)| ≤ 1− P(Ẽ|{γ(i)}ti=1) (4.34)

≤ kt`(kt`− 1)

2n
. (4.35)

The result follows from the definition of the total variation distance

TV(PGt|{γ(i)}ti=1
, PG̃t) = sup

A
|P(Gt ∈ A|{γ(i)}ti=1)− P(G̃t ∈ A)|. (4.36)

78 CHAPTER 4. BARRACUDA: CONSENSUS-AWARE P2P NETWORKING

Part (2). We note that there exists some function L({γ(i)}ti=1,
∆
` , ∆̃, C) independent of all the param-

eters in the model such that the expectation of the longest chain of G̃t is equal to L({γ(i)}ti=1,
∆
` , ∆̃, C).

To obtain the final result, it suffices to use the variational representation of total variation distance:

TV(P,Q) = sup
f :|f |≤ 1

2

EP f − EQf, (4.37)

and taking f = 1
t · (LChain(Gt)− t/2), upon noticing that the length of the longest chain in the tree

Gt is at most t.

4.7.4 Proof of Theorem 8

We index all the t balls as 1, 2, . . . , t. Denote the load of the maximally loaded bin after the placement
of all balls at Lt. We aim at upper bounding

P (Lt ≥ k) . (4.38)

for k ≥ C · ` · log t
log log t . It follows from the union bound that

P (Lt ≥ k)

≤
∑
j∈[t]

∑
k−subset (i1,i2,...,ik)∈[t]k

P (Bin j has balls (i1, i2, . . . , ik)) .

Hence, it suffices to upper bound each individual term. Note that in the placement of each ball, the

probability that a specific bin was selected as a potential candidate is at most (t−1
`−1)
(tl)

= `
t . Hence,

for each k-subset (i1, i2, . . . , ik), the probability that bin j contains this k-subset is at most
(
`
t

)k.
Applying the union bound, we have

P (Lt ≥ k) ≤ t
(
t

k

)(
`

t

)k
.

Using the fact that
(
n
e

)n ≤ n! ≤ e
√
n
(
n
e

)n for n ≥ 1, we have

t

(
t

k

)(
`

t

)k
≤ t e

√
ttt

(t− k)t−kkk
`k

tk

≤ et3/2
(

t

t− k

)t−k (`
k

)k
≤ et3/2

(
1 +

k

t− k

) t−k
k
·k (`

k

)k
≤ et3/2

(
e`

k

)k
.

Setting et3/2
(
e`
k

)k ≤ 1
t , the theorem is proved.

4.8 Acknowledgement

The authors thank A. Makkuva, and R. Rana for collaborations on the design of Barracuda. This
chapter includes and expands on material in [67].

Chapter 5

Polyshard: Scalable Storage and
Computation

Salman Avestimehr, USC
Sreeram Kannan, UW-Seattle

Pramod Viswanath, UIUC

Blockchain systems, which maintain a decentralized trusted ledger and can do finite-state
computations can execute a wide range of programs in a trust-free setting. This has promised a host
of new and exciting applications in various areas. However, to enable these applications, we need
blockchain systems that scale well with the number of participating nodes n. In this chapter, we focus
on two important performance metrics: throughput (number of transactions validated per discrete
round) λ and the inherent storage capacity of the blockchain (measured in terms of the entropy of
the total storage among all the nodes) γ. By scalable, we mean that these two performance metrics
should improve as the number of nodes n increases.

We begin this chapter by observing how the two performance metrics λ, γ scale with n in extant
blockchain designs (example: Bitcoin or Ethereum). In these traditional technologies, the key
underpinning storage and computation methods involve full replication:

every node must replicate all the computation and every node must store the entire
blockchain.

We denote the amount of storage at a node by S and the amount of transactions that can be
processed at a node (per unit discrete round) by T . Then systems based on full replication have the
basic upper bound on performance:

Upper bounds for Traditional Blockchains : λ ≤ T ; γ ≤ S,

i.e., traditional methods cannot process more throughput than T transactions and cannot maintain
ledgers whose entropy (information content) is more than S. Thus replication poses a fundamental
restriction on such blockchain designs. In practice, the computational burden increases with the
number of nodes (example: mining puzzles get harder as time progresses and more users participate)
and a more nuanced model capturing this phenomenon would imply that λ is more tightly upper
bounded as n increases.

On the other hand, the information theoretic bounds offer a drastically different view. These
bounds are not specific to a method or technology. This independence lends them a fundamental

79

80 CHAPTER 5. POLYSHARD: SCALABLE STORAGE AND COMPUTATION

value and are derived as follows. Suppose all computation and storage, currently decentralized across
the n nodes, can be used in a centralized manner. This allows a total of nT computation and nS
storage. Thus the following upper bounds holds for any decentralized technology:

Information theoretic upper bounds for blockchains : λ ≤ nT ; γ ≤ nS,

Thus there is a huge gap between the traditional designs that operate based on replication and the
potential scalability of blockchain systems. Addressing this gap and looking to close it via innovative
designs is the goal of this chapter. The key idea we introduce is the notion of a coded storage and
coded computations in the context of blockchains.

It is illustrating to first begin by discussing a potential scaling solution being discussed presently
in the blockchain literature: sharding. The key idea is to break up (or “shard") the blockchain into
fragments which are then replicated; storage requirements are naturally reduced and computation
required for validating transactions is also reduced by a factor equal to the number of shards k.
However, the tradeoff is that the adversarial protection is also reduced by the same factor: if there
are n nodes in total, then it is sufficient for an adversary to take over n

k nodes to fully control a
shard. Thus, in sharding, there is a significant tradeoff between the efficiency gain and adversarial
protection capability. The fundamental limitations of this engineering solution sets the stage for
innovative design of a fully-scalable blockchain technology.

The main contributions of this chapter are the following.

• Drawing upon principles from information and coding theory, we propose a radically different
scalable design methodology called coded sharding.

• We propose a particular instantiation of the general coded-sharding principle called PolyShard,
which stands for Langrange polynomial based coded-sharding.

• We prove that PolyShard provides both scalability and adversarial protection capability, ie., it
is possible to get a factor n increase in efficiency (throughput / storage), while simultaneously
maintaining the adversarial protection also as Θ(n).

5.1 Sharding: benefits and limitations

Sharding has been proposed as a methodology for scaling the computation and storage abilities
of a blockchain payment system. The basic idea of sharding is to allocate users (who are using
the payment system) into groups called shards, and each shard maintains a ledger of transactions
between users inside the shard. Thus if there are k shards, then there are k independent ledgers, each
comprising of transactions between distinct users. Similarly, each processing node in the blockchain
payment system is allocated into a shard, thus if there are n processing nodes, then there are n

k
nodes allocated to each shard on an average.

The main advantage of sharding is that the computation and storage of the blockchain payment
system grows linearly in the number of shards k, since in effect, there are k independent blockchains.
We can also parameterize level of sharding by f = n

k , the number of nodes participating in a single
shard. Given that the blockchain has essentially been split into k parts, throughput and the entropy
of the blockchain payment system grow linearly in the number of shards, i.e.,

Sharding performance for blockchains : λ = kT =
nT

f
; γ = kS =

nS

f
.

There are two main issues related to sharding:

5.1. SHARDING: BENEFITS AND LIMITATIONS 81

n/k nodes n/k nodes

Shard 1 Shard k

Total: n nodes

Figure 5.1: Sharding

• Cross-shard transactions need to be handled separately, since existing nodes have been assigned
to specific shards. The resulting engineering solution adds complexity to the overall scheme
and lowers the performance (throughput and entropy).

• The more the number of shards (i.e., the larger the value of k), the more parallelism is
achieved and performance (both throughput and entropy) improves. However, this lowers
the decentralization being achieved and corresponding trust is lowered. The fundamental
trust-performance tradeoff needs to be handled as a result of allocating processing nodes to
shards.

5.1.0.1 Cross-shard transactions

When users are allocated randomly into shards, the probability that a transaction between two
random users is a cross-shard transaction is k−1

k , which approaches 1 when k is large. Thus most of
the transactions happen across shards and a mechanism needs to be in place in order to deal with
cross-shard transactions. The current proposals for cross-shard transactions [118, 106] implement a
locking mechanism where the money is locked up from the source-shard in an escrow till it is released
into the destination-shard. Designing lock-free mechanisms for cross-shard transactions is a major
engineering direction of ongoing research. We note that any solution will still not alleviate the loss
of trust that arises when k gets larger; this is discussed next.

5.1.0.2 Trust-scaling tradeoff

In order to achieve linear scaling using sharding, the number of nodes f participating in a shard has
to be held constant. When this is the case, an adversary wishing to take control of a shard only
needs to control f nodes, which are running validations and maintaining the ledger for a given shard

82 CHAPTER 5. POLYSHARD: SCALABLE STORAGE AND COMPUTATION

in order to compromise that shard. The ratio of adversarial nodes that can be tolerated becomes
exceedingly small, i.e., the adversary should control strictly less than f nodes or strictly less than f

n
fraction of nodes, which approaches zero as n becomes large. Thus, sharding achieves linear-scaling
of throughput at the cost of decreasing the security guarantees.

We note that existing sharding schemes propose some methods to alleviate the security issue:
for example, by choosing random nodes through a cryptographic primitive to participate in a given
shard, and using methods of shard rotation [106]. However, a powerful adversary can easily take
control of a given shard by corrupting the users after they have been chosen to participate in the
shard. Moreover, when the nodes are not assumed to be honest, but only rational, it might be in the
interest of the small number of nodes in a given shard to collude to get illegal gains. Thus, sharding
in its present form trades off trust for throughput, i.e., the larger the f , the more the security
whereas lesser the scaling of throughput and computational abilities of the block-chain payment
system (which scale like k = n

f). An important question is whether such a trust-scaling tradeoff
is fundamental to decentralized blockchain payment systems or whether clever methodologies can
achieve different scaling behaviors.

We note that in distributed systems theory, Byzantine consensus [110, 42] is a fundamental
problem in distributed computing and cryptography. It has been used to build fault tolerant systems
such as distributed storage systems [151, 41, 16, 108, 13, 49, 90], certificate authorities [147, 191], fair
peer-to-peer sharing [181], and more recently cryptocurrencies [105, 124, 139, 15]. It has also been
frequently used as building blocks in cryptographic protocols such as secure multi-party computation
[86, 26].

In all these applications, for the most part, byzantine consensus has been handled using replication.
For example, replicated state machine is a formalism [157, 109], where the intention is to run a
state machine on a group of nodes, some of which are strategic. The state machine is replicated in
parallel on many nodes, which attain byzantine consensus among themselves on the next instruction
to be run. Thus replicated state machine is a formalism of which a blockchain system can be
treated as a special case. Even in this formalism, the same issue as in blockchain exists, i.e., the
computational and storage performance does not scale with the number of nodes participating but is
rather constrained to be at most a constant, since the system is run based on full replication. The
question of whether scaling and trust have a fundamental tradeoff is open in this setting too. We
begin this long research program by addressing the fundamental limits of trust and performance in a
simple decentralized setting next.

The main questions that arise in the context of scaling blockchain can be summarized as follows.

1. Is it possible to achieve a performance scaling linearly in T and S ?

2. How to best navigate the trust-throughput tradeoff?

3. Can we build “coded” state-machines as a general formalism instead of replicated state machines?

5.2 Coding vs. Replication

The general question of whether systems that can achieve better performance than replication have
been well studied in information and coding theory. We begin with a simple problem of storage,
weeding away many details of blockchain systems. Consider a storage system where there are k files
X1, .., Xk of equal size that need to be stored in n nodes, where each node can store 1 file. The
trivial solution for the problem when n = fk, with f ≥ 1 is to store each file in f nodes; we call
such a system as a replicated system.

5.3. CODED SHARDING 83

We consider a simple erasure failure model where some nodes get erased. There are two formalisms
for such an erasure model: random erasures and adversarial erasures. In the random erasure model,
each storage node can get erased randomly with probability p. In the adversarial erasure model, at
most p fraction of nodes can be erased by an adversary, who can handpick the nodes to be erased
given other details.

In the random erasure model when using replication, the probability that all replicas of a given
file get erased is pf . If we require the probability of this failure mode to go to zero, we need f →∞.
The total number of files stored in the system is n

n . Thus there is a tradeoff between the failure
probability of the system, which is upper bounded by kpf and the total storage of the system, which
is n

f . If the failure-probability is required to go to zero, then f has to grow to infinity, and the total
storage in the system does not scale linearly.

Shannon, in his celebrated work, showed that such a tradeoff is not fundamental and can be
circumvented by the utilization of carefully crafted codes when n is large [162]. In a coded system,
the total storage can scale as n

f , with a fixed constant f , even with probability of failure going to
zero: in fact, according to Shannon’s capacity theorem, f = 1

1−p is the sharpest such constant. Thus
codes can save significantly over replication in the reliability-storage tradeoff. This insight has led to
the penetration of coding into various aspects of modern information storage and retrieval when the
failure mode is randomized.

In the adversarial erasure model, a fraction p of nodes are erased by the adversary, i.e., pn nodes
are erased. This necessitates each file to be replicated in more than pn nodes. Thus the maximum
number of files that can be stored with guaranteed recovery is 1

p irrespective of the number of nodes
n. However, if the file size is large, then maximum-distance-separable codes such as Reed-Solomon
codes ensure that in n nodes, k = (1− p)n files can be stored with guaranteed recovery against an
adversary. Thus coding can have a factor n gain over replication in storage ability under adversarial
failure mode. This highlights the great benefits that coded systems can bring in blockchain payment
systems, where strongly adversarial users can exist.

An important question is what role such coding methodologies can play in blockchains. We
envision two roles for coding in blockchain.

1. Codes can be used to store information pertaining to the blockchain in such a way that it can
tolerate an optimal number of adversaries as well as errors and erasures.

2. It may be possible for transaction validation to be coded so that computation can be performed
in the coded domain as well.

5.3 Coded Sharding

We now present the concept of coding for sharding in blockchains (i.e., coded sharding). In particular,
we propose PolyShard: “polynomially coded sharding” scheme that achieves information-theoretic
upper bounds on throughput and storage of blockchains (i.e., λ and γ) as well as on trust, thus
enabling a truly scalable system. More precisely, in a system composed of n nodes, we show that
PolyShard provides both scalability and adversarial protection capability, i.e., it is possible to
get a factor n increase in efficiency (throughput / storage), while simultaneously maintaining the
adversarial protection also as Θ(n).

PolyShard is rooted in recent developments in coded computing, in particular Lagrange Coded
Computing [187], which provide a transformative framework for injecting computation redundancy
in unorthodox coded forms in order to deal with failures and errors in distributed computing. The
key idea of LCC is to encode data using the well-known Lagrange interpolation polynomial, in order

84 CHAPTER 5. POLYSHARD: SCALABLE STORAGE AND COMPUTATION

to create computation redundancy to provide security against malicious servers. We will leverage
LCC to develop our coded sharding technique. We start by formalizing the system model that we
consider for sharding.

5.3.1 System Model

We consider a blockchain system partitioned into k indepedent shards, each of which maintains a
sub-chain that records a part of the past transactions. Each client of the system is associated to a
particular shard of the chain. For clarity of presentation we focus on transactions that are verifiable
intra-shard; cross-shard verifications are an added complexity complementary to our contributions
here; for instance, the atomic payment and locking mechanisms of [106] can be naturally incorporated
with the proposed ideas. We define the computation and networking models below.

5.3.1.1 Computation model

Each shard j, j = 1, 2, . . . , k, maintains its own sub-chain. We use t to denote discrete time in rounds
and Yj(t) ∈ U denotes the verified block in round t at shard j, where U is a vector space over a field
F. Then the sub-chain at shard j till time t− 1 is denoted as Y t−1

j = (Yj(1), Yj(2), . . . , Yj(t− 1)).
We wish to validate a new block Xj(t) ∈ U proposed in shard j in round t with respect to the past
of the sub-chain Y t−1

j to ensure that it does not contain any double-spends or other irregularities.
We abstract out the mechanism which generates the proposal and instead focus on validating the
proposed transaction. We note that the proposal can be generated by a small number of nodes,
while security depends on the number of nodes that validates the transactions. Note that since
transactions are intra-shard, the sub-chain is sufficient to verify whether Xj(t) is valid. To verify
Xj(t), shard j computes a verification function f t : Ut → V, over Xj(t) and the sub-chain Y t−1

j , for
some vector space V over F.

Having obtained htj = f t(Xj(t), Y
t−1
j), shard j computes an indicator variable ztj , such that

ztj = 1(htj ∈ W), where W ⊆ V denotes the subset of the values of the verification function for
which the block is valid. A simple example is when V = {0, 1}, the output is binary and denotes the
validity, i.e., W = {1}. Finally, the verified block Yj(t) is computed as Yj(t) = ztjXj(t), i.e., if the
block is not valid, it is treated as a null block which is represented as 0 in the field.

Without loss of generality, we model the verification function f t as a multivariate polynomial
of degree d, motivated by the following result [193]: Any Boolean function {0, 1}n → {0, 1} can be
represented by a polynomial of degree ≤ n with at most 2n−1 terms. Due to this result, common
verification functions, such as balance check and digital signature verification, can all be transformed
into polynomials.
Example: Balance verification. We consider a simple payment blockchain system that keeps
records of the balance transfers between clients. We assume that there are M clients in each shard,
for some constant M that does not scale with t. In this scenario, a block submitted to shard
k at time t, Xj(t), consists of multiple transactions, and is represented by a pair of real vectors
Xj(t) = (Xsend

j (t), Xreceive
j (t)), for some Xsend

j (t), Xreceive
j (t) ∈ RM . A transaction that reads “Client

p sends s dollars to client q.” will deduct s from Xsend
j (t)[p] and add s to Xreceive

j (t)[q]. Clients that
do no send/receive money will have their entries in the send/receive vectors set to zeros. To verify
Xj(t), we need to check that all the senders in Xj(t) have accumulated enough unspent funds from
previous transactions. This naturally leads to the following verification function.

f t(Xj(t), Y
t−1
j) = Xsend

j (t) +
t−1∑
i=1

(Y send
j (i) + Y receive

j (i)). (5.1)

5.4. POLYSHARD 85

Here the verification polynomial f t has constant degree d = 1, with F = R, U = RM , and
V = RM . We claim the block Xj(t) valid if none of the entries of the above verification function is
negative, and we set Yj(t) = Xj(t) and append it the sub-chain of shard k. Otherwise, we append a
dummy all-zero block.

5.3.1.2 Networking model

The above blockchain system is implemented distributedly over n network nodes. A subsetM⊂
{1, 2, . . . , n} of these nodes may be malicious/adversarial, and the malicious nodes compute and
communicate arbitrarily erroneous results during the process of block verification. Only the honest
nodes will follow the designed networking protocol described below.

At time t, each node i, i = 1, 2, . . . , n, locally stores some data, denoted by Zt−1
i = (Zi(1), Zi(2), . . . , Zi(t−

1)), where Zi(j) ∈ W for some vector space W over F. The locally stored data Zt−1
i is generated

from all shards of the blockchain using some function φt−1
i , i.e.,

Zt−1
i = φt−1

i (Y t−1
1 , Y t−1

2 , . . . , Y t−1
k). (5.2)

Next, given the k incoming blocks {Xj(t)}kj=1, each node i computes an intermediate result gti
using some function ρti on the incoming blocks and its local storage, such that,

gti = ρti(X1(t), X2(t), . . . , Xk(t), Z
t−1
i), (5.3)

and then broadcasts the result gti to all other nodes.
Having received all the broadcast messages, each node i decodes the verification results for all k

shards ĥt1i, ĥ
t
2i, . . . , ĥ

t
ki, using some function ψti , i.e.,

(ĥt1i, ĥ
t
2i, . . . , ĥ

t
ki) = ψti(g

t
1, g

t
2, . . . , g

t
n). (5.4)

Using these decoded results, node i computes the indicator variables (ẑ1i, ẑ2i, . . . , ẑki), and then the
verified blocks Ŷji(t) = ẑtjiXj(t), for all j = 1, 2, . . . , k.

Finally, each node i utilizes the verified blocks to update its local storage using some function χti,
i.e., Zti = χti(Ŷ1i(t), Ŷ2i(t), . . . , Ŷki(t), Z

t−1
i).

5.4 PolyShard

We now describe PolyShard, our proposed coded sharding scheme, which utilizes coding in both
storage and transaction verification as described below.

5.4.1 Storage encoding in PolyShard

The first key property of PolyShard is that each node stores a coded version of the sub-chains
(as opposed to naive uncoded replication approaches). The encoding of sub-chain history is done
via utilization of Lagrange polynomials (hence the name PolyShard). More specifically, we pick k
distinct elements ω1, ω2, . . . , ωk ∈ F, and create the following Lagrange polynomial

ut−1(z) =
k∑
j=1

Y t−1
j

∏
` 6=j

z − ω`
ωj − ω`

. (5.5)

Note that ut−1(ωj) = Y t−1
j for all j = 1, 2, . . . , k.

86 CHAPTER 5. POLYSHARD: SCALABLE STORAGE AND COMPUTATION

node 1

shard 1

shard 2

shard k

incoming
blocks

Lagrange encoder

coded shards

Lagrange
encoder

decode
verification results

recurrent update via
Lagrange encoder

node 2

Lagrange
encoder

decode
verification results

recurrent update via
Lagrange encoder

node n

Lagrange
encoder

decode
verification results

recurrent update via
Lagrange encoder

broadcast

Figure 5.2: Illustration of PolyShard scheme.

5.4. POLYSHARD 87

Next, as shown in Figure 5.2, we pick n distinct elements α1, α2, . . . , αN ∈ F, one for each node.
This creates n coded sub-chains, denoted by Ỹ t−1

1 , Ỹ t−1
2 , . . . , Ỹ t−1

n , by evaluating the above ut−1(z)
at the points α1, α2, . . . , αN . That is, for all i = 1, 2, . . . , n,

Ỹ t−1
i = ut−1(αi) =

k∑
j=1

Y t−1
j

∏
`6=j

αi − ω`
ωj − ω`

=
k∑
j=1

cijY
t−1
j , (5.6)

for all i = 1, 2, . . . , n. We note that Ỹ t−1
i is encoded as a linear combination of the uncoded sub-chains

Y t−1
1 , Y t−1

2 , . . . , Y t−1
k , and the coefficients cijs do not depend on the time index t. Having generated

these coded sub-chains, we store Ỹ t−1
i onto node i. For this encoding to be viable, we need large

enough field such that |F| ≥ n. For small finite fields (e.g., binary field), we can enable this encoding
scheme by embedding each data element onto an extension field Fm with |F|m ≥ n, and then apply
the coding in Fm.

An important advantage of storage encoding in PolyShard is that, upon addition of newly verified
transactions in sub-chains, the encoded storage at each node needs to be updated incrementally
without the need to re-encode the entire history.

More specifically, upon the addition of new verified transactions Yj(t), j = 1, 2, . . . k, we first
create

Ỹi(t) =
k∑
j=1

cijYj(t), (5.7)

and append Ỹi(t) into the local coded sub-chain of node i (i.e., Ỹ t−1
i) to update it to

Ỹ t
i = (Ỹ t−1

i , Ỹi(t)). (5.8)

Note that, since the set of coefficients cijs in (5.7) are identical to those in (5.6), appending
a coded block to a coded sub-chain is equivalent to appending uncoded blocks to the uncoded
sub-chains, and then encoding from the updated sub-chains. This commutativity between sub-chain
growth and storage encoding allows each node to update its local sub-chain by only utilizing the
newly verified blocks.

Another important advantage of the PolyShard storage encoding is that it is oblivious of the
verification function, i.e., the coefficients cij are independent of f t. Therefore, the data encoding can
be carried out independently of the verification, and the same coded storage can be simultaneously
used for all different types of verification items, which could include verifying account balances,
digital signatures or checking smart contracts.

5.4.2 Coded verification in PolyShard

At time t, k blocks X1(t), X2(t), . . . , Xk(t) are submitted to the k shards for verification over n
network nodes. Note that in PolyShard each node stores a coded version of the sub-chains history,
hence all computations that nodes will do to verify transactions will be over coded sub-chains, which
makes the verification challenging.

The PolyShard scheme verifies these blocks in three steps as described below (also illustrated in
Figure 5.2).
Step 1: block encoding. Having received the k blocks, each node i, i = 1, 2, . . . , n, computes a
coded block X̃i(t) as a linear combination of the blocks using the same set of coefficients as in (5.6).

88 CHAPTER 5. POLYSHARD: SCALABLE STORAGE AND COMPUTATION

That is,

X̃i(t) =
k∑
j=1

cijXj(t). (5.9)

We note that this block encoding operation at node i can be also viewed as evaluating the polynomial
ut(z) =

∑k
j=1Xj(t)

∏
6̀=j

z−ω`
ωj−ω` at the point αi.

Step 2: local coded computation. Each node i applies the function f t to the coded block X̃i(t),
and its locally stored coded sub-chain Ỹ t−1

i to compute

gti = f t(X̃i(t), Ỹ
t−1
i). (5.10)

Having finished the local computations, each node ` broadcasts its computation result gti to all
other nodes.
Step 3: decoding. Using the computation results gt1, gt2, . . . , gtn, a maximum β fraction of
which may be erroneous from malicious nodes, each node aims to decode the intended results
{f t(Xj(t), Y

t−1
j)}kj=1. We note the following key points about steps 1 and 2.

1. The computation result gti at node i can be viewed as the evaluation of f t(ut(z), ut−1(z)) at
the point αi.

2. f t(ut(z), ut−1(z)) is a univariate polynomial of degree (k − 1)d.

3. The intended results {f t(Xj(t), Y
t−1
j)}kj=1 can be recovered by evaluating the polynomial

f t(ut(z), u
t−1(z)) at {βj}kj=1.

From the above three points, we conclude that the decoding problem can be viewed as “recovering
a univariate polynomial of degree (k − 1)d from its evaluations at n distinct points with up to β
fraction of being erroneous”.

By mapping the verification problem to polynomial interpolation, the above decoding problem
can now be solved optimally using the process of decoding a Reed-Solomon code with dimension
(k− 1)d+ 1 and length n (see, e.g., [154]). In order for this decoding to be successful, the number of
malicious nodes βn cannot exceed (n− (k − 1)d)/2. In other words, the genuine network nodes can
successfully decode f t(ut(z), ut−1(z)) only if the number of shards k is upper bounded as

k ≤ (1− 2β)n

d
. (5.11)

5.4.3 Optimality of PolyShard

As we discussed in Section 5.1, state-of-the-art uncoded sharding schemes cannot achieve linear
throughput scaling, while guaranteeing security against a constant fraction β of adversary nodes. In
fact, if we want to maintain security against β fraction of nodes, then the number of shards can at
most be k = n

βn = 1
β (since there should be at least βn nodes in each shard. Hence, we can only

achieve throughput of

λuncoded sharding = kT =
T

β
, (5.12)

which is a constant.
Our main result is that PolyShard can achieve linear throughput scaling while still guaranteeing

security against a constant fraction of the nodes, without increasing the storage and computation
overhead of the system. Our main result is summarized in the following theorem.

5.5. SIMULATION RESULTS 89

Theorem 1. For a blockchain system consisting of multiple shards, each of length t, a polynomial
verification function f t with constant degree d, operated on n network nodes, up to β (for some
constant 0 ≤ β < 1

2) fraction of which may be malicious, the above described PolyShard scheme
achieves the throughput of

λPolyShard =
(1− 2β)Tn

d
= Θ(n), (5.13)

and total storage of

γPolyShard =
(1− 2β)Sn

d
= Θ(n), (5.14)

while guaranteeing security against β fraction of the nodes.

Comparing the achievable throughput and storage of PolyShard (i.e., equations (5.13) and (5.14))
with the information-theoretic upper bounds for blockchains described at the beginning of this
chapter, we notice that PolyShard is order-wise optimal simultaneously in security, storage, and
throughput. Compared with the state-of-the-art uncoded sharding schemes that only achieve a
constant throughput (see eq. (5.12)), we also note that PolyShard provides a storage and throughput
gain that scales linearly with the number of nodes n.

5.5 Simulation Results

We perform detailed simulations to assess the performance of Polyshard in the payment blockchain
system described as an example. This system keeps records of all the balance transfers between
clients, and verifies new blocks by comparing them with the sum of the previously verified blocks
(i.e., computing the verification function in (5.1)). More specifically, the system contains k shards,
each managing M clients. At each time epoch t, one block of transactions is submitted to every
shard j. We simulate this system over n nodes using the full replication, uncoded sharding, and
PolyShard schemes respectively.

We measure the throughput of each scheme under different values of n and t to understand its
scalability. Throughput is defined as the number of blocks verified per time unit, and is measured
by dividing k (the number of blocks generated per epoch) by the average verification time (to be
measured) of the n nodes. For PolyShard, the verification time also includes the time each node
spent on encoding the blocks. However, since the encoding time is a constant, whilst the balance
summation time increases with t as the chain becomes longer, it is expected that the encoding time
is becoming negligible.

We note that the storage efficiency and security level of each scheme are decided by system
parameters and, thus, do not need measurements.

We simulate this system for t = 1000 epochs, using different number of shards k ∈ [5, 50].
Each shard manages M = 2000 clients. We fix the ratio n/k = 3. Thus, the number of nodes is
n ∈ [15, 150]. We plot the relation between t and throughput when n = 150 in Figure 5.3, and the
relation between n and throughput when t = 1000 in Figure 5.4.

Results and discussions

1. Throughput: As expected, PolyShard provides the same throughput as uncoded sharding,
which is about K times of the throughput of full replication. From Figure 5.3, we observe
that the throughput of all three schemes drops as the time progresses. This is because that
the computational complexity of verifying a block increases as more blocks are appended to
each shard. In terms of scalability, Figure 5.4 indicates that the throughput of PolyShard

90 CHAPTER 5. POLYSHARD: SCALABLE STORAGE AND COMPUTATION

Figure 5.3: Throughput of the three verification schemes; here number of nodes n =150.

Figure 5.4: Throughput of the three verification schemes; here number of epochs t =1000.

5.6. DISCUSSION 91

and uncoded sharding both increases linearly with the network size n (and k), whilst the
throughput of full replication almost stays the same.

2. Storage: It is straightforward to see that PolyShard provides the same storage gain over full
replication as uncoded sharding, with a factor of k. Thus, PolyShard and uncoded sharding are
scalable in storage, but full replication is not (Table 5.1).

3. Security (# of malicious nodes that can be tolarated): Full replication can tolerate up to
50% of malicious nodes, achieving the maximum security level βfull = n

2 . The error-correcting
process of PolyShard provides robustness to βPolyShard = n−k

2 = n−n/3
2 = n

3 malicious nodes.
In contrast, under uncoded sharding, each shard is only managed by 3 nodes. Thus, its security
level is only 1 regardless n, which is not scalable (Table 5.2).

N 15 30 60 90 120 150
γfull 1 1 1 1 1 1

γsharding 5 10 20 30 40 50
γPolyShard 5 10 20 30 40 50

Table 5.1: Storage of the three schemes under different network size n.

N 15 30 60 90 120 150
βfull 7 15 30 45 60 75

βsharding 1 1 1 1 1 1
βPolyShard 5 10 20 30 40 50

Table 5.2: Security of the three schemes under different network size n.

In summary, PolyShard outperforms both full replication and uncoded sharding because it is
the only scheme that can simultaneously 1) alleviate the storage load at each node; and 2) boost the
verification throughput by scaling out the system, and 3) without sacrificing the safety requirement
even when the number of adversaries also grows with network size.

5.6 Discussion

In this section, we discuss how PolyShard fits into the overall architecture of a contemporary
blockchain system.

5.6.1 Integration into blockchain systems

We note that Polyshard has so far been described in a simple setting where each shard produces one
block in lock-step. We highlight one instantiation of how Polyshard could fit into the architecture
of an existing blockchain system, which combines a standard sharding method for proposal followed
by Polyshard for finalization. The K shards are obtained by assigning users to shards via a
user-assignment algorithm. The N nodes are partitioned into K shards using a standard sharding
system (see [106]). Inside of the shard, the nodes run a standard blockchain along with a finalization
algorithm to get a locally finalized version of the block.

92 CHAPTER 5. POLYSHARD: SCALABLE STORAGE AND COMPUTATION

Each node is also assigned a coded shard via a coded-shard-assignment algorithm, which assigns
a random field element αi ∈ F to a node so that the node can compute which linear combination it
will use for coding. We point out here that it is easy to handle churn (users joining and leaving)
by this method if the size of the finite field F is much larger than N - since at this point, the
probability of collision (two users getting assigned the same field element) becomes negligible. Thus
each node plays a role in both an uncoded shard as well as a coded shard, thus its storage requirement
will be doubled; however, our system still has storage efficiency scaling with N . The Polyshard
algorithm now gets the locally finalized blocks from the different shards at regular intervals and it
acts as a global finalization step performing coded validation at the level of the locally finalized
blocks. We point out that users requiring high trust should wait for this global finalization stamp
before confirming a payment, whereas users requiring short latency can immediately utilize the
local-finalization for confirmation.

Beyond the aforementioned issues, there may be cross-shard transactions present in the system,
which are payments or smart contracts with inputs and outputs distributed across multiple shards.
In such a case, we will use a locking-based method, which locks the payment at the source shard
and produces a certificate to the destination shard so that the amount can be spent; this idea has
been proposed as well as implemented in Elastico [118] and Omniledger [106].

5.6.2 Modelling cross-shard transactions

So far we have focused on verifying blocks within individual shards. One way to model the cross-shard
transactions is that for each incoming block, we compute the verification function over all shards.
Specifically, for an incoming block Xk(t) submitted to shard k in time t, we generate a particular
verification function f tk for Xk(t). Instead of being an argument of the verification function, Xk(t)
has now become one of the components that define f tk. To verify Xk(t) across shards, we need to
compute (f tk(Y

t−1
1), f tk(Y

t−1
2), . . . , f tk(Y

t−1
K)), and use all these results to decide if Xk(t) is valid or

not. The proposed PolyShard scheme can be easily adapted to be used in this model.

5.6.3 Relationship to verifiable computing

An alternative paradigm for accelerating computing in blockchain is verifiable computing [80, 33,
135, 30, 27], where a single node executes a set of computations (for example, payment validation)
and integrity of these computations are then cryptographically certified. A major difference between
our framework and verifiable computing is that our scheme is information-theoretically secure
against a computationally unbounded adversary as against the computational security offered by
verifiable-computing schemes. However, verifiable computing schemes can provide zero-knowledge
proofs, whereas our scheme does not offer zero-knowledge capability. Finally, verifiable computing is
relevant in an asymmetric setting, where one computer is much more powerful than the others, unlike
Polyshard which is designed for a symmetric setup comprising of equally powerful and decentralized
nodes.

5.6.4 Future research directions

Polyshard currently works with polynomials whose degree scales sub-linearly with the number of nodes.
An interesting direction of future work is to remove this limitation. In particular, computations that
can be represented as low-depth arithmetic circuits can be implemented iteratively using low-degree
polynomials. Another important direction of future research is the design of validation schemes that
can be represented as low-degree polynomials or low-depth arithmetic circuits.

5.7. ACKNOWLEDGEMENT 93

Since the encoding and decoding processes involve polynomial evaluation and interpolation, the
main advantage of verifiable computing schemes is to enable utilizing efficient polynomial algorithms,
by performing all the coding operations at a single node. For example, for a single node to generate all
coded blocks X̃1(t), X̃2(t), . . . , X̃N (t), it can use fast multi-point polynomial evaluation algorithms to
evaluate ut(z) at the points α1, α2, . . . , αN with a computational complexity O(N log2N log logN)
(see, e.g., [17, 180]), instead of O(NK) using PolyShard. An interesting future research direction is
to develop verifiable computing schemes for PolyShard that achieve a total coding overhead that
scales (almost) linearly with the network size N .

5.7 Acknowledgement

The authors thank S. Li, and M. Yu for collaborations on the design of Polyshard. This chapter
includes and expands on material in [115].

94 CHAPTER 5. POLYSHARD: SCALABLE STORAGE AND COMPUTATION

Chapter 6

Spider: Efficient Routing for Payment
Channel Networks

Mohammad Alizadeh, MIT
Giulia Fanti, CMU

Pramod Viswanath, UIUC

Today’s cryptocurrencies have poor transaction throughput and slow confirmation times. Bitcoin
supports 3-7 transactions per second and takes tens of minutes to confirm a transaction [178]. By
comparison, established payment systems like Visa process thousands of transactions per second with
a delay of a few seconds [178]. Further, high transaction costs make current blockchains impractical
for micropayments. The median Bitcoin transaction fee regularly exceeds $1 and reached $34 in
December 2017 [2].

Payment channel networks are a promising solution to these scalability challenges. A payment
channel is a blockchain transaction that escrows a given user Alice’s money in order to enable
future transactions to a specific recipient (Bob), much like a gift card. Once Alice opens a payment
channel to Bob, she can transfer funds repeatedly and securely without recording every transaction
on the blockchain. After some time, Alice or Bob can close the payment channel and record only
the final state of the channel, rather than the full sequence of transactions. A payment channel
network consists of bidirectional payment channels between pairs of participants (e.g., end-users,
merchants). By routing payments through intermediate payment channels, two users can seamlessly
transfer funds even if they do not share a direct payment channel. First proposed in the Lightning
Network [143], payment channel networks have attracted considerable interest in the cryptocurrency
community [91, 173, 121]. Multiple implementations are under development (e.g., Bitcoin’s Lightning
Network [143], Ethereum’s Raiden Network [10]). In July 2018, a pilot program started to allow
over 100 merchants to accept payments over the Lightning Network [51].

Payment channel networks route cryptocurrency, not data, but their design presents several
technical and economic challenges familiar to communication networks. First, payment channel
networks require efficient network protocols to find paths for payments and to deliver them with
high throughput and low delay. Efficient networking is essential to the economic viability of payment
channel networks, as it directly impacts the amount of capital that needs to be escrowed in payment
channels to support a certain transaction throughput. Second, the network must provide the right
economic incentives to both end-users, who desire low transaction fees, and service providers, who

95

96 CHAPTER 6. SPIDER: EFFICIENT ROUTING FOR PAYMENT CHANNEL NETWORKS

wish to maximize their profits from routing payments. Third, the network should ensure the privacy
of user transactions.

Although some of these design challenges are similar to communication networks, current
networking solutions for payment channel networks are primitive compared to more mature networks
like the Internet. For example, to make a payment in the Lightning Network, senders must first find
a path with enough funds to fully satisfy the payment. This approach resembles “circuit switching”
in early analog telephone networks, where, to make a call, telephone exchanges first had to establish
a dedicated wire circuit between two telephones. Circuit switching has long been recognized to be
inefficient in communication networks, as it prevents effective multiplexing of network bandwidth
between different users and applications. Similarly, in payment channel networks, circuit switching
makes it difficult to use payment channel funds effectively to transfer a mix of large and small
payments. This is but one example where payment channel networks can benefit from lessons learned
in the design of the Internet.

In this chapter, we revisit the design of payment channel networks in view of the decades of
research that has led to the development of modern communication networks. We have two primary
goals. First, we formalize central design problems such as routing and scheduling transactions in
payment channel networks. Our analysis characterizes fundamental limits on key metrics, such
as transaction throughput as a function of network parameters, such as the transaction pattern,
network topology, amount of funds escrowed, etc., and provides a foundation for evaluating different
network designs. Second, we use the insights from this analysis to propose Spider, a new network
architecture designed from the ground up for payment channel networks.

Spider has several features that substantially improve its performance compared to existing
payment channel networks. First, it uses packet switching: senders break up payments into transaction
units and transmit them across different network paths over a period of time. Second, Spider uses a
custom transport layer for payments that performs congestion control and reliable delivery functions
analogous to the Transmission Control Protocol (TCP) [95, 46] protocol in the Internet. Third,
Spider routers queue transaction units when they lack the funds to send them immediately, and use
scheduling algorithms to decide in what order to service different transactions, similar to how routers
in a data network share link bandwidth between different traffic flows when their rate exceeds link
capacity. By combining congestion control and intelligent in-network payment scheduling, Spider
achieves high utilization of payment channel funds while supporting a variety of classes of service for
payment delivery (e.g., atomic and non-atomic payments with different deadlines). Lastly, Spider
uses novel imbalance-aware routing algorithms that proactively rebalance payment channels. By
incorporating imbalance mitigation explicitly into its routing, Spider minimizes the need for making
expensive and slow on-chain transactions to rebalance payment channels.

6.1 Background

6.1.1 Payment Channels

Bidirectional payment channels are the building blocks of a payment channel network. A bidirectional
payment channel allows a sender (Alice) to send funds to a receiver (Bob) and vice versa. To open a
payment channel, Alice and Bob jointly create a transaction that escrows money for a fixed amount
of time [143]. Suppose Alice puts three units in the channel, and Bob puts four (Fig. 6.1). Now, if
Bob wants to transfer one token to Alice, he sends her a cryptographically-signed message asserting
that he approves the new balance. This message is not committed to the blockchain; Alice simply
holds on to it. Later, if Alice wants to send two tokens to Bob, she sends a signed message to Bob
approving the new balance (bottom left, Fig. 6.1). This continues until one party decides to close

6.2. RELATED WORK 97

Figure 6.1: Bidirectional payment channel between Alice and Bob. A blue, shaded block indicates a
transaction that is committed to the blockchain.

the channel, at which point they publish the latest message to the blockchain asserting the channel
balance. If one party tries to cheat by publishing an earlier balance, the other party can override
it with the signed message reflecting the later balance. Because intermediate transactions are not
committed to the blockchain, Alice and Bob can transact many times without paying blockchain
fees or waiting for long confirmation times.

6.1.2 Payment Channel Networks

A payment channel network is a collection of bidirectional payment channels (Fig. 6.2). If Alice
wants to send three tokens to Bob, she first finds a path to Bob that can support three tokens of
payment. Intermediate nodes on the path (Charlie) will relay payments to their destination. Hence
in Fig. 6.2, two transactions occur: Alice to Charlie, and Charlie to Bob. To incentivize Charlie to
participate, he receives a routing fee. To prevent him from stealing funds, a cryptographic hash lock
ensures that all intermediate transactions are only valid after a transaction recipient knows a private
key generated by Alice [143]. Once Alice is ready to pay, she gives that key to Bob; he can either
broadcast it (if he decides to close the channel) or pass it to Charlie. In either case, Charlie learns
the key, and he is incentivized to pass it upstream to Alice so that he can also get paid. To ensure
that Charlie has enough time to claim his reward, transactions have expiration times that decrease
at each hop (see [143] for details). When all participants cooperate, the payment occurs entirely
off-chain and is very fast (limited only by network latency). The blockchain serves primarily as a
settlement layer to close payment channels and to resolve disputes.

6.2 Related Work

The Lightning Network [143] was the first to show how cryptographic primitives like hashed timelock
contracts enable the construction of secure payment channel networks for Bitcoin. Several projects
have since developed payment channel networks for other cryptocurrencies using similar primitives
(e.g., Ethereum’s Raiden Network [10]).

An important problem for a payment channel network is how to choose routes for transactions. In
the Lightning Network, each node keeps a routing table for the rest of the network and source-routes
transactions [143]. The Lightning network nodes run a link-state routing protocol [47] to build their
routing tables: they broadcast information about payment channels to the network, enabling each
node to maintain a local view of the network topology. The Lightning Network specification does
not state how nodes should pick routes using the topology; current implementations use simple

98 CHAPTER 6. SPIDER: EFFICIENT ROUTING FOR PAYMENT CHANNEL NETWORKS

Figure 6.2: In a payment channel network, Alice can transfer money to Bob by using intermediate
nodes’ channels as relays. There are two paths from Alice to Bob, but only the path (Alice, Charlie,
Bob) can support 3 tokens.

shortest path algorithms. Additionally, the Lightning Network uses onion routing [85] to provide
privacy. Specifically, onion routing ensures that intermediate routers cannot determine the source
and destination of a payment.

The routing problem has recently begun to receive some attention in the research literature. A key
benchmark is the max-flow routing algorithm [76]. For each transaction, max-flow uses a distributed
implementation of the Ford-Fulkerson method to find source-destination paths that support the
largest transaction volume. If this volume exceeds the transaction value, the transaction succeeds.
Max-flow routing is often considered the gold standard in terms of throughput and transaction
success rate, but it has high overhead, requiring O(|V | · |E|2) computation per transaction, where
|V | and |E| are the number of nodes and edges in the network, respectively [184].

Two main alternatives have been proposed: landmark routing and embedding-based routing. In
landmark routing, select routers (landmarks) store routing tables for the rest of the network; hence
individual nodes only need to route transactions to a landmark [174]. This approach is used in
systems like Flare [145] and SilentWhispers [119, 128]. Embedding-based or distance-based routing
instead learns a vector embedding for each node, such that nodes that are close in network hop
distance are also close in embedded space. Each node relays each transaction to the neighbor whose
embedding is closest to the destination’s embedding. Systems like VOUTE [152] and SpeedyMurmurs
[153] use embedding-based routing. One challenge is computing and updating the embedding as the
graph and link balances change over time.

6.3 Imbalance-Aware Routing

The key to effective routing in payment channel networks is to keep payment channels balanced. A
payment channel becomes imbalanced when the transaction rate across it is higher in one direction
than the other; the party making more payments eventually runs out of funds and cannot send
further payments until it either receives funds from the other side, or it deposits new funds into the
payment channel via an on-chain transaction. Since on-chain transactions are expensive and slow, it
is desirable to avoid them as much as possible.

In this section, we take a first-principles approach to routing with rate-imbalance constraints.
We first answer the question: What is the maximum achievable throughput in a payment channel
network with and without on-chain rebalancing transactions? We use a fluid model of the network,
wherein transactions between source, destination pairs are modeled as continuous flows, to show that
the maximum achievable throughput depends on properties of a payment graph that captures how

6.3. IMBALANCE-AWARE ROUTING 99

3 5

1

4

2

2 2

1

1 2

1

2

1

(a) Payment graph

45

321

(b) Shortest-path routing

45

321

(c) Optimal balanced routing

Figure 6.3: Example illustrating balanced routing. (a) The payment graph shows the desired
transaction rates between pairs of nodes. (b) and (c) The maximum transaction rate achievable with
shortest-path routing and the optimal balanced routing schemes on the topology shown. Each dotted
edge represents 1 unit of flow along the direction of the arrow. The colors indicate separate flows.

currency flows between network participants in Section 6.3.2.2. We formulate optimization problems
for routing with rate-imbalance constraints. These optimization problems generalize classical
network utility maximization [169] formulations for routing and rate control in communication
networks [98, 62]. We discuss how dual decomposition of these optimization problems leads naturally
to decentralized algorithms for imbalance-aware routing in payment channel networks in Section
6.3.3.

6.3.1 A Motivating Example

To illustrate the importance of balanced routing, consider the 5-node payment-channel network
shown in Fig. 6.3. Suppose sender, receiver pairs seek to transact at the rates shown in Fig. 6.3a.
For example, node 1 wishes to send at rate 1 to nodes 2 and 5, and node 2 wishes to send at rate 2
to node 4. Fig. 6.3 shows two different routing strategies under these demands for a specific network
topology. In each case, we impose the constraint that the net rate in either direction of any edge
must be equal to ensure that payment channels do not run out of funds.

Fig. 6.3b shows the result for shortest-path balanced routing, wherein senders route only along
the shortest path to their receiver nodes. For example, node 4 routes a flow of rate 1 along the path
4→ 2→ 1 (shown in green). The maximum total rate (throughput) that can be sent by this routing
scheme is 5 units; any rate assignment offering a higher throughput does not satisfy the rate-balance
constraints. However, an alternate routing scheme of Fig. 6.3c in which senders do not necessarily
send along the shortest paths achieves a higher throughput of 8 units. Here, node 2 sends a flow of
rate 1 along the path 2→ 3→ 4, while the shortest path is 2→ 4. This enables nodes 3 and 4 to
also send 1 unit of flow to nodes 2 and 3 respectively.

6.3.2 Limits on Throughput

6.3.2.1 Fluid Model

Consider the payment channel network modeled as a graph G(V,E), with routers V and payment
channels E. For any source, destination routers i, j ∈ V , let di,j ≥ 0 denote the average rate at
which transaction units have to be transferred from i to j. Let ce denote the total amount of funds
in channel e, for e ∈ E, and ∆ the average latency experienced by transactions due to network
delays. Lastly, let Pi,j denote the set of paths from i to j in G, for i, j ∈ V . We include only ‘trails’,
i.e., paths without repeated edges, in Pi,j .

100 CHAPTER 6. SPIDER: EFFICIENT ROUTING FOR PAYMENT CHANNEL NETWORKS

The network attempts to satisfy the demands di,j by sending flows from source to destination
routers. A flow is defined by a (path, value) tuple, where path denotes the route taken and value
denotes the rate carried by the flow. Operationally this can be interpreted as routing transactions
along the flow’s path such that the average rate of currency transferred along the path equals the
value of the flow.

Valid flows must obey two main constraints. First, payment channels are limited in their capacity
to process a large rate of transactions, because funds allocated to a transaction are unavailable for
use in other transactions for some amount of time. Assume it takes ∆ seconds on average for a
transaction to reach its destination, get confirmed, and its hash lock key to reach a payment channel
on the upstream path. Then a payment channel with c units of capacity can support, on an average,
transactions of net value no more than c/∆ currency units per second. Second, to maintain balance
the total flow along the two directions of a payment channel must be the same. If the flows are
not balanced, the channel will eventually become unusable along one of the directions unless it is
periodically rebalanced via on-chain transactions (we revisit this possibility below).

With these constraints, maximizing throughput in the fluid model is equivalent to finding flows
of maximum total value and can be formulated as a Linear Program (LP):

maximize
∑
i,j∈V

∑
p∈Pi,j

xp (6.1)

s.t.
∑
p∈Pi,j

xp ≤ di,j ∀i, j ∈ V (6.2)

∑
p∈P:(u,v)∈p

xp +
∑

p∈P:(v,u)∈p

xp ≤
c(u,v)

∆
∀(u, v) ∈ E (6.3)

∑
p∈P:(u,v)∈p

xp −
∑

p∈P:(v,u)∈p

xp ≤ 0 ∀(u, v) ∈ E (6.4)

xp ≥ 0 ∀p ∈ P, (6.5)

Here, xp denotes the flow along path p and P = ∪i,j∈V Pi,j is the set of all paths. The constraints in
eq. (6.3) reflect the capacity limits of payment channels, and the constraints in eq. (6.4) enforce the
balance requirement.

6.3.2.2 Throughput under Perfect Balance

Next, we show that the maximum throughput achievable under perfect balance is fundamentally
restricted by the structure of demand [d]i,j across nodes. Specifically the maximum throughput
possible is equal to the largest amount of “circulation” contained in the demands, with higher
throughputs possible only if payment channels are rebalanced via on chain transactions.
Payment graphs and circulation. Define a payment graph H(V,EH) as a weighted directed
graph with nodes V and edges EH . An edge (i, j) ∈ EH if di,j > 0 with di,j also being the weight
of that edge. Payment graphs do not depend on the network topology; they depend only on the
pattern of payments between the network nodes. Payment graphs are useful for analyzing throughput
because any flow imbalance across cuts of H cannot be balanced by any routing scheme in the
payment channel network G. Fig. 6.4a shows the payment graph for the example discussed in Section
6.3.1.

We define the circulation graph of a payment graph H as another directed weighted graph
C(V,EC) with EC ⊆ EH , wC(i, j) ≤ wH(i, j) for all (i, j) ∈ EC , and the total weight of incoming
and outgoing edges being equal at any node. wC(i, j), wH(i, j) denote edge weight of edge (i, j) in

6.3. IMBALANCE-AWARE ROUTING 101

3 5

1

4

2

2 2

1

1 2

1

2

1

(a) Payment graph

3 5

1

4

2

2 1

1

1 1

1

1

(b) Circulation

3 5

1

4

2

1

1

1

1

(c) DAG

Figure 6.4: Payment graph corresponding to the demands in the example of Fig. 6.3. It decomposes
into a maximum circulation and DAG components as shown in (b) and (c).

graphs C, H respectively. The circulation graph captures flows that form cycles in the payment graph.
Letting

∑
(i,j)∈EC wC(i, j) be the total value ν(C) of the circulation, there exists a circulation graph

C∗ of maximum value for a given payment graph H. Maximum circulation graphs are not necessarily
unique. A maximum circulation graph C∗ can be constructed by successively removing cycles of
constant flow from H, and adding them to C∗. The graph remaining after removing all cycles from
H is a weighted directed acyclic graph (DAG). Figures 6.4b and 6.4c show the decomposition of the
payment graph of Fig. 6.4a into circulation and DAG components.

Proposition 1. For a payment graph H with a maximum circulation graph C∗, there exists a routing
scheme that achieves a throughput of ν(C∗) with perfect balance (i.e., B = 0) on a network with
payment channels of unlimited capacity. Conversely, no routing scheme can achieve a throughput
greater than ν(C∗) with perfect balance on any network.

Proof. To see that a throughput of ν(C∗) is achievable, consider routing the circulation along any
spanning tree T of the payment network G. For any pair of nodes i, j ∈ V there exists a unique
path from i to j in T through which wC∗(i, j) amount of flow can be routed. We claim that such a
routing scheme is perfectly balanced on all the links. This is because for any partition S, V \S of C∗,
the net flow going from S to V \S is equal to the net flow going from V \S to S in C∗. Since the
flows along an edge e of T correspond precisely to the net flows across the partitions obtained by
removing e in T , it follows that the flows on e are balanced as well.

Next, to see that no balanced routing scheme can achieve a throughput greater than ν(C∗),
assume the contrary and suppose there exists a balanced routing scheme SCH with a throughput
greater than ν(C∗). Let HSCH ⊆ H be a payment graph where the edges represent the portion of
demand that is actually routed in SCH. Since ν(HSCH) > ν(C∗), HSCH is not a circulation and there
exists a partition S, V \S such that the net flow from S to V \S is strictly greater than the net flow
from V \S to S in HSCH. However, the net flows routed by SCH across the same partition S, V \S in
G are balanced (by assumption) resulting in a contradiction. Thus we conclude there does not exist
any balanced routing scheme that can achieve a throughput greater than ν(C∗).

Proposition 1 shows that the maximum achievable throughput in a payment channel network
with perfect balance can be less than 100% if the demands for payments between nodes do not define
a circulation. For example, the routing presented in Fig. 6.3c corresponds precisely to routing the
maximum circulation component of the payment graph (Fig. 6.4b) and is hence optimal. Yet it is

102 CHAPTER 6. SPIDER: EFFICIENT ROUTING FOR PAYMENT CHANNEL NETWORKS

only able to route 8/12 = 75% of the demands in the payment graph. The DAG component is not
routable without violating the balance constraints.

Using payment channels with higher capacity can mitigate problems caused by rate imbalance,
but it cannot solve it fundamentally. A payment channel with more funds can sustain rate imbalance
for a longer period of time, but it will eventually run out of funds if the rate imbalance persists. To
remain usable in both directions, such a payment channel will have to be repeatedly rebalanced via
on-chain transactions. In current implementations, rebalancing requires closing a payment channel
and reopening a new one. However, two nodes can in principle use multiple smaller payment channels
instead of a single large payment channel, so that they can rebalance them one at a time.

We next consider the possibility of such on-chain rebalancing and analyze its impact on throughput
in the fluid model.

6.3.2.3 Throughput with On-Chain Rebalancing

We model on-chain payment channel rebalancing using variables b(u,v), which is the average rate at
which payment channel (u, v) receives new funds in the u→ v direction via on-chain transactions.
These funds would typically be withdrawn from another payment channel on which node u is
receiving more than it is sending. A positive rebalancing rate on some payment channels (b(u,v) > 0)
can improve network throughput beyond the upper bound presented in Proposition 1. However,
rebalancing channels on chain is expensive for the routers both in time (due to transaction confirmation
delays) and in transaction fees (paid to the miners). Thus routers may be unwilling to actively
rebalance their payment channels unless the profit obtained from the higher throughput is sufficient
to offset the rebalancing costs.

We leave a full analysis of incentives for routers to future work, but we now consider a simple
modification to the previous optimization problem to understand the impact of on-chain rebalancing:

maximize
∑
i,j∈V

∑
p∈Pi,j

xp − γ
∑

(u,v)∈E

b(u,v) (6.6)

s.t.
∑
p∈Pi,j

xp ≤ di,j ∀i, j ∈ V (6.7)

∑
p∈P:(u,v)∈p

xp +
∑

p∈P:(v,u)∈p

xp ≤
c(u,v)

∆
∀(u, v) ∈ E (6.8)

∑
p∈P:(u,v)∈p

xp −
∑

p∈P:(v,u)∈p

xp ≤ b(u,v) ∀(u, v) ∈ E (6.9)

xp ≥ 0 ∀p ∈ P (6.10)
b(u,v) ≥ 0 ∀(u, v) ∈ E. (6.11)

The objective function in the problem above consists of two terms. The first term is the total
throughput, which we would like to maximize. The second term is the “cost” of on-chain rebalancing
at a total rate of

∑
(u,v)∈E b(u,v), which we would like to minimize. The parameter γ dictates how we

weigh these two conflicting goals. We can interpret γ as the increase in throughput required to offset
one unit of on-chain rebalancing rate. In practice, γ would depend on a variety of factors, such as
the ratio of blockchain transaction fees to routing fees and how the transaction fees are computed.
For example, if blockchain transaction fees do not depend on transaction size, routers can reduce the
cost of rebalancing by using larger transactions, thereby effectively reducing γ in the above model.

We now analyze how on-chain rebalancing impacts throughput. Let B ,
∑

(u,v)∈E b(u,v) be
the total rate of on-chain rebalancing, and let’s assume for simplicity that the payment channel

6.3. IMBALANCE-AWARE ROUTING 103

capacities are unlimited. For large γ, B will be close to 0 in the optimal solution. From Proposition 1,
we know that the maximum achievable throughput in this case is ν(C∗). On the other hand, for
γ ≈ 0, B can become arbitrarily large. It is not difficult to see that the network throughput can
satisfy all of the demand

∑
i,j di,j in this case, provided that the links have sufficient capacity (i.e,

if the constraints (6.8) are not tight). In general, as γ decreases, the total throughput and total
rebalancing rate both increase in the optimal solution, until the throughput reaches the maximum
possible throughput given the capacity constraints.

We can show that the maximum achievable throughput is a non-decreasing concave function
of the total rebalancing rate. The argument is as follows. Let t(B) be the maximum achievable
throughput for a bound B on the total rebalancing rate. t(B) is the solution of the following
optimization problem:

maximize
∑
i,j∈V

∑
p∈Pi,j

xp (6.12)

s.t.
∑
p∈Pi,j

xp ≤ di,j ∀i, j ∈ V (6.13)

∑
p∈P:(u,v)∈p

xp +
∑

p∈P:(v,u)∈p

xp ≤
c(u,v)

∆
∀(u, v) ∈ E (6.14)

∑
p∈P:(u,v)∈p

xp −
∑

p∈P:(v,u)∈p

xp ≤ b(u,v) ∀(u, v) ∈ E (6.15)

∑
(u,v)∈E

b(u,v) ≤ B (6.16)

xp ≥ 0 ∀p ∈ P (6.17)
b(u,v) ≥ 0 ∀(u, v) ∈ E. (6.18)

t(·) is non-decreasing because the set of feasible solutions is non-decreasing in B. To see that
t(·) is concave, consider arbitrary B1 and B2 and θ ∈ (0, 1). Let {(x1

p, b
1
(u,v)) : p ∈ P, (u, v) ∈ E}

and {(x2
p, b

2
(u,v)) : p ∈ P, (u, v) ∈ E} be the optimal solutions corresponding to B1 and B2. Then

{(θx1
p + (1 − θ)x2

p, θb
1
(u,v) + (1 − θ)b2(u,v)) : p ∈ P, (u, v) ∈ E} is a feasible solution for bound

θB1 + (1− θ)B2, and it achieves a throughput of θt(B1) + (1− θ)t(B2). Hence, t(θB1 + (1− θ)B2) ≥
θt(B1) + (1− θ)t(B2), and t(·) is concave.

6.3.3 Algorithms

In this section, we derive decentralized algorithms for routing and rate control in payment channel
networks based on the previous optimization problems. These algorithms follow naturally from
a dual decomposition of the optimization problems and have the following basic structure. Each
payment channel has a price in each direction. Routers locally update these prices based on both
congestion and imbalance across payment channels. To select paths, end-hosts monitor the total
price of different paths and choose the cheapest options. Using dual variables for prices is common
in the utility-maximization-based rate control and routing literature (e.g., see [98]). A key difference
from prior work, however, is that in addition to price variables for link capacity constraints, we also
have price variables for link balance constraints. This ensures that links with skewed balances have
a high price and helps steer the routing towards rebalancing the payment channels.

We focus on the optimization problem in eqs. (6.6)–(6.11) for the general case with on-chain
rebalancing. The algorithm without on-chain rebalancing is a special case.

104 CHAPTER 6. SPIDER: EFFICIENT ROUTING FOR PAYMENT CHANNEL NETWORKS

Consider the partial lagrangian:

L(x,b, λ, µ) =
∑
i,j∈V

∑
p∈Pi,j

xp − γ
∑

(u,v)∈E

b(u,v)

−
∑

(u,v)∈E

λ(u,v)

 ∑
p∈P:(u,v)∈p

xp +
∑

p∈P:(v,u)∈p

xp −
c(u,v)

∆

−

∑
(u,v)∈E

µ(u,v)

 ∑
p∈P:(u,v)∈p

xp −
∑

p∈P:(v,u)∈p

xp − b(u,v)

 , (6.19)

where λ(u,v) and µ(u,v) are Lagrange variables corresponding to the capacity and rate-imbalance
constraints in eq. (6.8) and eq. (6.9) respectively. The partial Lagrangian can be rewritten as:

L(x,b, λ, µ) =
∑
i,j∈V

 ∑
p∈Pi,j

xp −
∑
p∈Pi,j

xp
∑

(u,v)∈p

(
λ(u,v) + λ(v,u) + µ(u,v) − µ(v,u)

)
+

∑
(u,v)∈E

(
µ(u,v) − γ

)
b(u,v) +

∑
(u,v)∈E

λ(u,v)

c(u,v)

∆
. (6.20)

Define z(u,v) , λ(u,v)+λ(v,u)+µ(u,v)−µ(v,u) to be the price for edge (u, v) ∈ E, and zp ,
∑

(u,v)∈p z(u,v)

to be price for path p ∈ P . The important fact about the above partial lagrangian is that it decomposes
into separate terms for the rate variables of each source/destination pair {xp : p ∈ Pi,j}, and the
rebalancing rate of each edge b(u,v). This suggests the following primal-dual algorithm for solving
the optimization problem in eqs. (6.6)–(6.11):

• Primal step. Given the edge prices z(u,v)(t) at time t, for each source/destination pair (i, j),
update the sending rate on paths p ∈ P(i,j) as follows:

xp(t) = xp(t− 1) + α (1− zp(t)) ,
xp(t) = ProjXi,j (xp(t)), (6.21)

where ProjXi,j (·) stands for projection onto the convex set Xi,j = {xp for p ∈ Pi,j |xp ≥
0,
∑

p∈Pi,j xp ≤ di,j}.

At time t, each edge (u, v) also updates its on-chain rebalancing rate according to:

b(u,v)(t) =
[
b(u,v)(t− 1) + β

(
µ(u,v)(t)− γ

)]
+
, (6.22)

where [·]+ , max(·, 0).

• Dual step. In the dual step, the routers update the edge prices based on capacity and
imbalance constraints at the payment channels. Specifically, each edge performs the following
updates independently:

λ(u,v)(t+ 1) =

λ(u,v)(t) + η

 ∑
p∈P:(u,v)∈p

xp(t) +
∑

p∈P:(v,u)∈p

xp(t)−
c(u,v)

∆

+

, (6.23)

µ(u,v)(t+ 1) =

µ(u,v)(t) + κ

 ∑
p∈P:(u,v)∈p

xp(t)−
∑

p∈P:(v,u)∈p

xp(t)− b(u,v)

+

. (6.24)

6.4. THE SPIDER NETWORK 105

The parameters α, β, η, κ are positive “step size” constants that determine the speed of the
dynamics. Using standard arguments, it can be shown that for sufficiently small step sizes, the above
algorithm converges to the optimal solution of the optimization problem in eqs. (6.6)–(6.11).

The algorithm has the following intuitive interpretation: λ(u,v) and µ(u,v) are prices that vary
due to capacity constraints and imbalance at the payment channels. In eq. (6.23), λ(u,v) increases
if the net rate across the payment channel (u, v) (in both directions) exceeds its capacity, and it
decreases down to zero if there is excess capacity. Similarly, in eq. (6.24), µ(u,v) increases if the rate
in the (u, v) direction exceeds the rate in the (v, u) direction by more than b(u,v), the rate at which
funds are deposited for edge (u, v) on chain. As these prices vary, each source/destination pair reacts
by changing the sending rate on its paths according to eq. (6.21). The effect is to reduce the rate on
expensive paths and increase it on cheap paths. Simultaneously, each edge also adapts its on-chain
rebalancing rate based on eq. (6.22). If µ(u,v) > γ, the price charged for imbalance is higher than
the cost of on-chain rebalancing per unit rate. Hence the edge increases its on-chain rebalancing
rate b(u,v); otherwise it decreases it.

Finally, we note that in the absence of any on-chain rebalancing, the algorithm can be simplified
by setting b(u,v) = 0 for all edges (u, v).

6.3.3.1 Practical considerations

In practice, routers have to dynamically estimate the rate over their payment channels from the
transactions that they encounter. The source nodes, whenever they have to send transactions, query
for the path prices, and adapt the rate on each path based on these prices. This rate adaptation can
occur in different ways depending on the implementation. For example, in an implementation where
source nodes use only one path for routing each transaction, they can select these paths such that
the frequency of usage of different paths over time is roughly proportional to the optimal flow rate
along the paths. In the next section, we describe a design that allows more fine-grained rate control
by splitting transactions into small units that can be transmitted on different paths.

A typical challenge with such iterative algorithms for adjusting path prices and sending rates is
slow convergence. An algorithm that is slow to converge may not be able to adapt the routing to
changes in the transaction arrival pattern. If the transaction arrival patterns change frequently, this
may result in a perpetually suboptimal routing.

Therefore, in practice, it may be beneficial to also consider simpler approaches to balancing
transactions across different paths that can converge quickly. One such approach is for sources to
independently try to minimize imbalance on their paths by always sending on paths with the largest
available capacity, much like “waterfilling” algorithms for max-min fairness. A source measures the
available capacity on a set of paths to the destination. It then first transmits on the path with
highest capacity until its capacity is the same as the second-highest-capacity path; then it transmits
on both of these paths until they reach the capacity of the third highest-capacity-path, and so on.

For both types of algorithms, practical implementations would restrict the set of paths considered
between each source and destination, so that the overhead of probing the path conditions is not too
high. There are a variety of possible strategies of selecting these paths, e.g., the K shortest paths or
the K highest-capacity paths between every source/destination pair. We leave an investigation of
the best way to select the paths to future work.

6.4 The Spider Network

In current payment channel networks, the sender first finds one or more paths with enough funds
(“capacity”) to fully satisfy the payment, and only then transmits it by sending one transaction on

106 CHAPTER 6. SPIDER: EFFICIENT ROUTING FOR PAYMENT CHANNEL NETWORKS

each path. This approach is similar to circuit switching and has several drawbacks. First, it makes it
difficult to support large payments. If the sender cannot find paths to send the payment in one shot,
the payment fails. Second, it exacerbates imbalance on payment channels, since a large transaction
can deplete funds on one side of a payment channel. As discussed previously, the party that runs
out of funds cannot send more payments until it either receives payments from the other side, or it
replenishes funds via a transaction on the blockchain. The result is head of line blocking, where large
transactions can block shorter payments that could have been serviced quickly.

Spider is a packet-switched payment channel network that solves these problems. At a high-level,
Spider hosts send payments over the network by transmitting a series of transaction units, much like
packets in a data network. Each transaction unit transfers an amount of money bounded by the
maximum transaction unit (MTU). Transaction units from different payments are queued at Spider
routers, which transmit them as funds become available in payment channels.

6.4.1 Spider Hosts

Spider hosts run a transport layer that provides standard interfaces for applications to send and
receive payments on the network. We envision a message-oriented transport rather than a stream-
oriented transport like TCP. To send a payment, the application specifies the destination address,
the amount to send, a deadline, and the maximum acceptable routing fee.

The transport provides interfaces for both atomic and non-atomic payments. It guarantees that
atomic payments are either fully delivered or that no payment takes place. For non-atomic payments,
the transport is allowed to partially deliver the payment; it must then inform the sender precisely
how much it delivered by the deadline and ensure that no further transactions are made as part
of that payment. The sender can attempt the remainder of the payment at a later time, or decide
to complete the payment on the blockchain. As we will see, relaxing atomicity improves network
efficiency, and we therefore expect the routing cost for non-atomic payments to be cheaper.

Non-atomic payments. Recall that transactions are locked by a cryptographic hash lock, whose
private key is known only to the sender (S6.1). In Spider, the sender generates a new key for every
transaction unit. To implement non-atomic payments, the sender simply waits for confirmation
from the receiver that she has received a transaction unit (identified by a payment ID and sequence
number), and only then sends her the key. The sender therefore knows exactly how much of a
payment the receiver can unlock. It can withhold the key for “in-flight” transactions that arrive after
the deadline, or proactively cancel them by informing the routers.

Atomic payments. Spider is also compatible with atomic payments using recently-proposed
mechanisms like Atomic Multi-Path Payments (AMP) [1] that split a payment over multiple paths
while guaranteeing atomicity. The idea is to derive the keys for all the transaction units of a payment
from a single “base key,” and use additive secret sharing to ensure that the receiver cannot unlock
any of the transaction units until she has received all of them.

Congestion control. Spider hosts use a congestion control algorithm to determine the rate to
send transaction units for different payments. Designing congestion control algorithms for payment
channel networks is beyond the scope of this chapter, but we briefly remark on some interesting
aspects. Standard goals for congestion control in data networks such as high utilization, fairness,
and low delay also apply to payment channel networks. Additionally, transfers in payment channel
networks have deadlines, and therefore approaches that adapt congestion control to meet deadlines
are particularly relevant [175, 93]. To make congestion control decisions, hosts can use implicit
signals like delay or explicit signals from the routers (e.g., queue sizes, available capacity, imbalance,
etc.).

6.5. PRELIMINARY EVALUATION 107

rA→B

Available fundsRouter A Router B

rB→A

Pending funds

Figure 6.5: Routers queue transaction units and schedule them across the payment channel based
on available capacity and transaction priorities. Funds received on a payment channel remain in a
pending state until the final receiver provides the key for the hash lock.

A unique aspect of payment channel networks is that sending at higher rates does not always
reduce capacity for other payments, but may in fact improve performance for other payments
by promoting balance across payment channels. For example, if a sender discovers that payment
channels on certain paths have a high imbalance in the downstream direction, it may aggressively
increase its rate to balance those channels. Exploring imbalance-aware congestion control algorithms
is an interesting direction for future work.

6.4.2 Spider Routers

Spider routers are responsible for forwarding transaction units to the intended receiver. Existing
designs like the Lightning Network use Onion routing [85] to ensure privacy of user payments. Spider
routers can use similar mechanisms for each transaction unit to provide privacy [7].

A Spider router queues transaction units when it lacks the funds to send them immediately
(Fig. 6.5). As it receives funds from the other side of the payment channel, it uses them to send
new transaction units from its queue. Funds from new-arrived transaction units are not available
to use immediately. The router must wait until it receives the key for the hash lock from the final
destination. This delay limits the capacity of a payment channel. If a transaction takes on average ∆
seconds to confirm, then a payment channel with total funds c can support, on average, transactions
of net value no more than c/∆ currency units per second.

An important benefit of Spider’s packet-switched architecture is that the routers can schedule
transaction units based on payment requirements. For example, they can prioritize payments based
on size, deadline, or routing fees [18].

6.5 Preliminary Evaluation

6.5.1 Setup

Simulator. We modified an existing simulator for payment channel networks [12] to model trans-
action arrivals and completion events. Arriving transactions are routed according to the routing
algorithm as long as funds are available on the paths chosen by the algorithm. Payments that are
actually routed incur a delay of 0.5 seconds before the funds are available at the receiver. In the
meantime, these funds are held inflight and are unavailable for use by any party along the path. As
and when a transaction completes, these funds are released. The simulator supports non-atomic

108 CHAPTER 6. SPIDER: EFFICIENT ROUTING FOR PAYMENT CHANNEL NETWORKS

payments through a global queue that tracks all incomplete payments. These transactions are
periodically polled to see if they can make any further progress. They are then scheduled according
to a scheduling algorithm. We leave implementing in-network queues and rate control to future work.

Dataset. We evaluated the algorithms on two different topologies: an ISP-topology [5] and a
subgraph from the original topology of Ripple [11], an existing currency exchange network that
transacts in XRPs. The ISP topology is relatively simple allowing us to reason about the dynamics
of the system. We used a graph with 32 nodes and 152 edges and generated 200, 000 transactions to
send on it. The transactions were synthetically generated with the sizes sampled from Ripple data
after pruning out the largest 10%. The average transaction size for this dataset is 170 XRP with the
largest one being 1780 XRP. The sender for each transaction was sampled from the set of nodes
using an exponential distribution while the receiver was sampled uniformly at random. We set all
edges in the graph to have the same capacity, which we varied from 10000 XRP to 100000 XRP per
link in different experiments.

We also used data from the Ripple network from January 2013 [12]. The original dataset had
90,000 nodes and 330,000 edges. We pruned the dataset to remove the degree-1 nodes (which
don’t make routing decisions) as well as edges with no funds between them. The largest resulting
component had 3774 nodes and 12512 edges. The 75, 000 transactions from the original dataset that
are between nodes in this subgraph have an average size of 345 XRP with the largest transaction
size being 2892 XRP. Consequently, we set the capacity of all the links in the reduced Ripple graph
to 30000.

Schemes. We evaluate SpeedyMurmurs [153], SilentWhispers [119], and max-flow routing. All
of these schemes use atomic payments. We implemented shortest-path routing with non-atomic
payments as another baseline for our packet-switched network. We compared these schemes to
Spider (LP) and Spider (Waterfilling), the routing algorithms described in S6.3. Spider (LP) solves
the LP in Eq. (6.1) once based on the long-term payment demands and uses the solution to set a
weight for selecting each path. We restrict both algorithms to use 4 disjoint shortest paths for every
source-destination pair. All non-atomic payments are scheduled in order of increasing incomplete
payment amount, i.e. according to the shortest remaining processing time (SRPT) policy [18].

Metrics. We evaluate these routing schemes for their success ratio and success volume. The
former captures how many payments amongst those tried actually completed. The latter focuses on
the volume of payments that went through as a fraction of the total volume across all attempted
payments.

6.5.2 Results

We summarize our results in Fig. 6.6. The results were collected at the end of 200s for the ISP
topology and 85s for the Ripple topology. All the edges in both topologies were initialized with
a capacity of 30000 XRP, equally split between the two parties. We can see that splitting the
payments into transaction units and scheduling them according to SRPT already provides a 10%
increase in success ratio over SpeedyMurmurs and SilentWhispers even for the shortest path routing
scheme. Although Max-flow performs quite well, it has a high overhead per transaction as discussed
in Section 6.2. In comparison, Spider (Waterfilling) is able to leverage knowledge of imbalance to
perform within 5% of Max-flow despite being restricted to only 4 paths.

Spider (LP), on the other hand, attains a success volume of 52% and 22% for the ISP and
Ripple topologies respectively. Both of these correspond precisely to the circulation component of
the payment graph. This is because Spider (LP) uses an estimate of the demand matrix to make
decisions for the entire duration of the simulation. While this approach works for a stationary

6.5. PRELIMINARY EVALUATION 109

0

20

40

60

80

ISP Ripple

Topology

S
uc

ce
ss

 R
at

io
 (

%
)

Spider (LP)

Spider (Waterfilling)

Max−flow

Shortest Path

SilentWhispers

SpeedyMurmurs

0

10

20

30

40

50

ISP Ripple
Topology

Su
cc

es
s

Vo
lu

m
e

(%
)

Figure 6.6: Comparison of payments completed across schemes on the ISP and Ripple Topologies
when the capacity per link is 30,000

110 CHAPTER 6. SPIDER: EFFICIENT ROUTING FOR PAYMENT CHANNEL NETWORKS

Spider (Waterfilling) Max−flow Shortest Path Spider (LP) SilentWhispers SpeedyMurmurs

0

20

40

60

80

0 25000 50000 75000 100000
Capacity (XRP)

S
uc

ce
ss

 R
at

io
 (

%
)

0

20

40

0 25000 50000 75000 100000
Capacity (XRP)

S
uc

ce
ss

 V
ol

um
e

(%
)

Figure 6.7: Effect of increasing capacity per link on the success metrics when routing payments on
the ISP topology. All links in the network have the same credit.

transaction arrival pattern, as is the case with the ISP topology, it does not work too well for the
Ripple network in which the traffic demands vary over time. Further, the LP assigns zero flows to all
paths for certain commodities which means no payments between them will ever get attempted. We
plan to explore other objectives like proportional fairness [98] in the future to overcome this problem.
How does capacity impact success? We varied the capacity on each link in the ISP topology
from 10000 XRP to 100000 XRP and measured the success across the schemes. Fig. 6.7 summarizes
the results. As expected, as the capacity increases, more transactions start succeeding. The total
volume of successful transactions also experiences an increase. Additionally, to achieve a certain
success volume or success ratio, the amount of capital that needs to be locked in with Spider
(Waterfilling) is much lower than what would need to be invested in any other scheme. Spider (LP)
is less sensitive to changes in capacity, because it does a better job of avoiding imbalance.

6.6 Discussion and Future Work

This chapter proposes a new packet-switched architecture for payment channel networks. A first
step in sending transaction units through this network is the discovery of payment paths. To that
effect, we explored the benefits of imbalance-aware routing approaches in this paper. However, we
envision more potential gains from collaboration between routers and end-hosts. Spider routers have
information about transaction units belonging to payments across many sender-receiver pairs. This
can be leveraged for admission control. In other words, routers can decide payment priorities or
reject some extremely large transactions that are unlikely to complete within the deadline. On the
other hand, Spider end hosts could employ rate control strategies and their own admission control
policies influenced by feedback on payment completion rates or router hints.

Our routing algorithms suggest a way to set routing fees to maximize network throughput with
rational users that prefer cheaper routes. However, our design does not address incentives for network
service providers that wish to maximize their profits from routing fees. Further, we have assumed
routers do not inject additional funds into the payment channels after their initial escrow; however
routers have an incentive to periodically replenish funds if it leads to an overall increase in their
return on investment from routing fees. An analysis of economic incentives for network stakeholders

6.7. ACKNOWLEDGEMENT 111

is an exciting direction for future work.
Lastly, we have focused on optimizing payment delivery for a given network topology and payment

channel capacities. However, our results show fundamental limits to performance based on the flow
of currency across the network. Understanding how best to design network topology and influence
its formation in a decentralized payment channel network is an important area for investigation.

6.7 Acknowledgement

The authors thank V. Sivaraman and S. Venkatakrishnan for collaborations on the design of Spider.
This chapter includes and expands on material in [165].

112 CHAPTER 6. SPIDER: EFFICIENT ROUTING FOR PAYMENT CHANNEL NETWORKS

Chapter 7

Economics

Giulia Fanti, CMU
Leonid Kogan, MIT

Sewoong Oh, UW Seattle
Pramod Viswanath, UIUC

The economic properties of cryptocurrencies are of central interest to a payment system and the
focus of this chapter. Economic properties are closely intertwined with the specifics of the system
design; this is particularly true for proof-of-stake (PoS) cryptocurrencies. In this chapter, we focus
on three broad and connected issues related to the design of Unit-e: (i) valuation of cryptocurrencies
in the proof-of-stake setting, (ii) the selection of block rewards, and (iii) the selection and disbursal
of transaction fees. In particular, we highlight the delicate connection between these issues and our
overall design of Unit-e as a proof-of-stake (PoS) payment system.

This chapter has three contributions:

1. We present a theoretical valuation framework for PoS payment systems. Although cryptocurren-
cies can have applications beyond just payment processing, this framework gives us a concrete
lower bound for reasoning about the fiat valuation of Unit-e. Unlike PoW cryptocurrencies, the
first-order effect is no longer the cost of keeping the network running (i.e., mining). Instead,
token valuation stems from a combination of two factors: consumer demand for holding tokens,
and validator demand for holding tokens. The first term is inversely proportional to token
velocity, whereas the second term is proportional to the economic value of the aggregate
transaction fee flow. Our analysis provides an important input into various design decisions
in PoS systems, including monetary policy, rewards, transaction fees, and network security
mechanisms.

2. We study the effects of block rewards on user adoption and equity of rewards among block
proposers and validators. One key insight is that in PoS systems, severe stake imbalance can
arise from compounding in users’ stake pools, even if nodes are following protocol. That is, a
node that starts with a small fraction of stake can end up with an arbitrarily high fraction of
stake, simply due to randomness in the PoS proposal stage. We show theoretically that this
effect can be mitigated through two factors: choice of block reward function and size of the
initial stake pool. We prove the optimality (in terms of maximizing equitability) of a novel
geometric block reward function and advocate for starting with a large initial stake pool to
mitigate the effects of stake compounding.

113

114 CHAPTER 7. ECONOMICS

3. We discuss various transaction fee mechanisms, highlighting key tradeoffs of various design
choices in terms of supporting low congestion and stable valuations according to the models in
part (1).

We want to emphasize that valuation and incentive mechanisms are closely intertwined. Incentive
mechanisms play a dual role in the payment network: they elicit “good” behavior from network
participants, such as block validators; they also distribute rewards, thereby affecting the allocation
of tokens and the overall valuation. Our focus here is on the second aspect. Because tokens can be
easily re-allocated across the network, they must earn the same rate of return regardless of how they
are used. This implies that a system’s choice of incentive mechanisms in relation to any particular
activity (e.g., block validation, or off-chain transaction routing) potentially affects the entire system
through its effect on token valuation. For example, suppose one were to increase rewards for block
validation: each token staked would now earn a higher expected number of tokens per unit of time
as a reward. This would attract tokens towards validation and away from other activities, e.g., from
off-chain transaction routing. The result would be increased congestion for on-chain transactions,
and lower transaction volume of off-chain transactions. Another implication could be a reduction
in the rate of growth of the token price, which would act to offset the increased level of rewards
for validation in terms of tokens. This, in turn, would make it more costly to hold tokens for
transaction purposes. As this informal argument highlights, it is critical to analyze incentive designs
in equilibrium, internalizing the effect of each incentive scheme on the entire network.

More concretely, our primary focus in this chapter will be on incentive mechanisms that encourage
participation in block proposal and validation. Participation incentives in cryptocurrencies generally
take one of two forms: (1) transaction fees, and (2) validation/block rewards. Transaction fees are a
small fee paid to validators and/or block proposers as a reward for processing a given transaction. In
Bitcoin, transaction fees are given to the miner whose block contains the transaction, and are paid
by the user who generates the payment. Block rewards, on the other hand, are freshly-minted tokens
that are awarded to the node(s) that validate and/or propose a particular block. In some blockchain
systems, the roles of block proposers and validators can be separate; for instance, Ethereum proposes
such a structure in its future roadmap [183], and Prism naturally separates the functionalities
(Chapter 3). In aggregate, transaction fees and block rewards must be valuable enough to incentivize
validators to participate in the network. At the same time, transaction fees must be low enough
to incentivize participation from transactors. The idea of cryptocurrencies as payment systems
has garnered mainstream support based on the premise that transaction fees can be lower relative
to traditional services (e.g., credit cards). Thus, at the outset, there exists potential surplus that
consumers and network participants aim to realize by reducing transaction frictions. Network
participants, like validators, offer services that consume resources and need to be compensated:
these services are ultimately compensated with fees paid by consumers. A network design (like
Bitcoin) that relies on congestion to induce consumers to offer sufficiently high fees to support
network activities is inefficient: while congestion serves as a part of the revelation mechanism, it
imposes dead-weight losses on the entire economic system. From this perspective, a design like the
PoS system, which instead relies on financial incentives (which are transfers between various actors)
is appealing due to its efficiency: it better preserves the total consumer surplus.

7.1 Valuation

Quantifying the valuation of a PoS cryptocurrency is critical, since the security of PoS systems
depends primarily on the value of the underlying tokens. Valuation hinges on two key properties
of this system. The first property has to do with the blockchain formation mechanism in a PoS

7.1. VALUATION 115

network. Abstracting from the precise details of block validation and block proposal mechanisms, a
key property of PoS networks is that the validation protocol requires participating nodes to commit
(stake) a certain amount of tokens as collateral. In practice, PoS blockchain protocols typically ask
nodes to commit stake for two main purposes: block proposal and block validation. Validation can
be thought of either as a periodic finalization process (e.g., the Casper protocol from Ethereum
[37]), or more generally, the process of nodes checking the validity of blocks and certifying their
correctness in the blockchain. Rewards that accrue to the nodes participating in block proposal
and validation are distributed in relation to the size of their committed stake. This protocol, in
combination with additional measures (such as penalties for non-participation) is designed to induce
proper participation in the validation process.

For our purposes, the main economic implication of this mechanism is that network participants
who serve as block proposers or validators can earn rewards by committing their tokens to such
activities. In our model, we do not distinguish between the two functionalities; we refer to both
simply as ‘validation’. Thus, as long as tokens are used for validation, each token generates a stream
of cash flows for its holder in the form of additional tokens. This simplified model does not necessarily
represent more complex consensus structures (e.g., Prism); however, we use it as a starting point for
more nuanced models of PoS consensus.

The second property of the PoS network is that tokens can be re-allocated across various uses:
the same token can be used for validation, for consumer and merchant transactions, for off-chain
routing of payments, etc. Our analysis assumes, as an approximation, that tokens can be re-allocated
in a frictionless manner. If a specific design deviates from this idealized frictionless model, e.g., due
to constraints imposed on movements of tokens within the system, one would need to enrich the
model with an explicit description of such frictions.

In a frictionless system, individual optimization by the network participants implies that expected
rates of return on alternative feasible uses of the tokens must be equalized. In particular, any holder
of a token may exchange it for fiat currency and invest the proceeds in a portfolio of financial assets
with a return risk profile similar to that of the tokens. Thus, in a system where tokens can be easily
exchanged without frictions for fiat currency, the rate of return on holding tokens must equal the
opportunity cost: the expected rate of return on the risk-matched investment strategy in financial
markets.

7.1.1 A Simple Model with Fee-Based Rewards

We next outline a parsimonious model in which rewards for validation activity are paid entirely in
transaction fees generated by retail transactions rather than in newly minted tokens [103]. This
model abstracts away from many empirically-relevant details to focus on the main mechanism of
token valuation.

Consider a payment network. Suppose that in each period, the network processes retail transac-
tions in the amount of Yt, measured in the fiat currency, “dollars.” Assume that the aggregate float
of tokens is fixed, and without loss of generality equal to one. Let pt denote the equilibrium price of
the tokens in terms of the fiat currency. Assume that the network is in a stationary growth regime:
the volume of transactions is expected to grow at a constant rate gY , so that Et[Yt+s] = Yt(1 + gY)s.

In this model we do not distinguish between block proposal and block validation functions, and
refer to block proposers and block validators simply as “validators.” We assume that the protocol
for transactions is such that, whenever transactions take place, some tokens must be transferred to
the validators as rewards for their activities, and, importantly, individual validators collect their
pro-rata share of the total rewards, in proportion to their token stake. The latter assumption rules
out individual strategies like selfish mining, which may distort the allocation of rewards among

116 CHAPTER 7. ECONOMICS

validators in relation to their individual token balances. We assume that the aggregate amount of
fees generated by the network grows at the same long-run rate as the aggregate transaction volume
(the ratio of the two series is a stationary process). To simplify the derivations in our model, we
further restrict aggregate fees to be a constant multiple of the transaction volume – thus, validators
receive fees in the collective amount of cYt dollars per period (actual rewards are in tokens, which
validators sell to consumers in exchange for dollars). We should note that this assumption applies to
the total volume of fees, rather than the fee structure for individual transactions. Our assumption of
aggregate fee dynamics is consistent with multiple alternative fee schedules, and does not mean that
the cryptocurrency must necessarily adopt transaction fees that are a fixed fraction of transaction
value; we are still evaluating different design choices. In particular, we discuss the tradeoffs between
user-determined transaction fees and algorithmic transaction fees in Section 7.3 below.

We assume that validators have unrestricted access to financial markets and behave competitively:
they take market prices, and, importantly, the design of the payment network, as exogenous and
not affected by their individual actions. Also, we assume that the risk premium associated with
a financial claim paying Yt dollars per period is constant and equal to λY (in equilibrium, this
determines the opportunity cost of capital associated with validation activity). Finally, we also
assume that there are no physical costs associated with block validation activities.

We look for a stationary equilibrium, in which φ ∈ [0, 1] tokens are held by the validators, and
1 − φ are held by consumers for transaction purposes. We assume that validators have no use
for tokens outside of their validation activity, and therefore stake their entire token balance. The
equilibrium distribution of token holdings, φ, is endogenous and determined as a part of the solution.

In equilibrium, the total market value of all the tokens held by the validators is φpt, which is
the value of a financial claim on the perpetual stream of cash flows in the amount of cYt per period.
Assuming no valuation bubbles, the market value of this cash flow stream is given by the valuation
formula for a perpetuity with constant growth:

ptφ = lim
T→∞

[
T∑
s=1

cYt(1 + gY)s

(1 + λY)s

]
=

cYt
λY − gY

. (7.1)

To pin down the value of the tokens, we need to make an assumption about consumer’s demand for
tokens. In a market with infinite token velocity, consumers would hold no balances, which would
imply that in equilibrium φ = 1 and pt = (cYt)/(λY − gY). More generally, if consumers hold
balances equal to k times the transaction volume per period, then pt(1− φt) = kYt, and therefore
the equilibrium token value is

pt =

(
k +

c

λY − gY

)
Yt. (7.2)

Note that in the absence of an explicit description of demand for token balances, (cYt)/(λY − gY)
serves as a lower bound on the token value.

The equilibrium value of the tokens in (7.2) consists of two terms. The first term, kYt, reflects
consumer demand for holding token balances. The value of this term depends on k, which is inversely
related to the equilibrium token velocity. It is important to acknowledge that token velocity is an
equilibrium outcome, related to a number of properties of the payment network and the broader
market. Wider adoption of the tokens could raise demand for token balances, while efficient channels
for transactions between tokens and fiat currency would enable consumers to support the desired
volume of transactions with lower token balances and result in higher token velocity.

The relation between token value and token velocity is commonly invoked when discussing the
valuation of cryptocurrencies. While token velocity and equilibrium token value are certainly related

7.1. VALUATION 117

in equilibrium, the relation between the two, like its analog in traditional monetary economics, is
not a true structural relation and it does not provide a reliable anchor for token valuation.

The second term in the valuation equation (7.2), (cYt)/(λY − gY), reflects the demand for tokens
from validators. This term is proportional to the overall volume of retail transactions, Yt, and to the
rate at which fees are charged for transactions. All else equal, broader adoption and utilization of the
payment system (higher Yt) results in higher value of the tokens. Importantly, the above equation
does not suggest that token value is increasing in the level of fees. Our analysis here focuses on a
single stationary equilibrium and does not explicitly describe how the systems responds to changes
in parameters: higher fee levels would eventually lead to lower transaction volume.1

Our analysis in this section also relies critically on the assumption of competitive behavior by
the network participants. To what extent this assumption offers a good approximation of agent
behavior in this environment depends on individual opportunities and incentives to engage in strategic
behavior. Ultimately, individual incentives and token valuation are closely linked in PoS systems,
and must be analyzed jointly. Such analysis is beyond the scope of this chapter.

7.1.2 An Extended Model with Increasing Token Supply

Here we extend the valuation model of the previous section to allow for increasing token supply. In
this model, validators are rewarded in newly minted tokens in addition to the fees collected from
consumer transactions. For tractability, we formulate the extended model in continuous time.

We now allow the transaction volume growth parameter to vary in time, and denote it by gY (t).
We also introduce randomness into the evolution of the transaction volume Yt, as shown in the
following differential equation:

dYt
Yt

= gY (t) dt+ σ(t) dZt,

where gY (t) and σ(t) are bounded continuous functions of time, and Zt is a Brownian motion.2

Here Zt is a simple model for the randomness in the system, and σ(t) represents the instantaneous
volatility of growth in transaction volume. Investors require compensation for being exposed to dZt
shocks based on the comparable investment opportunities in financial markets, which we assume to
be η units of expected excess returns per unit of risk. η is known as the market price of risk, and we
take it to be constant here, for simplicity. Then, under the risk-neutral valuation measure Q, the
transaction volume follows

dYt
Yt

= gQY (t) dt+ σ(t) dZQt ,

where
gQY (t) = gY (t)− ησ(t),

and ZQt is a Brownian motion under measure Q.
As above, pt denotes the total value of tokens at time t and validators hold fraction φt of all

tokens. The market clearing condition requires that validators and consumers collectively hold all
tokens, and thus

φtpt = pt − kYt,
where k is a consumer demand parameter, which we again assume to be constant. Thus,

φt = 1− kYt
pt
.

1The effect of transaction fees on token value is analogous to the concept of the Laffer Curve in the theory of
taxation.

2We implicitly assume that all elements of the model, e.g., the growth rate of Yt, are properly restricted so that
tokens have a finite value in equilibrium.

118 CHAPTER 7. ECONOMICS

We assume that token supply grows deterministically over time. Specifically, we assume that new
tokens are issued at (bounded) rate r(t). In expectation, under the risk-neutral valuation measure,
validators earn the risk-free rate of return, which we assume to be constant and denote it by λf .
Thus, we obtain the valuation equation:

φtpt = cYt dt+ e−λfdtEQt
[
(φt + (1− φt)r(t) dt)pt+dt

]
.

On the left-hand side, φtpt is the total market value of the tokens staked by the validators at time t.
On the right-hand side, we have two terms. The first term, cYt dt, is the flow of transaction fees that
accrue to the validators over the infinitesimal period [t, t+ dt). The second term, e−λfdtEQt

[
(φt +

(1− φt)r(t) dt)pt+dt
]
, is the discounted expected value (under measure Q)) of the validators’ token

holdings at the end of the period.3 Then,

EQt
[
dpt
]

= λfpt dt−
pt

pt − kYt
(cYt + kYtr(t)) dt.

We look for an equilibrium token price process pt of the form pt = p(t, Yt), where p(t, Y) is a
sufficiently smooth function of its arguments. Applying Ito’s lemma, we obtain a PDE on the token
price function:

∂p

∂t
+
∂p

∂Y
gQY (t)Y +

1

2

∂2p

∂Y 2
σ(t)2Y 2 − λfp+

p

p− kY
(c+ kr(t))Y = 0. (7.3)

Equation (7.3) is the valuation PDE. This equation has multiple solutions, and we look for a
non-negative solution without valuation bubbles. Specifically, we look for a solution with suitably
bounded growth in Y , and subject to a boundary condition

p(t, 0) = 0,

which requires that token value vanishes at zero transaction volume (recall that zero is an absorbing
boundary for the transaction volume process). The above equation has a linear solution,

p(t, Y) = A(t)Y, (7.4)

where the unknown function A(t) is a bounded, positive solution of the ODE:

dA(t)

dt
+ gQY (t)A(t)− λfA(t) +

A(t)

A(t)− k
(c+ kr(t)) = 0.

In the stationary case of r(t) = r, σ(t) = σ, and gY (t) = gY , the total value of tokens pt is a constant
multiple of the transaction volume Yt:

pt
Yt

= A(t) = k +
c+ kr

λf + ησ − gY
. (7.5)

This solution describes the total value of tokens under constant growth rate in the number of
outstanding tokens. Note that, λf + ησ = λY , which is the expected return on the financial claim

3To see how this term is determined, note that all new tokens accrue to the validators. Therefore, if validators
start the period [t, t+ dt) with a fraction φt of the tokens, they end the period with

φt + r(t) dt

1 + r(t) dt
= (φt + r(t) dt)(1− r(t) dt) + o(dt) = φt + (1− φt)r(t) dt+ o(dt)

tokens.

7.2. BLOCK REWARDS 119

paying a cash flow stream equal to the aggregate flow of transaction fees, cYt. We thus recover the
valuation formula (7.2) by setting the token rewards to zero, r = 0.

The above solution highlights the valuation effect of rewarding validators in newly minted tokens.
In addition to collecting transaction fees, validators also collect proceeds from seignorage. Comparing
with (7.2), we see that this effectively raises the flow of proceeds to validators from c to c+ kr. The
second term, kr is intuitive: transfers to validators due to seignorage are proportional to the level of
token balances held by consumers. If consumers hold no token balances between transactions, any
benefit validators derive from collecting rewards in newly minted tokens is completely offset by the
decline in the market value of tokens in their stake.

7.2 Block Rewards

Choosing a block reward schedule is an important question that is often addressed heuristically. For
instance, in (7.5), we considered a stationary setting where the rate of growth of the token pool r(t)
was constant. In general, we do not expect the system to be stationary; in fact, choosing a block reward
function r(t) is of central interest. In this section, we discuss some of the key economic implications
of block rewards for incentives of network participants, as well as distributional implications of
alternative reward schedules.

A key property of block rewards is that they add to the total token supply. Some cryptocurrencies
(e.g., Bitcoin [61] and derivatives) offer a block reward that decreases over time according to a fixed
schedule, with a pre-determined end date. The total supply of Bitcoin tokens is thus limited. Others
(e.g., Monero) maintain the block reward rate in excess of a positive lower bound at all time [177];
hence the token supply is unbounded. A natural question is how to evaluate these two operating
points. In this section, we discuss some of the design tradeoffs.

7.2.1 The economic implications of block rewards

Who pays for running the network?

Growth in total token supply imposes a cost on all token balances, since purchasing power of tokens is
eroded over time. This effect is analogous to the well-known concept of “inflation tax” in conventional
economic systems. Validators (recall that we group validators together with block proposers) are the
beneficiaries of this “tax,” since they collect the newly minted tokens in the form of block rewards.
As far as valuation goes, block rewards effectively raise the fees collected by the validators. This can
be seen from the steady-state valuation equation (7.5): holding all else equal, raising kr, where r
is the rate of flow of block rewards, is equivalent to raising the transaction fee parameter c. The
precise breakdown between transaction fees and token-based rewards matters, however, because it
determines who exactly pays for network operations.

Both types of rewards, transaction fees and block rewards, ensure that all those enjoying the
benefits of the network contribute resources to running it. This arrangement closely resembles the
funding of commonly used infrastructure in conventional economic systems: for instance, a highway
network may be supported through toll fees, paid directly by the drivers, and through public funds,
contributed by the broad base of tax payers enjoying the indirect benefits of the highway system. In
the context of the electronic payment system, transaction fees are paid by the consumers whenever
they use tokens for retail transactions, and accrue to the validators who support operations of the
payment network that enables such transactions. In turn, block rewards expressed in newly minted
tokens are effectively paid for by all network participants who hold token balances, whether or not

120 CHAPTER 7. ECONOMICS

they use their tokens for transactions. Importantly, all those who hold tokens as a store of value or
for speculative purposes end up bearing some of the cost of such block rewards.

Spreading the burden of funding network operations across a broad range of users, from frequent
transactors to long-term holders of tokens, is more than an issue of fairness. All else equal, making
speculators pay for some of the block rewards reduces the required level of transaction fees, which
generally enhances token adoption and growth of the network. Is is reasonable to expect that, in a
new system, the volume of retail transactions starts at a relatively low level, grows over time. In
contrast, speculative trading may be very active from the start, when future prospects of the network
are highly uncertain, declining eventually as the network settles into its steady-state dynamics.
Under such expectations of the network’s growth, distributional considerations dictate that one
should initiate the network with a relatively high initial block reward rate, so resources needed to
support network function at this early stage are contributed primarily by speculators, and gradually
reduce block rewards as the volume of retail transactions rises. In the long run, funding of network
functions would then increasingly rely on the transaction fees, rather than block rewards.

Incentives for Validators
Consider the steady-state solution for token valuation, (7.4,7.5). Validators earn an expected rate
of return equal to λf + ησ, which is their opportunity cost of taking on the risk of the flow of
transaction fees and block rewards. Note that the equilibrium expected return of the validators
is neither affected by the level of transaction fees nor the block reward rate. Rather, validators’
expected rate of return is determined by the opportunity cost of holding tokens. In equilibrium,
each validator decides how many tokens to stake. As validators stake more tokens, they collectively
drive down the equilibrium rate of return each of them earns; conversely, their rate of return rises as
validators stake fewer tokens. As a result, the level of transaction fees c and block reward rate r
affect the combined value of the validators’ stakes, but not the equilbrium expected rate of return
they earn. Specifically, the combined value of the validators’ stakes is

φtpt = (A− k)Yt =
c+ kr

λf + ησ − gY
Yt.

All else equal, the value of validators’ token holdings increases in the level of transaction fees c
and the block reward rate r. The fraction of the overall token pool held by the validators is also
increasing in these two parameters.

Rewarding validators with new tokens thus offers them a claim on the proceeds from seigniorage
in the PoS system. Those network participants who hold balances and do not act as validators have
no such claim – they maintain token balances because of their convenience value or for speculative
reasons. This creates a wedge, λf + ησ − gY + r, between expected returns earned by the validators
and returns earned by other holders of tokens. Thus, while not affecting the equilibrium expected
rate of return of validators, the rate of growth of token supply r lowers the expected return earned
by other network participants. A higher rate of block rewards thus discourages network participants
from passively holding tokens and not acting as validators. This mechanism becomes particularly
meaningful when we account for various additional costs faced by validators, including physical costs
of running validator nodes and losses due to stake slashing (triggered by accidental violations, e.g.,
validator nodes being off-line).

User Adoption
In the stylized model of this chapter, the volume of consumer-merchant transactions using tokens is
exogenous, and consumer holdings of tokens are inelastically related to this transaction volume. In

7.2. BLOCK REWARDS 121

a more realistic description of network dynamics, consumer demand for token balances should be
elastic with respect to the expected rate of return earned on such balances, in addition to the liquidity
benefits of holding tokens. By penalizing token balances, higher block reward rates reduce consumer
demand for token balances, ultimately translating into lower adoption of tokens by consumers and
merchants. In other words, by reducing expected returns on passive holdings of tokens, higher block
reward rates may eventually hurt user adoption of the cryptocurrency. Such considerations inform
our thinking about the qualitative aspects of the desirable block reward schedule. More formal
analysis of user adoption requires further research, and is beyond the scope of this chapter.

7.2.2 Block Reward Schedule: Design Considerations

Our analysis of economic implications of block rewards provides some guidance for how to design
block reward schedules with desirable properties. A well-chosen block reward schedule should ensure
long-term economic viability of the payment network, including sufficient incentives for user adoption
and for participation in performing network functions (block proposals and validation), while also
enforcing fairness among validators and proposers. We currently envision a design with a reward
rate that starts at a relatively high level at the launch of the network, and decays over time as the
network matures.

A high initial rate of block rewards is in line with the design of many existing cryptocurrencies.
This encourages participation of token holders in the validation pool during the early period of
network development, when the volume of consumer transactions, and thus the volume of transaction
fees is low. During this early period, it is imperative to reward proposer and validator nodes for
their efforts; without such nodes, the system cannot operate.

As adoption increases, initial growth in token supply will gradually decline. In the long run, the
desirable rate of block rewards is subject to the tradeoffs discussed in Section 7.2.1 above. Higher
reward rate distributes the financial burden of running the network over a broader base of token
holders. At the same time, higher reward rate effectively taxes passive token balances, hurting user
adoption. Depending on which of these forces dominates, the long-run block reward rate may remain
positive or possibly converge to zero. We are still in the process of selecting a block reward schedule.

Block Number

Bl
oc

k
R

ew
ar

d

Halving
Smooth decay

Figure 7.1: Comparison between common block reward functions. Halving is used in Bitcoin and
many of its derivatives, whereas smooth decay is used in Monero.

For reference, Figure 7.1 shows caricatures of reward rate schedules that have been adopted in

122 CHAPTER 7. ECONOMICS

existing cryptocurrencies. ‘Halving’ refers to reward schedules that maintain a constant reward over
a long period (e.g. years), and periodically reduce the block reward by half. This approach is used
in Bitcoin and several cryptocurrencies derived from it. ‘Smooth decay’ is used in Monero, and gives
a smooth approximation of the reward function in Bitcoin. Notice that the smooth decay curve is
lower bounded by a fixed minimum block reward; this is a detail specified by Monero’s monetary
policy. In our case, that minimum rate of growth in token supply need not exist.

We show in the next section (7.2.3) that choosing large initial block rewards (compared to the
initial stake pool) can lead to substantial and irreversible wealth imbalance in PoS systems. For
example, Bitcoin started with a stake pool of 50 BTC and initial block rewards of 50 BTC per block;
in a PoS system, such parameter choices could very easily lead to substantial wealth concentration.
Starting with a large initial stake pool compared to the block reward size is an easy way to counter
these effects. At first glance, this directive seems to counter the earlier conclusion that we need high
initial inflation to encourage adoption. Indeed, there is a tradeoff between choosing inflation high
enough to encourage adoption and keeping it low enough to prevent severe wealth imbalance. To
this point, notice that to prevent stake imbalance, the inflation rate does not need to be excessively
small. In practice, our simulations suggest that if the block reward is less than, say, a thousandth of
the initial stake pool, then stake imbalance remains mild [68]. For example, if Unit-e begins with an
initial stake pool of 1.5 billion tokens, then this rule of thumb suggests a block reward of at most 1.5
million tokens per block. Aggregated over all the blocks in a year at a (conservative) block rate of
30 seconds per block, this imposes an upper bound on annual inflation of around 100,000%. Such an
inflation rate is orders of magnitude higher than any we would set in practice, even in the early days
of Unit-e. Hence, the apparent tension between encouraging equitability and adoption is weak; for a
large enough stake pool, we can choose inflation to be very high without affecting equitability.

7.2.3 Equitability in PoS block reward schemes

In this section, we study one of the tradeoffs involved in choosing a block reward function: equitability.
At a high level, equitability means that a party that begins with a certain fraction of stake cannot
unduly amplify its fraction of stake simply by participating in block proposal or validation. Perhaps
surprisingly, standard PoS implementations can exhibit extreme inequitability if system parameters
are chosen naively. For example, consider a PoS blockchain that awards the full block reward to
the user that proposes each block. This is a standard assumption that is used in almost every PoS
cryptocurrency today. Suppose further that block rewards are immediately incorporated into each
party’s portion of the proposal stake pool. Now let us initialize such a system with parameters
comparable to Bitcoin’s initial state: 50 initial tokens and a block reward of 50 tokens. If party A
owns 1/3 of the initial stake, a simple Polya’s urn argument shows that as the block length tends to
infinity, the limiting stake of party A converges almost surely to a random variable with distribution
Beta(1

3 ,
2
3), visualized in Figure 7.2 by the blue solid curve labelled ’Constant Rewards, PoS’.

7.2. BLOCK REWARDS 123

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fraction of stake, x

0

5

10

15

20

25

D
en

si
ty

, f
(x

)

Constant Rewards, PoS
Constant Rewards, PoW
Geometric Rewards, PoS

Figure 7.2: Limiting stake distribution of a party with 1/3 stake, under a PoS and PoW system
initialized with Bitcoin’s block reward parameters.

An important and troublesome property of this Beta distribution is the high probability mass
near 0 and 1. Effectively, this means that party A can end up with extremely high or low stake
percentages, simply through the natural randomness of the PoS leader election protocol. Moreover,
this convergence occurs quickly in practice. In contrast, the black dashed curve illustrates the stake
distribution for PoW after T = 1, 000 blocks, using the same constant block reward function as
Bitcoin. Notice that the PoW curve is substantially more concentrated around party A’s initial
stake deposit. A natural question is whether any block reward function can produce a limiting stake
distribution comparable to the black curve in a PoS setting. Our objective in this section is to explore
this phenomenon more formally; we theoretically demonstrate how compounding affects fairness in
PoS systems, both as an effect of the block reward function and the initial conditions of the system.
To this end, we introduce a new metric called equitability, which intuitively measures how much
a party can augment or decrease their fractional stake over time. We show that no block reward
function can achieve the same degree of equitability as PoW, while also introducing a new geometric
reward function that is maximally equitable over all reward functions. Figure 7.2 illustrates the
empirical stake distribution of geometric rewards over T = 1, 000 slots as a green histogram; notice
that it is closer, but not the same, as the PoW baseline. This is a fundamental price we pay for the
efficiency of PoS. Despite the fact that PoS cannot achieve the same equitability as PoW, we find
that through proper system initialization, these effects can be dramatically mitigated. In particular,
our findings give concrete guidelines for choosing the size of the initial stake pool, and the amount of
rewards that should be disseminated over time, in order to ensure an acceptable level of equitability.

Model We begin with some notation modeling a simple chain-based proof-of-stake system. We
consider m parties: A = {A1, . . . , Am}. We assume that all parties keep all of their stake in the
proposal stake pool, which is a pool of tokens that is used to choose the next proposer. As before, we
consider a discrete-time system, n = 1, 2, . . . , T , where each time slot corresponds to the addition
of one block to the blockchain. In reality, new blocks may not arrive at perfectly-synchronized
time intervals, but we index the system by block arrivals. For any integer x, we use the notation
[x] := {1, 2, . . . , x}. We call the time interval [T] an epoch: a period of time (blocks) during which a
pre-specified number of inflation tokens should be dispensed. In Bitcoin, for example, an epoch lasts

124 CHAPTER 7. ECONOMICS

about four years, or 210,000 blocks; this is the time period over which the block reward function
remains constant prior to the halving events.

For all i ∈ [m], let SAi(n) denote the total stake held by party Ai in the proposal stake pool at
time n. We let S(n) =

∑m
i=1 SAi(n) denote the total stake in the proposer stake pool at time n,

and vAi(n) denotes the fractional stake of node Ai at time n: vAi(n) =
SAi (n)

S(n) . For simplicity, we
normalize the initial stake pool size to S(0) = 1; each party starts with SAi(0) = vAi(0) fraction of
the original stake.

At each time slot n ∈ [T], the system chooses a proposer node W (n) ∈ A such that

W (n) =

A1 w.p. vA1(n)

. . .

Am w.p. vAm(n).

(7.6)

Upon being selected as a proposer, W (n) appends a block to the blockchain. As compensation for
this service, W (n) receives a block reward of r(n) stake, which is immediately added to its allocation
in the proposer pool. That is,

SW (n)(n+ 1) = SW (n)(n) + r(n).

The reward r(n) is freshly-minted at each time step, so it causes the total number of tokens to grow.
We assume the total reward dispensed in time period T is fixed, so

∑T
n=1 r(n) = R.

Consider a closed PoS system where no stake is taken out of or put into the proposal stake pool
over a fixed period of time T . The only changes to the stake of each party during this interval are
due to the compounding effects of the rewards earned in proposing new blocks. At each (discrete)
time step, a block reward is dispensed according to the randomized proposer election in Eq. (7.6).
This is immediately added to the stake of the elected proposer. We focus on the scenario where
every party follows protocol as a starting point.

Common reward functions Between checkpoints, we can choose any block reward schedule r(n)
that respects the total reward constraint of R. A natural choice, famously adopted in Bitcoin, is the
constant block reward function, defined as:

rc(n) :=
R

T
. (7.7)

Perhaps surprisingly, we find that rc introduce inequitability to the block reward scheme if initialized
improperly. Critically, this can happen without any strategic behavior from any of the participants.
Rather, it is the combined effect of compounding stake and randomized leader election that causes
this effect. A main result of this work is that a geometric reward function, defined as

rg(n) := (1 +R)
n
T − (1 +R)

n−1
T , (7.8)

provably minimizes inequitability and exhibits a number of other desirable properties. Although
geometric rewards may not be appropriate for deployment in a real cryptocurrency for various
practical reasons, this work helps us to methodically choose system parameters, such as initial stake
pool size.

7.2. BLOCK REWARDS 125

7.2.3.1 Equitability

We study the stochastic dynamics of the fractional stake of one of the participating parties A, who
started with vA(0) fraction of the initial total stake of S(0) = 1. This is without loss of generality,
as the random process is homogeneous in scaling both R and S(0) by a constant. We denote this
fractional stake at time n by vA,r(n), to make the dependency on the reward function explicit.

One desired property of a closed and fair PoS system is that the fractional stake should remain
constant over time in expectation. If A contributes 10% of the proposal stake pool at the beginning
of the time, then A should, on average, reap 10% of the total disseminated rewards. As randomness
in the proposer election is essential to current PoS systems, this cannot be ensured deterministically.
Instead, the popular choice of electing a proposer (in Eq (7.6)) with probability proportional to the
fractional stake ensures that this holds in expectation. Formally, for all n ∈ [T],

E[vA,r(n)] = vA(0) . (7.9)

The expected fractional reward for any party stays constant in expectation, irrespective of which
reward function is used. This follows from the law of total expectation and the fact that

E[vA,r(n) | vA,r(n− 1) = v]

= v
v S(n− 1) + r(n− 1)

S(n)
+
(
1− v

)v S(n− 1)

S(n)

= v ,

where S(n) is the total stake at time n.
Even with the same expected fractional stake, the choice of the reward function can change the

distribution of the final stake dramatically. We propose using the variance of the final fractional
stake, Var(vA,r(T)), to measure the level of uncertainty for different choices of the reward function.

Definition 7.2.1. For two reward functions r1 : [T]→ R+ and r2 : [T]→ R+ with the same total
reward,

∑T
n=1 r1(n) =

∑T
n=1 r2(n), we say r1 is more equitable than r2 if

Var
(
vA,r1(T)

)
≤ Var

(
vA,r2(T)

)
. (7.10)

With this notion of equitability, there is a core optimization problem of interest to a PoS system
designer: given a fixed total reward R to be dispensed, how do we distribute it over the time T to
achieve the highest equitability? Perhaps surprisingly, we show that this optimization has a simple
closed form solution.

Theorem 2. The geometric reward rg defined in (7.8) achieves the highest equitability.

If equitability is a primary design goal, this gives the optimal reward function. Intuitively, one
might prefer to dispense larger rewards towards the end, when the stake pool is also large. At the
same time, one needs to dispense some reward in the beginning to grow the stake pool. The optimal
trade-off is met with the geometrically increasing reward.

Proof of Theorem 2. We prove that

Var
(
vA,rg(T)

)
≤ Var

(
vA,r(T)

)
, (7.11)

126 CHAPTER 7. ECONOMICS

for all r ∈ RT such that
∑T

n=1 r(n) = R and r(n) ≥ 0 for all n ∈ [T]. To this end, we prove that rg
is a unique optimal solution to the following optimization problem:

minimizer∈RT Var(vA,r(T)) (7.12)

s.t.
∑
n∈[T]

r(n) = R

r(n) ≥ 0 , ∀n ∈ [T] ,

From the analysis of a time-dependent Pólya’s urn model [141], we know the variance from the
following formula.

Lemma 7.2.2. Let eθn , S(n)/S(n− 1), then

Var(vA,r(T)2) =
(
vA(0)− vA(0)2

)(
1− S(0)2

S(T)2

T∏
n=1

(2eθn − 1)
)
. (7.13)

After some affine transformation and taking the logarithmic function of the objective, we get an
equivalent optimization of

maximizeθ∈RT
T∑
n=1

log(2eθn − 1) (7.14)

s.t.
∑
n∈[T]

θn = log(1 +R) ,

θn ≥ 0,∀n ∈ [T] , (7.15)

This is a concave maximization on a (rescaled) simplex. Writing out the KKT conditions with KKT
multipliers λ and {λn}Tn=1, we get

2eθn

2eθn − 1
− λn − λ = 0 (7.16)

λn ≥ 0 (7.17)
θnλn = 0 (7.18)

A solution θ to these conditions must satisfy that θn is either zero or (1/‖θ‖0) log(1 +R). Among
these solutions, we show that θ∗ = ((log(1 + R))/T)1 is the unique optimal solution, where 1
is a vector of all ones. Consider a solution of the KKT conditions that is not θ∗. Then, we can
strictly improve the objective by the following operation. Let i, j ∈ [T] denote two coordinates
such that θi = 0 and θj 6= 0. Then, we can create θ̃ by mixing θi and θj , such that θ̃n = θn
for all n 6= i, j and θ̃i = θ̃j = (1/2)θj . We claim that θ̃ achieves a smaller objective function as
log(2eθj − 1) < 2 log(2eθj/2 − 1). This follows from Jensen’s inequality and strict concavity of the
objective function. Hence, θ∗ is the only fixed point of the KKT conditions that cannot be improved
upon.

In terms of the reward function, this translates into S(n)/S(n − 1) = (1 + R)1/T and r(n) =
(1 +R)n/T − (1 +R)(n−1)/T .

7.2. BLOCK REWARDS 127

7.2.3.2 Equitable choices of the total reward R

The equitability of a system is determined by four factors: the number of block proposals T , choice
of reward function r, initial stake of a party vA(0), and the total reward R. Note that because we
normalized the initial stake S(0) to be one, R represents the ratio between the total rewards dispensed
and the initial stake S(0). Some of these factors should be chosen with respect to external factors
(e.g. interest rate and valuation of the crypto currency) and practical considerations (e.g. incentivizing
participation of proposers). In this section, we study the scenario where the system designer has the
freedom to choose R, either by setting the initial stake size S(0) and/or by setting the total reward
during T . The focus in how equitability trades off with the choice of R, and how this trade-off
changes with respect to the choice of the reward function r during this interval.

Concretely, we consider a scenario where T is a large enough integer, and vA(0) of each party
is also fixed as it is not up to the system designer to choose. To make the system more equitable,
we want to minimize the variance of the final stake of all parties simultaneously. We study what
choices of R and r achieve a desired level of variance, normalized by (vA(0)− vA(0)2) which is the
worst-case variance for each party. This happens when the fractional stake vA(T) converges to a
binary distribution with support set {0, 1}. As E[vA(T)] = vA(0), the variance of this Bernoulli
distribution is vA(0)− vA(0)2. Among all distributions supported on [0, 1] with mean vA(0), this
has the largest variance.

Geometric reward function. For rg(n), we have eθn = (1 +R)1/T . It follows from Lemma 7.2.2
that

Var(vA,rg(T))

vA(0)− vA(0)2
= 1− (2(1 +R)1/T − 1)T

(1 +R)2
, (7.19)

When R is fixed and we increase T , we can distribute small amounts of rewards across T and achieve
vanishing variance. On the other hand, if R increases much faster than T , then we are giving out
increasing amounts of rewards per time slot and the uncertainty grows. This follows from the above
variance formula, which we make precise in the following.

Proposition 7.2.3. For a closed PoS system with a total reward R(T) chosen as a function of T
and a geometric reward function rg(n) = (1 + R(T))n/T − (1 + R(T))(n−1)/T , it is sufficient and
necessary to set

R(T) =

(1

1−
√

log(1/(1−ε))
T

)T
− 1

 (
1 + o(1)

)
, (7.20)

in order to achieve limT→∞ V ar(vA,rg(T)) = ε(vA(0)− vA(0)2).

This follows from substituting the choice of R(T) in the variance in Eq. (7.19), which gives

lim
T→∞

Var(vA,rg(T))

vA(0)− vA(0)2
= lim

T→∞
1−

(
1− log(1/(1− ε))

T

)T
(1 + o(1))

= ε , (7.21)

This is monotonically non-decreasing in R and non-increasing in T , as expected from our intuition.
For example, if R is fixed, one can have the initial stake S(0) as small as exp(−

√
T/(log T)) and

still achieve a vanishing variance. As the geometric reward function achieves the smallest variance
(Theorem 2), the above R(T) is the largest reward that can be dispensed while achieving a desired

128 CHAPTER 7. ECONOMICS

normalized variance of ε in time T (with initial stake of one). This scales as R(T) ' (1 + 1/
√
T)T '

e
√
T . Equivalently R/R(T) is the smallest initial stake one can start with, while dispensing R

rewards in time T . We need more initial stake or less total reward, if we choose to use other reward
functions.

Geometric rewards may not be appropriate in practice. If one were to concatenate multiple
epochs with geometric reward functions, the drop in block rewards from the end of one epoch to
the beginning of the next could be dramatic. This could cause proposers to (temporarily) leave the
system, thereby preventing blockchain growth. Hence for purely practical reasons, geometric rewards
may be a less desirable solution than constant rewards. We therefore include analogous variance
calculations for the constant reward function. Specifically, our focus is on understanding how large
the initial stake pool needs to be in order to ensure low variance in proposer stake.

Constant reward function. Consider the constant reward function of Eq. (7.7). As eθn =
(1 + nR/T)/(1 + (n− 1)R/T), it follows from Lemma 7.2.2 that

Var(vA,rc(T))

vA(0)− vA(0)2
= 1−

1 +R+ R
T

1 +R+ R
T + R2

T

=
R2

(T +R)(1 +R)
. (7.22)

Again, this is monotonically non-decreasing in R and non-increasing in T , as expected. The following
condition immediately follows from Eq. (7.22).

Proposition 7.2.4. For a closed PoS system with a total reward R(T) chosen as a function of T
and a constant reward function rc(n) = R(T)/T , it is sufficient and necessary to set

R(T) =
ε T

1− ε
(1 + o(1)) , (7.23)

in order to achieve limT→∞ V ar(vA,rc(T)) = ε(vA(0)− vA(0)2).

By choosing a constant reward function, the cost we pay is in the size of the total reward, which
can only scale as O(T). Compared to R(T) ' e

√
T of the geometric reward, there is a significant

gap. Similarly, in terms of how small initial stake can be with fixed total reward R, constant reward
requires at least S(0) ' R/T . Hence by choosing S(0) to be at least a constant fraction of the sum
block rewards over time, we can ensure low variance even with a constant reward function.

7.3 Transaction Fees

Another class of incentives known as transaction fees are drawn from users’ transactions and
awarded to nodes who process that node’s transactions. This can include both the block proposer
and/or validator. A primary question in cryptocurrencies is how to choose transaction fees. A
common approach—used in Bitcoin and Ethereum, for example—is to allow users to propose their
own fees for each transaction. In such a system, miners are incentivized to prioritize high-fee
transactions when forming blocks; the higher the transaction fee, the lower the confirmation delay.
Most cryptocurrencies also set a minimum transaction fee to prevent users spamming the network
with transactions. Two important questions characterize the selection of transaction fees. The first is
how to choose the magnitude of transaction fees; namely, should fees be proposed by users, imposed
by the system, or some combination thereof? Typical considerations include scaling fees with the

7.3. TRANSACTION FEES 129

transaction’s bytesize, monetary value, or both. The second question is how to allocate fees once
they are collected. Recent work has shown that naive (and very common) methods of allocating fees
can lead to incentive-incompatibility as well as increased confirmation latency. We begin this section
by presenting an industry-standard approach to fee management in Section 7.3.1, and discussing why
such an approach is unacceptable for a low-latency payment system. Next, we discuss alternatives,
and highlight their advantages and disadvantages 7.3.2.

7.3.1 Fee management today

Most existing cryptocurrencies allow users to set their own fees; validators choose whether to process
a given transaction based on whether the offered transaction fee is high enough. If a miner (or
proposer) includes a transaction in a block, that node reaps the full transaction fee as a reward.
If a given transaction is not included in a block by any miner after some period of time, that
same transaction can be re-broadcast with a higher fee. Although Bitcoin and Ethereum place
lower bounds on the size of transaction fees, in practice, users tend to choose substantially higher
transaction fees. This natural approach to fee selection is widely adopted, but it has three important
negative repercussions: high congestion, high fees, and incentive incompatibility. We begin by
describing each of these repercussions more precisely.

Congestion Current fee systems contribute critically to congestion. Intuitively, this happens
because current mechanisms incentivize validators to choose which transactions to confirm based
on transaction fees; this in turn forces users to pay to bypass congestion at equilibrium. To make
this statement precise, consider a simplified system in which new blocks are produced as a Poisson
process of rate µ, each of which can contain up to K transactions. Transactions arrive in the system
at rate λ, and each transaction offers a transaction fee b, chosen by the user. Let c denote the
(random) cost per unit time of delaying a transaction’s confirmation, with c ∼ F [0, c̄], where c̄ is
a positive constant. So if a single transaction’s confirmation is delayed by time ∆, a delay cost of
c∆ is incurred. Here F (·) denotes a cdf with density f(·) and tail probability F̄ (c) := 1 − F (c).
The congestion in the system ρ is defined as ρ := λ

µK . Let WK(ρ) denote the expected transaction
confirmation delay in a system (in blocks) with block size K and congestion ρ, RK(ρ) the total
revenue per unit time raised from users, and DK(ρ) the total delay cost incurred per unit time.
Consider the following result by Huberman et al.:

Theorem 3 ([94]). At equilibrium, if ρ = 0, both revenue and delay cost are 0. For all ρ ∈ (0, 1),

R′K(ρ) = Kρ

∫ c̄

0
F̄ (c)2W ′K(ρF̄ (c))dc > 0,

D′K(ρ) =
RK(ρ) +DK(ρ)

ρ
> 0.

In other words, both revenue (and with it infrastructure provision by miners) and delay cost are
strictly increasing in ρ.

A primary, troubling repercussion of this result is that congestion is not merely a side effect of
technical scalability challenges. Rather, it is fundamental; validators are not incentivized to work
without congestion. As stated in [94]:

An implication of [Theorem 3] is that congestion and delays are necessary for the system
to function. Low congestion ρ leads to low delay costs, as blocks are rarely full and each
transaction is likely to be processed in the next block. But when blocks are rarely full

130 CHAPTER 7. ECONOMICS

users have little incentive to pay transaction fees to gain priority, and the system raises
little revenue. Without sufficient revenue the number of miners... can become too small,
making the system unreliable.

This instability among miners under low congestion conditions is discussed more carefully when
we consider incentive compatibility. We want to highlight that although [94] was written for the
PoW setting, their results are not specific to PoW. Rather, they stem from the combination of three
factors: (1) blocks are produced at a constant rate with a limited block size, (2) different transactions
give miners (proposers) different reward amounts, and (3) miners get to choose which transactions
to include in each block. If a similar fee mechanism were adopted in a PoS system, the same effects
would emerge, due to the fact that block times are lower bounded (by protocol and/or by physical
constraints). This fundamental relation between congestion and user-selected fees is problematic in
a high-throughput payment system.

High fees Another substantial problem with the current fee structure is that fees can be unbounded.
Consider the following result from Huberman et al., which considers the same model from the prior
discussion on congestion:

Theorem 4 ([94]). At equilibrium, transaction fees coincide with the payments that result from
selling priority of service in a Vickrey-Clark-Groves (VCG) auction.

A well-known property of VCG auctions is that participants are incentivized to bid an amount
equal to the externality they impose upon others. This may not be problematic on average, but these
amounts can become artificially inflated due to social factors, world events, random fluctuations
in system load, etc. Indeed, in December of 2017, Bitcoin fees exceeded $20 per transaction [92].
This volatility and unboundedness is explicitly at odds with the requirements of a payment system.
Merchant adoption hinges critically on the guarantee that fees will not grow beyond a maximum
threshold; this point has been touted as a primary reason why cryptocurrencies can never replace
fiat money [164].

A key observation is that whereas congestion arises mainly because of the way fees are disbursed,
high or volatile fees result from a combination of two factors: first, fees are proposed by users. Second,
validators receive higher rewards for transactions with higher fees, and choose which transactions to
include. It is this combination that leads to the VCG result, which in turn leads to unpredictable
fees. Hence, any solution to this problem should tackle both factors; it is not enough to simply
change the way that fees are disbursed.

Incentive incompatibility A third critical repercussion of the current approach to transaction
fee management is incentive incompatibility. In particular, in underutilized systems, it can introduce
undesirable equilibria in terms of proposal strategies. Carlsten et al. show that in the absence of
inflation, rational Bitcoin miners are no longer incentivized to mine on the longest chain [40]. The
intuition is that if miners are only collecting transaction fees, then they are incentivized to include
as many transactions as possible in each block. This means that right after a block is mined, the
number of transactions available for inclusion in the next block is minimal, as is the associated reward.
Thus, when choosing between forks, miners are incentivized to adopt one with fewer transactions in
the final block, since such forks leave more transaction fees for the next miner. By exploiting this
observation, selfish miners can convince other miners to build on side chains.

More precisely, [40] shows the existence of equilibria that do not involve honest mining. Their
model is as follows: consider a constant stream of incoming transactions. For any time interval
T = [t1, t2], let g(T) = t2 − t1 denote the fees accumulated by the transactions in interval T (i.e.

7.3. TRANSACTION FEES 131

one unit of fees per unit time). Notice that the model considers transactions as continuous quantities
that can be infinitesimally split between miners. Because of the one-to-one correspondence between
transaction times and associated fees, we will interchangeably allow T to denote both a time interval
and a set of transactions; the meaning should be clear from context. Suppose there is no network
latency, and no limit on block size (equivalently, there are few enough transactions in the system
that a miner can always include all outstanding transactions in the next block). For a block B, let
oB denote the node that proposed block B. A key assumption is that when a miner mines a block
at time t on block B, it can choose to include any subset T ′ ⊆ [0, t] of outstanding transactions in
the new block, thereby collecting fees g(T ′) = |T ′|. Let LB(t) denote the amount of outstanding
transactions in interval [0, t], i.e., transactions that have not been claimed by B or its predecessors.
For an amount of outstanding transactions LB(t), suppose agents use function f(LB(t)) to determine
how many transactions to consume in the next block. The authors also assume that if the chain has
height H, a miner will either build on the chain at height H + 1 or fork the last block, and build a
conflicting block at height H; let HB denote the height of block B. Let MH denote the block at
height H that leaves the most unclaimed transactions, i.e.,

MH = arg max
B
{LB(t) : HB = H}.

Similarly, let GH(t) = LMH−1
(t)−LMH

(t) denote the gap between the most unclaimed fees available
at height H − 1 and the most unclaimed fees at height H. [40] considers a class of strategies where
each miner chooses (a) which block to build on, and (b) how many transactions to consume in their
block. Algorithm 1 describes this procedure.

Algorithm 1 Function-fork(f) [40]
Require: Transaction selection function f
for node m mining at time t do
if oMH

= m or f(LMH
(t)) > min{f(LMH−1

(t)), GH(t)} then
build on block MH

include f(LMH
(t))

else
build on block MH−1

include min{f(LMH−1
(t)), GH(t)}

end if
end for

Theorem 5 ([40]). For any constant y such that 2y − ln(y) ≥ 2, define

f(x) =

x if x ≤ y
−W0(−yex−2y) if x ∈ (y, 2y − ln(y)− 1)

1 else,
(7.24)

where W0(·) denotes the upper branch of the Lambert W function which satisfies W0(xex) = x for
all x ∈ [−1

e ,∞). Then it is an equilibrium for every miner to mine with strategy Function-fork(f)
(Algorithm 1) as long as every miner is non-atomic, and miners only mine on top of chains of length
H or H − 1, where H denotes the length of the longest chain in the system. Furthermore, in such
an equilibrium, the expected number of unconfirmed transactions at time n ∈ R scales as Ω(

√
n).

132 CHAPTER 7. ECONOMICS

Miner gets full
transaction fees

Decoupled
rewards

User-selected
fees

Bitcoin [130]
Ethereum [186]

Cardano [101, 100]
Fruitchains [137]

Algorithmic
fees

Table 7.1: Design space for transaction fee mechanisms. To the best of our knowledge, no blockchain
systems today chooses transaction fees purely algorithmically. That being said, several cryptocur-
rencies impose algorithmic lower bounds on fees, but allow users to offer higher fees if desired (e.g.,
Bitcoin, Cardano, Ethereum).

This theorem suggests that Bitcoin is not stable when miners are incentivized only with transaction
fees, whereas block rewards help stabilize the reward against temporal fluctuations in the transaction
pool size. The Θ(

√
n) transaction backlog is problematic, and the strategic incentives are not just

edge cases; the paper shows numerically that honest behavior is itself not a Nash equilibrium. Möser
and Böhme observe related behavior in a longitudinal measurement of Bitcoin’s transaction history
[129].

As with the results on congestion and fee volatility, this result is not specific to PoW. Rather,
it results from miners deriving different rewards from different transactions, and hence being
incentivized to process high-fee transactions. Broadly, there are two approaches for protecting
against the challenges presented in [40]. The first is to ensure that there are always more transactions
than there is space in each block: essentially, create congestion. This scenario is prevalent in Bitcoin
today, which may help explain why these attacks have not been observed in the wild. However, our
goal in adopting PoS is precisely to avoid congestion, especially as a means of network control. A
second approach is to decouple block rewards from the transactions they process. We explore such
options in the following section.

7.3.2 Design considerations

The transaction fee structure for Unit-e has not been finalized. We are particularly interested in two
main design choices: (1) whether fees are chosen algorithmically or selected by users, and (2) how
transaction fees are disseminated to users. This design space is summarized in Table 7.1, along with
a partial listing of current cryptocurrencies in each operating point. In this section, we will describe
each of the quadrants in Table 7.1 along with the corresponding tradeoffs.

7.3.2.1 User-selected fees, miner gets full transaction fees

This operating point is by far the most popular today, being used in Bitcoin, Ethereum, Monero,
and others. We discussed the drawbacks of this approach in detail in Section 7.3.1. To summarize,
there are three main problems with this approach: (1) it incentivizes miners to create congestion,
(2) transaction fees are unbounded, and (3) it is susceptible to strategic behavior. Because of these
problems, which have been well-documented both theoretically and in practice, we do not view this
operating point as viable for Unit-e.

7.3.2.2 User-selected fees, decoupled rewards

Many of the problems from Section 7.3.1 arise because miners can substantially alter their transaction
fee rewards by changing which transactions they include in each block. One way to address this

7.3. TRANSACTION FEES 133

problem is by decoupling the transaction fees in a given block from the reward collected by the block
miner. If miners cannot significantly alter their rewards by optimizing the transactions in blocks,
they are less incentivized to prioritize certain transactions over others.

This operating point is not widely used in live cryptocurrencies, with the exception of Cardano
[100]. Nonetheless, the idea of (partially) decoupling a transaction’s fee from the miner of the block
containing that transaction has been explored in several works, including inclusive blockchains [113],
Fruitchains [137], and Ouroboros [101]. Many of the papers studying this idea are designed for the
PoW setting. The basic idea is that the miner of a block does not necessarily reap all the transaction
fees in that block, but shares them with other miners who have also contributed to network security
and validation. There are many ways to implement such a directive; one explicit mechanism is
proposed in Fruitchains, where transaction fees are split evenly over a sequence of consecutive blocks.
A key property that Fruitchains exhibit is fairness, defined below.

Definition 7.3.1 ([137]). Consider a Byzantine adversary that controls at most fraction β of compute
power (stake); the remaining compute power (stake) is controlled by an honest party. A blockchain
protocol is δ-approximately fair if there exists a time duration T0 such that for all T ≥ T0, in the
view of each honest player, the honest party is guaranteed to obtain at least fraction (1− δ)(1− β) of
blocks with overwhelming probability in every time window of duration T .

Fairness is closely related to our notion of equitability from Section 7.2.3. A key difference is
that equitability only makes sense for random processes with fixed mean over time (i.e., processes
that are stationary up to order 1), whereas fairness encompasses general non-stationary stochastic
processes.

Fruitchains proposes a mechanism whereby instead of directly including transactions in blocks,
miners mine a “fruit” for each transaction [137]. When a transaction first appears in the system,
miners start solving a proof-of-work puzzle specific to that transaction, with a different hardness
parameter from the main blockchain. This proof-of-work puzzle must include a pointer to a recent
block within the previous T (κ) blocks, where κ is a security parameter, and T (κ) is a (pre-specified)
polynomial function of the security parameter. A solution to this puzzle, concatenated with the
puzzle itself, is called a fruit, and gets broadcast to the network. Regular block miners include fruits
in their blocks, rather than plaintext transactions. Fruitchains satisfy the following key property:

Theorem 6 (Fairness, [137]). For any constant 0 < δ < 1, there exists a constant T0 = Θ
(

1
δ

)
such

that the Fruitchains protocol is δ-approximately fair with respect to an adversary that controls at
most β fraction of the computational power.

Notice that fairness holds even without considering incentive mechanisms. To obtain incentive-
compatibility, Fruitchains makes a key design decision, which is to distribute rewards (block rewards
and transaction fees) evenly to the T (κ) block miners preceding each block. Suppose that within
any stretch of T (κ) transactions, the total reward from transaction fees and block rewards is V . We
say that honest mining is a β∗-coalition-safe γ-Nash equilibrium if, with overwhelming probability,
no coalition of β < β∗ can gain more than a multiplicative factor (1 + γ) utility, regardless of the
transactions being processed. Under this reward allocation scheme, Fruitchains satisfies the following
property:

Remark 7.3.2 ([137]). Consider a blockchain protocol that satisfies δ-approximate fairness with
respect to β attackers. If rewards are allocated to the T (κ) block miners preceding each block (including
the block itself), honest behavior is a β-coalition-safe, 3δ-Nash equilibrium.

This remark is straightforward to derive. Fairness implies that within each stretch of T (κ) blocks,
the fraction of adversarial blocks is upper bounded by β(1 + δ), so the adversary’s reward is upper

134 CHAPTER 7. ECONOMICS

bounded by β(1 + δ)V . By fairness, if the adversary had followed the honest protocol, it would be
guaranteed to reap a reward of at least (1− δ)βV . Hence the adversary gains a factor of at most

(1 + δ)

(1− δ)
≤ 1 + 3δ

in rewards for δ < 1
3 . Notice that this result depends on two key components: first, the underlying

blockchain protocol should be fair. Second, the reward allocation scheme should split rewards evenly
among miners. By adopting a version of Fruitchains adapted to PoS (e.g., as proposed in Snow
White [52] or Ouroboros [101]), we can obtain analogous results.

There is a key downside to sharing transaction fees across a sequence of block proposers, while
also allowing users to propose their own fees. Since miners do not collect all the transaction fees
from a block, they are less incentivized to include transactions with higher fees first; this means that
users have a much weaker incentive to propose fees above the minimum. A key question that must
be answered is whether such a system can raise enough transaction fee revenue to pay for network
security. At the moment, there is no research quantifying this question (as far as we know).

7.3.2.3 Algorithmic fees, miner gets full transaction fees

A third operating point is that transaction fees could be chosen purely algorithmically, but miners
would still reap the full transaction fees of each block they mine. To the best of our knowledge,
there are no cryptocurrencies or papers advocating for this approach. Nonetheless, there are related
workflows in existing systems. For instance, the Bitcoin Core wallet has a slider that allows the
user to choose a desired processing speed; the wallet then algorithmically chooses a fee based on the
blockchain’s historical processing rates as a function of fees. Since the underlying blockchain is just
Bitcoin, the miner that includes said transaction would reap the (algorithmically-chosen) fee.

The previous example belies a key point: our reason for exploring algorithmic fees in the first
place is to prevent users from paying higher fees to enable faster transaction processing. This is
the key source of congestion, as described in Section 7.3.1. A relevant question, then, is how an
algorithm might choose a transaction fee.

Fundamentally, transaction fees pay for two properties: security and convenience. This cost
can be broken down into the internal (computational and storage) cost of validating and storing
transactions, and the external (communication, security) cost of coming to consensus with the
rest of the network. Internal costs are primarily governed by transaction byte size; the larger the
transaction, the more resources are required to store the transaction. External costs are more subtle
to quantify. At first glance, these costs also seem to scale primarily with transaction byte size, since
the consensus protocol does not explicitly differentiate between transactions and byte size determines
communication cost. However, in practice, transaction value also plays an important role, for a few
reasons.

1. Processing cost. High-value transactions require better security; they are more appealing
targets, and therefore bear a higher standard for validation and finalization. Since it is common
practice to wait longer before considering a high-value transaction as confirmed, the network
implicitly expends more effort to confirm high-value transactions.4

2. Security. Taking a more global view, transaction fees in aggregate fund the security of the
network as a whole. Since higher-value payments increase the need for security, they should
also bear a larger burden in terms of paying for that increased security. User-proposed fees do

4In the language of Chapter 3, high-value transactions may require a smaller error probability ε.

7.3. TRANSACTION FEES 135

not satisfy this requirement, because they are only tied to transaction value through the user’s
preferences.

3. Economic fairness. Finally, existing payment networks (e.g., credit cards) typically set fees
as a fixed percentage of transaction value. If Unit-e’s fees are lower than those of traditional
payment systems, then it is capturing a surplus for users. In order to distribute that surplus
fairly among users, transaction fees should similarly be set as a percentage of transaction value.

These arguments collectively suggest that transaction fees should somehow scale with transaction
value (not necessarily linearly). We therefore consider a fee mechanism that is programmatically
determined. For each transaction, wallet software will evaluate a function w(·) that takes as
inputs a number of features, including transaction value v, transaction byte size b, and possibly
other parameters capturing the current level of network health h. Including network health in the
computation enables adaptive fees that respond to network conditions, such as congestion and/or
gaps in security. Although we have not specified yet how w should be defined, it should satisfy a few
basic properties:

• Boundedness: For all v, b, h ≥ 0,

w ≤ w(v, b, h) ≤ w̄v,

where w is a hard-coded lower bound on the transaction fee, chosen to make spamming attacks
costly. Similarly, w̄ is an upper bound on the fee rate, or the amount of fees per unit transaction
value. We expect to choose w̄ based on merchant feedback.

• Monotonicity (transaction value): For any v1 < v2, b, and h,

w(v1, b, h) ≤ w(v2, b, h).

• Monotonicity (transaction byte size): For any b1 < b2, v, and h,

w(v, b1, h) ≤ w(v, b2, h).

Many functions satisfy these broad requirements, with different tradeoffs. Consider the operating
point where miners reap the full transaction fees of each block they mine; intuitively, for a given
function w, the weaker its dependency on transaction value, the less congestion we expect to see.
This is because of the arguments in Section 7.3.1; congestion is caused by miners choosing which
transactions appear in each block. At the same time, weakening this dependency degrades the
system’s security properties. A key research question is to analyze the effects of different transaction
fee functions on the congestion-security tradeoff.

In summary, the approach of choosing transaction fees purely algorithmically has some attractive
properties; primarily, transaction fee rates would no longer be unbounded. However, the core
problem of congestion remains. High-fee transactions will still be processed earlier, which promotes
a hierarchy among transactions, and raises questions of fairness to users.

7.3.2.4 Algorithmic fees, decoupled rewards.

The fourth operating point consists of choosing fees purely algorithmically, while also partially
decoupling the allocation of transaction fees from the block(s) that included those transactions. This
is the least well-understood among the four operating points, but it has some appealing properties.

136 CHAPTER 7. ECONOMICS

First, transaction fees can be bounded. Second, congestion can be reduced, by reducing the incentive
for miners to strongly favor transactions with high fees. Third, unlike the operating point in Section
7.3.2.2 (user-selected fees, decoupled rewards), it does not matter that users are not incentivized to
propose higher fees, since we can algorithmically choose fees that support network functionality. A
key downside of this approach is complexity; analyzing the incentives of miners and the relation
between the fee structure and network viability may be quite complicated if the transaction fee
algorithm is complex. We view this as the main obstacle to this approach, and an important direction
for future research and consideration in the transaction fee design of Unit-e.

7.4 Acknowledgement

The authors thank K. Ruan and G. Wang for collaborations on the design and analysis of the
geometric incentive mechanism. This chapter includes material from [103] (Section 7.1) and [69]
(Section 7.2).

Chapter 8

Privacy and Identity Management

Giulia Fanti, CMU
Andrew Miller, UIUC

Pramod Viswanath, UIUC

The notion of identity is critical to financial transactions. Customers must trust that they are
sending money to the right entity, and merchants want to know the identities of their clients for
practical reasons, such as shipping and regulatory compliance. However, with the rise of credit
cards, a third party has entered the identity management picture: payment systems. Credit card
providers inherently see the identities of participants in all transactions. While many users have
grown accustomed to this, it requires a degree of trust in a third party (the payment system) that is
not always warranted. If this trust is violated—e.g. in a data breach—the privacy fallout can be
substantial. A key observation of cryptocurrencies is that payment systems do not need to know
the identities of their participants. This has been true of many financial systems, such as cash and
barter systems. In this vein, it is useful to ask how a cryptocurrency can facilitate strong identity
management between relevant parties (i.e., merchants and customers), while cutting out unnecessary
information leakage to middlemen.

We abstract the identity management problem in two parts: The first part involves identity
management among physical participants, such as merchants and clients. We maintain that such
interactions should be managed entirely at the application layer. For example, users can maintain
internal, private databases of the account addresses (and physical entities) with whom they inter-
act. Similarly, regulatory compliance checks (e.g., KYC/AML requirements) can be managed by
applications sitting on top of the Unit-e stack. This abstraction is similar to cash; today, regulatory
compliance for cash transactions is not enforced by the cash itself, but by the transacting parties.
For instance, if one were to deposit a large amount of cash in a bank, it is the bank that executes
regulatory compliance checks. Past transaction and identity data can be stored and maintained
locally on users’ devices, in apposite hardware, or on the cloud—these decisions are explicitly beyond
the scope of a cryptocurrency’s design. This identity layer can be operationally isolated from the
underlying blockchain.

The second part deals with identity management in the blockchain: how do we ensure that users
can transact with the correct parties without leaking that information to other blockchain participants?
This is a technically much harder problem, and will be the focus of this section. The purpose of
cryptocurrencies is transparency between participants; because of this, the blockchain data structure
must be visible to all participants. This poses clear privacy risks, as the blockchain also contains every

137

138 CHAPTER 8. PRIVACY AND IDENTITY MANAGEMENT

transaction in the history of the currency. To mitigate the associated privacy risk, Bitcoin originally
proposed using pseudonymous identifiers: an adversary observing the blockchain learns only the
transaction patterns of each pseudonym. This paradigm has been adopted by most cryptocurrencies
today. As long as these pseudonyms cannot be linked to the owner’s human identity, privacy is
preserved. However, multiple studies have shown that pseudonymity is vulnerable to deanonymization,
particularly in the presence of side information [131, 22, 123, 21, 134]. Understanding how to build
a truly privacy-preserving cryptocurrency is an open question.

In practice, there are two main ways for users to be deanonymized: through the blockchain, or
through the network. Blockchain-based deanonymization attacks generally use a combination of
patterns in blockchain transactions and side information (e.g., knowledge of the owners of certain
wallets) to deanonymize users. The so-called transaction graph can be used to analyze transaction
patterns between different public keys, and public keys held by the same person can often be linked
[123, 21, 134]. Worst case, this can enable an attacker to associate a pseudonym with a human
identity. The second class of deanonymization attacks is run by adversaries who observe traffic
flowing over the P2P network. In most cryptocurrencies, new transactions are spread over the
network according to some pre-specified flooding protocol (typically a gossip algorithm). If an
adversary observes this traffic at a fine enough time resolution—e.g., by setting up a supernode that
connects to many nodes—it can often link transactions (and hence the address of the sender) to
the IP address that originated the transaction. This is a less severe deanonymization attack than
blockchain-based attacks, but it is nonetheless significant, and often-ignored [71]. We are interested
in both classes of attacks.

This chapter discusses two main components of Unit-e’s privacy roadmap:

1. We briefly summarize a powerful technique for providing transaction privacy at the blockchain
layer known as zk-SNARKs. The key idea behind zk-SNARKs is to encrypt transactions in such
a way that users can verify their validity without learning anything about the contents of the
transaction. zk-SNARKs are the technical foundation of the privacy-preserving cryptocurrency
ZCash; however, they have historically faced scalability challenges. We describe recent advances
in the scalability of zk-SNARKs that may enable their use in Unit-e. Although the Unit-
e research corpus has not innovated on this front yet, we view blockchain-level privacy as a
major direction for upcoming research.

2. We summarize our recent work on providing network-level privacy through a system called
Dandelion. Intuitively, Dandelion gossips transactions in a randomized fashion that is designed
to prevent adversaries from launching network attacks. Dandelion exhibits strong theoretical
privacy guarantees while also incurring low latency overhead. Dandelion will also be integrated
into Unit-e’s networking stack.

We begin with a discussion of blockchain-level privacy, and a primer on zk-SNARKs in Section 8.1.
Then, we move on to network-level privacy and countermeasures in Section 8.2.

8.1 Blockchain-Level Privacy

We have seen that blockchains do not necessarily provide strong privacy, and the transaction graph
in Bitcoin, for example, is a source of information that can trace a user’s activities. Cryptography,
and in particular, zero knowledge proofs, can come to the rescue, enabling users to keep their
confidential information encrypted on the blockchain (“hidden in plain sight”), while still ensuring
system-wise guarantees such as conservation of money. In this section, we provide an introduction
to zero-knowledge proofs, and summarize some promising technologies that are being evaluated for

8.1. BLOCKCHAIN-LEVEL PRIVACY 139

Unit-e’s privacy roadmap. Since we view blockchain-level privacy as critical for a payment system,
this topic will be a major focus of our future work.

In short, a zero knowledge proof allows a prover to convince a verifier of some claim, without
revealing confidential information associated with that claim. An example of such a claim is

“I know the preimage of hash h.”

Clearly you can prove this by revealing x, since anyone can then verify H(x)
?
= h. With a zero

knowledge proof scheme, you can prove the claim while keeping x secret. To see how this ability is
useful for constructing a cryptocurrency, consider the following claim:

“I am authorized to spend a coin, and this coin has not yet spent.”

Given such a proof scheme, a user could spend a coin without revealing where the coin came from,
effectively making them all fungible. The idea of using such a zero knowledge proof scheme as the
basis for a digital currency dates back to 1999 [155], and forms the foundation of cryptocurrencies
like Zcash and Monero.

There are a wide range of zero knowledge proof schemes, applicable to different kinds of claims,
and with a variety of performance tradeoffs. This remains an active area of research. In the rest of
this section, we outline several leading approaches to zero knowledge proofs and their application to
cryptocurrencies.

8.1.1 Zero Knowledge Schemes

A zero knowledge proof scheme can be summarized in Camenisch-Stadler notation. This specifies the
public information (the statement), which is known to the prover and verifier, the private information
(the witness), which is known only to the prover, and the nature of the claimed relationship between
them (the predicate P):

ZK{(w) : P (x,w) = 1}

In language theoretic terms, the predicate P defines a language LP , where a statement x is in the
language if and only if there exists a w such that P (x,w) = 1.

A zero knowledge protocol provides the following three subroutines:

pp← Setup(1κ, P)

π ← Prove(pp, x, w)

{0, 1} ← Verify(pp, x, π)

where κ denotes a security parameter. The Setup routine takes a description of the predicate, P ,
typically expressed as an arithmetic circuit, or other representation depending on the protocol. The
resulting public parameters pp are used for proving and verifying. The Prove routine, when given a
valid witness w, produces a π that Verify accepts.

In order to make asymptotic security claims, we must introduce a security parameter κ ∈ N.
The running time of the protocol will grow slowly (at most polynomially) with κ, while the success
probability for a computationally bounded attacker is negligible (negl(κ)). In case the predicate P
depends on the security parameter, we say P is an element of a family of predicates {Pκ}κ∈N, where
the time to compute P is polynomial in κ.

140 CHAPTER 8. PRIVACY AND IDENTITY MANAGEMENT

Security properties. A zero knowledge proof scheme provides two main desired security guaran-
tees, which we state informally, eliding many details and caveats:

• (Completeness.) An honest prover with a valid witness can always convince an honest verifier.
More formally, for any (x,w) such that P (x,w) = 1, we have

P

 pp← Setup(1κ),
π ← Prove(pp, x, w) :
Verify(pp, x, π) = 1

 = 1− negl(κ)

where the probability is taken over randomness in the first two subroutines.

• (Proof-of-Knowledge.) The only way to produce a valid proof π that Verify accepts, is if the
prover actually “knows” a valid witness w. Knowledge of this kind is difficult to define, typically
through extractability.

We say that a scheme is extractible if, for any x, and for any probabilistic polynomial time
adversary A, there exists an extractor χA such that:

P
[
pp← Setup(1κ, P), P (x,w) 6= 1
((x, π);w)← (A‖χA)(pp): Verify(pp, x, π) = 1

]
= negl(κ)

Extractability is a strong property, and in particular, it implies soundness, meaning that the
prover can only convince the verifier of true statements, i.e. x ∈ LP .

• (Zero-knowledge.) The proof π does not reveal anything about the witness w. There can
be several subtle variations, typically defined through simulation: anything the verifier can
compute after seeing π, it could also have simulated without π.

More formally, there exists a simulator setup routine (pp, τ) ← SimSetup(1κ, P) such that
pp is distributed identically as to the original Setup, but additionally outputs a trapdoor τ .
The trapdoor is used by a simulator routine SimProve, which does not know the witness but
nonetheless must produce a valid proof.

∣∣∣∣∣∣∣∣∣∣∣∣
P

 pp← Setup(1κ),
π ← Prove(pp, x, w) :
A(pp, x, π) = 1

−
P

 (pp, τ)← SimSetup(1κ, x),
π̃ ← SimProve(pp, x, τ) :
A(pp, x, π̃) = 1

∣∣∣∣∣∣∣∣∣∣∣∣
= negl(κ)

We have focused our discussion on non-interactive proofs, as these are most naturally applied in
a cryptocurrency setting. However, we point out that there are other variations involving interaction
between the prover and verifier. One desired property of interactive proofs is “designated verifier,” in
which the proof is effectively non-transferable.

We also observe that not all schemes require public parameters. In some cases the public
parameters are uniform random strings, in which case the Setup can be conducted in a transparent
way, using random beacon values. However, if the Setup routine relies on drawing private random
coins which are not included in the parameters, this requires a trusted setup.

8.1. BLOCKCHAIN-LEVEL PRIVACY 141

Performance characteristics. We are especially interested in a handful of performance properties.
These primarily depend on the size of the predicate |P | in the given representation, e.g. the number
of multiplication gates in an arithmetic circuit.

• (Prover time.) Preparing a proof is typically at least as long as evaluating the predicate,
O(poly|P |).

• (Proof size.) A protocol is “succinct” if the proof size is constant with respect to |P |.

• (Verification time.) In a blockchain application, verification time is often the bottleneck, since
a proof may be generated once but verified many times by independent validators.

8.1.2 Classes of Proof Schemes

We next describe several proof schemes that are commonly used in cryptocurrencies, and highlight
their performance tradeoffs. We omit many variations as well, such as those based on database
queries like vSQL [190], ZQL [77].

Discrete Log Proofs. The most well known zero knowledge proof schemes, which we refer to
broadly as discrete log proofs [73, 158, 72], take place in a cryptographic setting with a group G in
which the discrete log problem is hard. For example, the following denotes a proof that the prover
knows how to open a given Pedersen commitment C, where g and h are random generators of G:

ZK{(x, r) : C = gxhr}

There are generic ways to compose such proofs, for example using AND and OR combinators of
expressions [38, 122]. In general, the proof size and the verification time depend on the predicate
size O(|P |).

An advantage is that the setup only needs to select random elements as generators, e.g., g and
h, where the discrete log between them is not known. These can be obtained from public random
beacon values, or by using a hash function, such as a “Nothing Up My Sleeve” number.

Recently, BulletProofs have been developed. The proof size is small, O(log |P |) for a circuit of
size |P |, although verification takes longer.

CRS-based SNARKs. Many practical schemes, including those known as SNARKs, are able to
achieve very small proof size and verification cost, by relying on a Common Reference String (CRS)
which is sampled at setup time, through a procedure known as a “trusted setup.”

For example, one component of the trusted setup used in Zcash involves generating a sequence
of powers, pp = (..., g, gτ , gτ

2
, ..., gτ

k
) up to some degree k (called the “powers of tau”). The value τ

is randomly sampled, but is omitted from the final public parameters, assumed to be destroyed after
running Setup. As part of the Prove routine, the prover uses these public parameters to evaluate a
degree-k polynomial φ on τ “in the exponent,” i.e. to compute gφ(τ). However, the prover is not able
to compute gτk+1 , and hence cannot evaluate polynomials of any larger degree. If the trusted setup
fails, such that the prover learns τ , then he may be able to forge proofs of false statements.

MPC-in-the-Head. The main idea of MPC-in-the-Head is to make use of existing protocols
for multiparty computation (MPC), but repurpose them as a zero knowledge proof. In ordinary
MPC [87, 84], a protocol is executed jointly among several nodes, and privacy is guaranteed as
long as one node keeps its data secret. To adapt an MPC protocol to the zero knowledge proof

142 CHAPTER 8. PRIVACY AND IDENTITY MANAGEMENT

Table 8.1: Summary of Performance Characteristics of Generic ZK Proofs

Proving Cost Proof Size Verification Time Trusted Setup
Discrete Log Õ(|P |) O(|P |) O(|P |) No
BulletProofs Õ(|P |) O(log |P |) O(|P |) No

MPC-in-the-Head Õ(|P |) O(
√
|P |) O(

√
|P |) No

STARKs Õ(|P |) O(log |P |) O(log |P |) No
zkSNARKs Õ(|P |) O(1) O(1) Yes

setting, a prover simulates the execution of an entire MPC protocol, playing all the roles himself, and
committing to a transcript of every role’s state and actions. At the end of the protocol, the prover
reveals N − 1 of the transcripts, providing evidence that the protocol was carried out correctly, while
the final N th transcript is destroyed to ensure privacy.

Examples include ZKBoo [81], ZKB++ [43], and Ligero [19]. So far, this approach is able to
achieve sublinear proof size and verification time, e.g. a proof size and verification cost of O(

√
(|P |))

for a circuit of size |P |.

PCP-based STARKs. Recent work [28] has introduced a class of protocols called STARKs,
which are based on probabilistically checkable proofs.

Summary and open questions. We summarize the performance achieved by the generic zero
knowledge proof schemes in Table 8.1. zk-SNARKs are, so far, the best performing among the generic
proof schemes, although their main disadvantage is the reliance on a trusted setup. For this reason,
Zcash makes use of a multiparty ceremony to generate the trusted setup in a distributed way [35, 29].
STARKs, MPC-in-the-head, and Bullet Proofs all accept performance tradeoffs in exchange for
avoiding the trusted setup. Since efficiency is critical in Unit-e, we are currently evaluating the use
of zk-SNARKs for transaction privacy. This may change as new developments emerge in this space;
a key open question is whether it is possible to obtain succinct proofs, with constant verification
time, without any trusted setup.

8.2 Network-Level Privacy

Network-level transaction deanonymization has become a significant concern in recent years [31, 107].
The core idea is that an adversary can strategically place itself in the network topology to infer
properties of the source IP address for a given transaction. This is a privacy concern because
IP addresses can, in some cases, be used to link a transaction to the person who originated that
transaction. Moreover, these kinds of attacks are relatively cheap and easy to run.

This problem is well-known in the cryptocurrency community, and several potential solutions
have been proposed. Our goal in this section is to discuss existing solutions, provide lower bounds
on what is possible, and highlight the tradeoffs. Key questions include understanding the severity of
attacks against existing broadcasting mechanisms and designing networking protocols that provably
prevent user deanonymization. We also present our proposed solution to this problem, Dandelion,
which is a lightweight network anonymity algorithm with theoretical privacy guarantees.

First-order solutions. Many users of Bitcoin and other cryptocurrencies adopt third-party routing
tools (e.g., Tor or VPNs) to mitigate the threat of network deanonymization [32]. Such solutions

8.2. NETWORK-LEVEL PRIVACY 143

only benefit the individuals that adopt them; users who are unaware of network privacy threats—or
not technically sophisticated enough to use these tools—remain unprotected. We maintain that a
digital payment system should implement network-wide privacy protection mechanisms.

A natural network-wide solution might be to integrate Tor or VPN support into client software.
At least nominally, this approach addresses the problem at hand. One potential challenge is that
system designers may be reluctant to tie the network’s privacy guarantees to a third-party system.
Moreover, if the cryptocurrency eventually supports a substantial amount of traffic, third-party
services may be unwilling to route that traffic without compensation.

An extension of this idea is to incorporate privacy-preserving routing (e.g. onion-routing) into
the cryptocurrency’s own P2P networking stack. This approach also solves the privacy problem,
and Monero is doing precisely this with I2P routing [6]. One challenge is that such implementations
require substantial developer effort and expertise due to the difficulty of implementing cryptographic
protocols in a secure fashion. This section will focus primarily on adding privacy-preserving routing
to the P2P network; however, we will focus on privacy-preserving routing schemes that are more
lightweight than Tor or I2P in that they do not involve cryptography. Notice that the previous
section focused entirely on cryptographic primitives; to the best of our knowledge, meaningful
blockchain-level privacy cannot be achieved without cryptography. However, at the network level,
there exist intermediate solutions that give weaker guarantees than cryptographic protocols, at a
fraction of the development cost.

We will focus in particular on commonly-studied models and a summary of results and open
questions. We begin by presenting relevant prior literature on anonymous communication, and
highlighting the gaps between this literature and the needs of cryptocurrencies. Then, we will present
a candidate solution, Dandelion.

8.2.1 Models

Work in this space typically models the underlying network as a graph G(V,E). In the context
of cryptocurrencies, V denotes the set of all nodes and E is the set of edges representing TCP
connections between nodes. Many papers consider the problem of deanonymizing a single transaction
from a single node [160, 71, 31, 107]. In this context, we let v∗ ∈ V denote the true source node.
The adversary’s goal is to guess v∗ given some observations of a transaction’s spread, where the
transaction is drawn from message space X . Other papers have considered the problem of joint
deanonymization, in which multiple transactions are mapped to multiple users [34, 70]. To model
this scenario, researchers have assumed that each node v ∈ V generates one transaction [34]. In
this case, we use Xv ∈ X to denote the set of messages generated by node v ∈ V . Notice that one
node can generate multiple transactions, but we will assume in the following that Xv is a single
transaction or message.

8.2.1.1 Adversarial Model

In network deanonymization literature, the adversarial model is one of the main variants that
changes between papers. This model affects what information the source estimator can use, which
substantially impacts the accuracy of the estimator. In the context of deanonymization, researchers
and practitioners have considered two main adversarial models: eavesdropper adversaries and
botnet (spy-based) adversaries. Eavesdropper adversaries run a supernode that connects to all (or a
substantial subset) of nodes in the network (Figure 8.1). Critically, from the perspective of an honest
node, the eavesdropper looks just like any other node. Honest nodes therefore relay transactions
normally, allowing the eavesdropper to collect timestamps and other metadata. Combined with

144 CHAPTER 8. PRIVACY AND IDENTITY MANAGEMENT

Figure 8.1: Eavesdropper adversary. A well-
connected supernode eavesdrops on relayed com-
munications.

Figure 8.2: Botnet adversary. Red nodes represent
corrupt “spy nodes", which use observed metadata
to infer the transaction source.

information about the graph topology, this metadata can be used to infer the source of a particular
transaction. One important property of eavesdropper nodes is that they typically do not relay
messages; they only collect communications relayed by other nodes.

Botnet or spy-based adversaries (Figure 8.2) instead consist of a set of corrupt, colluding nodes
that participate in the network normally, both accepting and relaying information. We let p denote
the fraction of spies in the network, and let VA, VH ⊆ V denote the set of adversarial and honest
nodes, respectively. As the name suggests, this adversarial model is motivated by a botnet that
spawns cryptocurrency nodes. The key difference compared to the eavesdropper adversary is that
each botnet node may have limited visibility into the network (e.g., if it only connects to a few peers
rather than the entire network), and botnet adversaries may inject packets into the network.

These models are caricatures, and in practice, an adversary may behave like a combination of
the two models, or something else entirely. However, these models are informed by a long literature
on anonymous communication, as well as practical attacks on cryptocurrencies. As such, defending
against them is an important first step in hardening the networking stack of cryptocurrencies against
deanonymization attacks.

8.2.1.2 Metrics

Let A ∈ A denote the information visible to the adversary at the time of inference, where A denotes
the space over which such data is defined. Notice that the definition of A changes between adversarial
models; for example, in the spy-based model, it might represent the timestamps at which each spy
received each transaction message. In the case where the adversary is trying to deanonymize a single
transaction, the adversary’s goal is to find an estimator function E∗ : A → V , which outputs a
source estimate v̂ := E∗(A) such that

E∗ = arg max
E:A→V

P(v̂ = v∗), (8.1)

where the probability is taken over the spreading pattern, the source node v∗, the adversary’s
observations A, and any randomness in the estimator itself. P(v̂ = v∗) is the adversary’s probability
of detection, which is a key metric of interest.

In models where each user generates one or more transactions and the adversary conducts a joint
deanonymization, the correct anonymity metric is less obvious. One option, used in [34, 70], is to
consider the adversary’s mapping M : (X ,A)→ V from each transaction to a node. For simplicity
of notation, we remove the dependency on A in the following. The user’s anonymity is evaluated by
measuring the quality of this mapping, using the notions of precision and recall.

Precision and recall are performance metrics commonly used in information retrieval for binary
classification. Suppose we have n data items, each associated with a class: 0 or 1. We are given a
classifier that labels each data item as either a 0 or a 1, without access to the ground truth. We
designate one of these classes (e.g. class 1) ‘positive’. For a given classifier output on a single item,

8.2. NETWORK-LEVEL PRIVACY 145

a true positive means the item was correctly assigned to class 1, and a true negative means the item
was correctly assigned to class 0. A false positive means a 0 item was incorrectly classified as a 1,
and a false negative means a 1 item was incorrectly classified as a 0. If we run this classifier on all n
data items, precision and recall are defined as follows:

Precision =
|True Positives|

|True Positives|+ |False Positives|

Recall =
|True Positives|

|True Positives|+ |False Negatives|

where | · | denotes the cardinality of a set, and ‘True Positives’ denotes the set of all data items
whose classification output was a true positive (and so forth).

Precision can be interpreted as the probability that a randomly-selected item with label 1 is
correct, whereas recall can be interpreted as the probability that a randomly-selected data item
from class 1 is correctly classified. Adapting this terminology to our problem, we have a multiclass
classification problem; each server is a class, and each transaction is to be classified. For a given node
v ∈ V and mapping M , the precision DM (v) comparing class v to all other classes is computed as1

DM (v) =
1{M(Xv) = v}∑

w∈V 1{M(Xw) = v}
, (8.2)

and recall is computed as
RM (v) = 1{M(Xv) = v} (8.3)

where 1{·} denotes the indicator function. In multiclass classification settings, precision and
recall are often aggregated through macro-averaging, which consists of averaging precision/recall
across classes. This approach is typically used when the number of items in each class is equal
[159]. One can therefore average the precision and recall over all servers and take an expectation,
giving an expected macro-averaged precision of D = E[DM] = 1

ñ

∑
v∈VH E[DM (v)] and recall of

R = E[RM] = 1
ñ

∑
v∈VH E[RM (v)]. Notice that in expectation, recall is equivalent to probability of

detection.

8.2.2 Related Work

Prior literature has examined two main relevant questions: how vulnerable are existing protocols to
deanonymization attacks, and can we design protections for them? Both questions have received
substantial attention, both in the context of cryptocurrencies and in a more abstract sense. We
begin with a summary of research on detecting the source of randomized spreading processes. Then
we overview the literature on anonymous communication, both in point-to-point and one-to-many
communication settings. The take-home message of this review is twofold. First, the broadcasting
primitives used in current cryptocurrencies are vulnerable to deanonymization. Second, the classical
literature on privacy-preserving communication in P2P networks does not sufficiently address the
problem. In particular, prior work has focused only minimizing probability of detection; this is a
weaker metric than jointly considering both precision and recall.

8.2.2.1 Source Detection

Many cryptocurrencies—including Bitcoin—broadcast content using a gossip protocol called diffusion.
Under diffusion, each node transmits the message to each of its neighbors with independent,

1Following convention we define DM (v) = 0 if both the numerator and denominator are 0 in Equation (8.2).

146 CHAPTER 8. PRIVACY AND IDENTITY MANAGEMENT

exponentially-distributed delays. The problem of detecting the source of a diffusion process over
a graph is well-studied. Shah and Zaman studied this problem on infinite regular tree topologies,
under a so-called snapshot model [160]. Under this model, the diffusion process is allowed to spread
until some time T . At this time, the adversary gets to observe which nodes have the message, and
which do not. Surprisingly, the authors showed that one can reliably infer the source of a diffusion
process, even as time grows unboundedly [160]. That is, there exists a positive constant µ such that
the probability of detection satisfies:

lim
T→∞

max
E

P(v̂ = v∗) ≥ µ > 0.

Shah and Zaman later extended these results to random, irregular trees [161], and other authors
studied heuristic source detection methods on general graphs [74, 144, 117] and related theoretical
limits [182, 125, 99].

Although the snapshot adversarial model analyzed in this work does not generally arise in
cryptocurrencies, this research led to a number of papers that consider the spy-based adversary
from section 8.2.1. For example, Pinto et al. considered a spy-based adversary that observes a
diffusion process where the delays are truncated Gaussian random variables [142], and Zhu and
Ying consider a spy-based adversary with standard exponential delays [192]. These papers do not
theoretically characterize the maximum-likelihood probability of detection, but they do propose
efficient heuristics that perform well in practice. Fanti and Viswanath also study diffusion under
an eavesdropper adversary [71], which has been seen in practical attacks on the Bitcoin network
[31, 107]. [71] shows that an eavesdropper observing a diffusion process on a regular tree can detect
the source with probability bounded away from zero as the degree of the underlying tree tends to
infinity. Practically, these deanonymization efforts revolve around the notion of centrality; because
diffusion spreads content symmetrically on the underlying network, the message (roughly) spreads in
a disc over the graph, with the true source at the middle of that disc.

The above results imply that an adversary with partial global oversight can infer the shape of
the disc and identify the central node with non-negligible probability. These results suggest that
diffusion is poorly-suited to protecting users’ anonymity at the network level, which motivates the
need for alternative spreading protocols that protect users’ anonymity.

8.2.2.2 Anonymous Communication
Anonymous communication for P2P networks has been an active research area for decades. Most
systems proposed in this space rely on two key ideas: randomized routing (e.g., onion routing,
Chaumian mixes) and dining cryptographer (DC) networks. Although both approaches can be
used for the multicasting/broadcasting primitives required in cryptocurrencies, DC networks are
specifically designed for anonymous broadcasting, whereas randomized routing protocols are designed
for point-to-point communication. As a result, systems that use DC nets [44] are typically designed
for broadcast communication applications, such as microblogging [48]. At a high level, the idea
behind DC nets is that all nodes should broadcast messages encrypted with correlated one-time pads.
The sum (across all nodes) of these one-time pads is designed to cancel out; assuming only one node
broadcasts a real message (instead of a 0), the sum of the ciphertexts will reveal that message; at
the same time, the identity of the author cannot be recovered. DC nets are known to be fragile and
inefficient, requiring Θ(n) communication per communicated bit [88]. For example, if two nodes
broadcast a message at the same time, their messages get summed in the output in such a way that
neither message can be recovered. Because of this property, if even one node misbehaves, the entire
result can be invalidated. Several authors have proposed modifications of DC nets that address
these challenges [83, 88, 188, 48, 185]. A key idea from this literature is to use many small DC nets,

8.2. NETWORK-LEVEL PRIVACY 147

rather than a single one for the entire network. This idea mirrors the reasoning behind blockchain
sharding; consensus is fundamentally not scalable, so we instead solve multiple smaller sub-problems.
Despite notable innovations in this area, DC networks have not yet become scalable enough to enjoy
widespread adoption in practice.

Systems based on randomized routing are generally more efficient than those based on DC nets,
though randomized routing is tailored for point-to-point communication. The core idea of most
randomized routing is that messages traverse a random walk over an underlying network; this random
walk is implemented such that intermediate nodes in the random walk cannot learn the source
and/or destination. A natural approach for adapting randomized routing to the broadcast setting is
to execute it for a (possibly random) number of hops before initiating a regular, non-anonymous
broadcasting process. This approach matches the de facto spreading pattern of Bitcoin users who
connect their clients to the network via Tor, for example. In the area of point-to-point randomized
routing, early works like Crowds [148], Tarzan [78], and P5 [163] paved the way for later practical
systems, such as Tor [60] and I2P [189], which are used both within cryptocurrencies and in the
Internet ecosystem at large. More recently, related proposals have targeted specific application spaces
and/or recent anonymity tools, including Drac [54], Pisces [126], and Vuvuzela [176]. A different
randomized routing approach is called adaptive diffusion (AD) [66], which is specifically designed for
one-to-all message broadcasting. AD is a synchronous protocol that spreads on a tree topology that
is overlaid on the existing P2P network. Despite strong theoretical properties on restrictive graph
topologies (e.g., infinite regular trees), AD requires substantial coordination and can ‘get stuck’ on
real graphs, meaning that some messages do not reach the entire network [66]. This property is
unacceptable in cryptocurrencies: all nodes should receive all messages for fairness and consistency
purposes.

8.2.3 Lower Bounds

Given the substantial work on this topic, it is natural to ask what privacy guarantees are fundamentally
possible without resorting to cryptographic protocols. Many of the systems discussed in Section 8.2.2
include theoretical analysis, but very few provide optimality guarantees. Moreover, the ones that
do come with optimality guarantees apply only to per-user metrics, such as probability of linkage
[148]. This metric overlooks the fact that adversaries can use data from many users to execute joint
deanonymization.

To understand the effects of joint deanonymization, we need lower bounds on precision and recall.
In recent work [34], we show the following lower bound on the expected recall (probability of detection)
ROPT and precision DOPT of any randomized routing scheme using a recall- or precision-optimal
estimator.

Theorem 7 ([34]). The optimal precision and recall on a network with a fraction p of adversaries
and any spreading policy are lower bounded as

DOPT ≥ p2 (8.4)
ROPT ≥ p. (8.5)

The proof can be found in Section 8.2.5.1. This lower bound gives a point of comparison for
proposed protocols. For example, although we do not include the analysis here, it is possible to show
that the Crowds protocol [148] achieves suboptimal precision, even though Danezis et al. show that
it achieves optimal recall [53]. Indeed, to the best of our knowledge, none of the protocols described
in the related work achieve optimality in both precision and recall. In the following section, we
discuss a protocol that achieves within a logarithmic factor of these lower bounds.

148 CHAPTER 8. PRIVACY AND IDENTITY MANAGEMENT

8.2.4 Dandelion

We recently proposed Dandelion, an anonymous transaction propagation protocol for cryptocurrency
networks [34, 70] that achieves (near-)optimal precision and recall guarantees. Moreover, much
of the related work in Section 8.2.2 was mostly designed for general peer-to-peer applications; it
does not account for cryptocurrency-specific details, such as typical P2P topologies, networking
DoS protections, etc. Dandelion was designed with Bitcoin in mind, though the underlying ideas
apply to many other cryptocurrencies as well. Indeed, Unit-e will incorporate Dandelion in its own
networking stack.

We begin with a brief overview of Dandelion and its guarantees. The basic idea of Dandelion
is to propagate each transaction in a random walk over the underlying graph; this random walk is
called the stem phase. After a random number of hops, the stem phase ends and the transaction is
broadcast via diffusion to the rest of the graph; this is called the fluff phase. This simple description
hides a number of details that affect the scheme’s anonymity properties. Dandelion proceeds in
asynchronous epochs; each node advances its epoch when its internal clock reaches a random
threshold (in practice, this will be on the order of minutes). Within an epoch, the main algorithmic
components of Dandelion are:
(1) Anonymity graph: The random walk takes place on an overlay of the P2P graph called the
anonymity graph. This overlay should be chosen either as a random cycle graph (i.e., a 2-regular
graph) or a 4-regular graph. This 4-regular graph is embedded in the underlying P2P graph by
having each node choose (up to) two of its outbound edges, without replacement, uniformly at
random as Dandelion relays. This does not produce an exact 4-regular graph, but an approximation.
Each time a node transitions to the next epoch, it selects fresh Dandelion relays.
(2) Forwarding of a node’s own transactions: Each time a node generates a transaction, it forwards
the transaction in stem phase along the same randomly-selected outbound edge on the anonymity
graph. If the anonymity graph is a line graph, choosing this outbound edge is trivial; otherwise, the
node must choose one of its outbound edges [70].
(3) Relaying of other nodes’ transactions: Each time a node receives a stem-phase transaction from
another node, it either relays the transaction or diffuses it. The choice to diffuse transactions is
pseudorandom, and is computed from a hash of the node’s own identity and epoch number. Note
that the decision to diffuse does not depend on the transaction itself—in each epoch, a node is either
a diffuser or a relay node for all relayed transactions. If the node is not a diffuser in this epoch (i.e.,
it is a relayer), then it relays transactions pseudorandomly; each node maps each of its incoming
edges in the anonymity graph to an outbound edge in the anonymity graph (with replacement). This
mapping is selected at the beginning of each epoch, and determines how transactions are relayed.
(4) Robustness mechanism: Each node tracks, for each stem-phase transaction that it sends or relays,
whether the transaction is seen again as a fluff-phase transaction within some random amount of
time. If not, the node starts to diffuse the transaction.

For more details on the implementation of Dandelion, we refer the reader to our follow-up
paper, which includes a more sophisticated adversarial model as well as practical implementation
considerations [70]. Under a spy-based, honest-but-curious adversarial model with a fraction p of
spy nodes, Dandelion has optimal (up to a logarithmic factor) precision and recall.

Theorem 8 ([34]). The expected recall (ROPT) and precision (DOPT) of Dandelion (i.e., Dande-
lion spreading on a line graph) with n nodes and a fraction p < 1/3 of adversaries, is upper bounded

8.2. NETWORK-LEVEL PRIVACY 149

0 2 4 6 8 10 12
Path Length

0

2

4

6

8

10

12

14

16
T
im

e
 t

o
 1

0
%

 (
se

co
n
d
s)

Best Fit
Minimum (est)

Figure 8.3: (Figure replicated from [70]) Time
for a Dandelion transaction to propagate to 10%
of the network as a function of the path length.
Blue is the line of best fit at 218ms per hop.

0 2 4 6 8 10 12
Path Length

0

2

4

6

8

10

12

14

16

T
im

e
 f

ro
m

 1
0

-5
0

%
 C

o
v
e
ra

g
e
 (

se
co

n
d
s)

Figure 8.4: (Figure replicated from [70]) Time
for a Dandelion transaction to propagate from
10% to 50% of the network.

by

ROPT ≤ p+O

(
1

n

)
(8.6)

DOPT ≤ 2p2

1− p
log

(
2

p

)
+O

(
1

n

)
. (8.7)

The proof can be found in Section 8.2.5.2. Notice that the results in Theorem 8 achieve the
lower bounds in Theorem 7 for recall and are within a logarithmic factor of optimal for precision. Of
course, a more meaningful question is to bound precision and recall under a Byzantine adversary;
this question is addressed in [70], where it is shown that Byzantine adversaries do not increase recall,
and they increase precision by a factor of O(1

p log(1/p)) [70].

Practical Tradeoffs. Dandelion’s privacy guarantees come at the expense of transaction latency.
A longer stem phase improves privacy but also increases the time required for a transaction to reach
the whole network. To evaluate this tradeoff, in [70], we implemented Dandelion on a fork of Bitcoin
Core, and deployed 30 nodes on the Bitcoin main network (mainnet). We then measured the latency
of Dandelion transactions. Figure 8.3 shows the time required for a Dandelion transaction to reach
10% of the network, as a function of the length of the stem phase (in hops). The main takeaway is
that longer stems increase latency by a factor of about 2 seconds per 10 hops, on average. Although
[70] suggests using an average stem length of 10 hops in Bitcoin (where block times are on the order
of 10 minutes), a low-latency payment system like Unit-e will likely need to adopt shorter stems, on
the order of 3-4 hops. Figure 8.4 shows the time for a Dandelion transaction to spread from 10%
of the network to 50%. This figure suggests that after the initial 10%, Dandelion does not affect
transaction latency in a statistically significant way, which is expected behavior.

8.2.5 Proofs

The current section contains proofs of the main claims in the chapter; it can be safely skipped by
readers who are not interested in the mathematical detail of the claims.

150 CHAPTER 8. PRIVACY AND IDENTITY MANAGEMENT

8.2.5.1 Proof of Theorem 7
For each honest server node v, we let Sv denote the set of (transaction, receiving spy node, timestamp)
tuples (x, u, Tu(x)) such that transaction x was forwarded by honest node v to adversary u ∈ VA
at time Tu(x); S is the vector of all Sv’s. Recall that for honest server v, the tuple (x, u, Tu(x)) is
contained in Sv if v forwards message x to adversarial node u at time Tu(x). Let us now define a
related quantity S̄v to denote the set of messages x ∈ X forwarded by v to some adversary such
that x was not received by any adversarial node previously. This quantity S̄v is useful in analyses
involving the first-spy estimator. S̄ denotes the vector of all S̄v’s.

The following lemma implies a lower bound on recall by analyzing the first-spy estimator EFS,
which is defined for a particular transaction x as follows:

EFS(A, x) := arg min
v∈V

{Tv(x)}.

We use RFS(v) and DFS(v) to denote the first-spy estimator’s expected recall and precision, respec-
tively, for messages originating from node v.

Lemma 8.2.1. If v ∈ VH is a honest server node in a network with a fraction p of adversaries, then
the recall of the first-spy estimator is RFS(v) = P(Xv ∈ S̄v) ≥ p.

Proof. Let U denote the node to which v first sends its message Xv, and let VA denote the set of
adversarial spy nodes. Then,

P(U ∈ VA) =
∑

u∈V,u6=v
P(U = u)P(U ∈ VA|U = u)

=
∑

u∈V,u6=v

1

n− 1
P(U ∈ VA|U = u) =

np

n− 1
≥ p, (8.8)

due to uniform distribution among the remaining nodes V \{v}. Therefore we have,

P(Xv ∈ S̄v) ≥ P(U ∈ VA) ≥ p. (8.9)

Thus v’s message is contained in S̄v with probability at least p. The case where v simultaneously
broadcasts Xv to multiple nodes can also be similarly bounded as above, and hence the lemma
follows.

To show (8.5), note that ROPT ≥ RFS(v) ≥ p, by Lemma 8.2.1. Next, we show that the first-
spy estimator also has a precision of at least p2 regardless of the topology or spreading scheme.
Consider a random realization S̄, in which the adversaries observe a set of first-received messages
Sv ⊆ X from each node v ∈ V . Now, supposing in these observations there exists a subset of t
server nodes {v1, v2, . . . , vt} whose own messages are included in the respective forwarded sets, i.e.,
Xvi ∈ S̄vi∀i = 1, 2, . . . , t. The macro-averaged precision in this case is

DFS =
1

ñ

t∑
i=1

1

|S̄vi |
≥ t2

ñ
∑ñ

i=1 |S̄vi |
≥ t2

ñ2
, (8.10)

where the first inequality above is due to the arithmetic-mean harmonic-mean (A.M-H.M) inequality,
and the second inequality is because the total number of messages is at most ñ. Equation (8.10) in
turn implies that

E[DFS|T = t] ≥ t2

ñ2
. (8.11)

8.2. NETWORK-LEVEL PRIVACY 151

The overall expected detection precision can then be bounded as

DFS = E[DFS] =
ñ∑
t=0

P(T = t)E[DFS|T = t]

≥
ñ∑
t=0

P(T = t)
t2

ñ2
=

E[T 2]

ñ2
≥ E[T]2

ñ2

=
E[
∑

v∈VH 1Xv∈S̄v]
2

ñ2
≥ (pñ)2

ñ2
= p2, (8.12)

where the inequality in Equation (8.12) follows from Lemma 8.2.1. Finally by definition we have
DOPT ≥ DFS and hence the theorem follows.

8.2.5.2 Proof of Theorem 8

We separate the proof into two parts: precision and recall. Both parts utilize the following result
from [34], which is replicated without proof:

Lemma 8.2.2 (Optimal Estimators, [34]). The precision-optimizing estimator for an adversary
with observations A, is achieved by a matching over the bipartite graph (V,X). Moreover, such a
matching is a maximum-weight matching for edge weights P(Xv = x|A) on each edge (v, x) ∈ V ×X
of the graph. The recall-optimizing estimator is a mapping that assigns each transaction x ∈ X to
any server v∗ ∈ arg maxv∈V P(Xv = x|A).

Recall. We first show that the first-spy estimator is recall-optimal for Dandelion spreading, then
that the first-spy estimator has an expected recall of p.

To show the first step, i.e., ROPT = RFS, Lemma 8.2.2 implies that we must show that for
every message x, its exit node z (i.e., the node implicated by the first-spy estimator) maximizes
P(Xv = x|A). For any message Xu, let Πu = (Π1,u,Π2,u, . . . ,ΠLu,u) be the path taken by a message
from its source u (= Π1,u) until it reaches an adversarial node ΠLu,u for the first time (Lu denotes
the length of the path). From the adversary’s observation S, ΠLu−1,u and ΠLu,u are fixed as the exit
node z and the first spy for Xu, respectively. Due to the specification of Dandelion spreading, the
likelihood of this path, L(Πu), is L(Πu) =

∏Lu−1
i=1

1
deg(Πi,u) , where deg(v) denotes the out-degree of v.

Assuming a uniform prior over candidate sources, we have P(Xv = x|A) ∝ L(Πv). Since each node
is assumed to have an out-degree of at least 1, this likelihood is maximized by taking the shortest
path possible. That is, the maximum-likelihood path over all paths originating at honest candidate
sources gives z ∈ arg maxv∈VH P(Xv = x|A). Hence the first-spy estimator is also a maximum-recall
estimator.

Now we analyze the recall of the first-spy estimator. Let Pv denote the event that v’s parent
(i.e., the next node in the line) is adversarial. Then the expected recall averaged over the set of
honest nodes VH is

ROPT = E[RFS|S, G] =
1

ñ
E

∑
v∈VH

1{Pv}

⇒ ROPT =

1

ñ

∑
v∈VH

P(Pv) =
1

ñ

∑
v∈VH

(
np

n− 1

)
= p+O

(
1

n

)
,

where ñ := |VH | denotes the number of honest nodes.

152 CHAPTER 8. PRIVACY AND IDENTITY MANAGEMENT

Precision. The proof works by evaluating the cost incurred under various possibilities for the local
neighborhood structure around a node in the network. For any honest server node v ∈ VH , let
Ev(i, j) denote the event that (i) i nodes preceding v are honest nodes, the (i+ 1)-th node preceding
v is adversarial and (ii) j nodes succeeding v are honest nodes and the (j + 1)-th node following v is
adversarial. Also for ease of notation let Iv denote the event ∪i>0,j>0Ev(i, j). Then the following
lemmas hold true.

Lemma 8.2.3. On a line-graph, for any i, j > 0, we have

E[max
x∈X

P(Xv = x|S, A, Ev(i, 0))|Ev(i, 0)] ≤ 1

i+ 1

E[max
x∈X

P(Xv = x|S, A, Ev(0, j))|Ev(0, j)] ≤
1

j + 1

E[max
x∈X

P(Xv = x|S, A, Ev(0, 0))|Ev(0, 0)] ≤ 1

E[max
x∈X

P(Xv = x|S, A, Iv)|Iv] ≤
1

n(1− 3p)
. (8.13)

The proof can be found in Section 8.2.5.3.

Lemma 8.2.4. On a line-graph, for i, j > 0 we have

P(Ev(i, 0)) ≤
(
p+

1

n

)2(
1− p+

2

n

)i
(8.14)

P(Ev(0, j)) ≤
(
p+

1

n

)2(
1− p+

2

n

)j
(8.15)

P(Ev(0, 0)) ≤ (p+ 1/n)2 (8.16)

P(Iv) ≤ (1− p)2. (8.17)

The proof can be found in Section 8.2.5.4.

Lemma 8.2.5. If E1, E2, . . . , Ek is a set of mutually exclusive and exhaustive events, and v ∈ VH is
any honest server node, then

DOPT(v) ≤
k∑
i=1

P(Ei)E[max
x∈X

P(Xv = x|S, A, Ei)|Ei]. (8.18)

The proof can be found in [34]. To complete the proof of Theorem 8, let use Lemma 8.2.5 with
Ev(i, 0), Ev(0, j), Ev(0, 0) and Ev for i, j > 0 as the set of mutually exclusive and exhaustive events.
Then the expected payoff at v can be bounded as

DOPT(v) ≤
∑
i>0

P(Ev(i, 0))E[max
x∈X

P(Xv = x|S, A, Ev(i, 0))|Ev(i, 0)]

+
∑
j>0

P(Ev(0, j))E[max
x∈X

P(Xv = x|S, A, Ev(0, j))|Ev(0, j)]

+ P(Ev(0, 0))E[max
x∈X

P(Xv = x|S, A, Ev(0, 0))|Ev(0, 0)]

+ P(Iv)E[max
x∈X

P(Xv = x|S, A, Iv)|Iv], (8.19)

8.2. NETWORK-LEVEL PRIVACY 153

where the values of the individual expectation and probability terms in the above Equation (8.19)
have been computed in Lemmas 8.2.3 and 8.2.4 respectively. Using those bounds, we get

DOPT(v) ≤
∑
i>0

(
p+

1

n

)2(
1− p+

2

n

)i 1

i+ 1
+
∑
j>0

(
p+

1

n

)2(
1− p+

2

n

)j 1

i+ 1

+ (p+ 1/n)2 + (1− p)2 1

n(1− 3p)

≤
2(p+ 1

n)2

(1− p+ 2
n)

log

(
1

p− 2
n

)
+

(1− p)2

n(1− 3p)

≤ 2p2

1− p
log

(
2

p

)
+O

(
1

n

)
. (8.20)

Finally averaging the expected payoff DOPT(v) over each of the ñ honest server nodes v ∈ VH , we get
the desired result.

8.2.5.3 Proof of Lemma 8.2.3

Consider a realization G of the network topology such that our desired event Ev(i, 0) happens. In
such a graph G, the node succeeding v is an adversarial node and the i nodes preceding v are honest.
Let us denote this set of i+ 1 nodes – comprising of the i nodes preceding v and v itself – as Wv (i.e.,
the ward of v). Now, if the messages assigned to the nodes outside of Wv is denoted by X(VH\Wv),
then for any x ∈ Sv we have P(Xv = x|G,S, A, Ev(i, 0), X(VH\Wv)

=
P(Xv = x,S, X(VH\Wv)|G,A, Ev(i, 0))∑
x∈Sv P(Xv = x,S, X(VH\Wv)|G,A, Ev(i, 0))

=
P(Xv = x,X(VH\Wv)|G,A, Ev(i, 0))∑
x∈Sv P(Xv = x,X(VH\Wv)|G,A, Ev(i, 0))

=
1

i+ 1
, (8.21)

by using the fact that the allocation of messagesX is independent of the graph structure (G,A, Ev(i, 0))
and P(S|Xv = x,X(VH\Wv), G,A, Ev(i, 0)) = 1 on a line-graph. Now, taking expectation on both
sides of Equation (8.21) we get

P(Xv = x|S, A, Ev(i, 0)) =
1

i+ 1
∀x ∈ Sv

⇒ max
x∈X

P(Xv = x|S, A, Ev(i, 0)) =
1

i+ 1
or

E[max
x∈X

P(Xv = x|S, A, Ev(i, 0))|Ev(i, 0)] =
1

i+ 1
. (8.22)

By a similar argument as above, we can also show that

E[max
x∈X

P(Xv = x|S, A, Ev(0, j))|Ev(0, j)] =
1

j + 1
,

E[max
x∈X

P(Xv = x|S, A, Ev(0, 0))|Ev(0, 0)] = 1. (8.23)

Finally let us consider the case where v is an interior node, i.e., event Iv happens. As before, for
a head-node u (an honest node whose successor is an adversarial node) let Wu denote the ward

154 CHAPTER 8. PRIVACY AND IDENTITY MANAGEMENT

containing u. Notice that under observations S,Γ(VA) the adversaries know (i) the head and tail
nodes of each ward (from Γ(VA)) and (ii) the size of each ward (|Wu| = |Su|). Therefore if a message
x is such that x ∈ Su for some u, then

P(Xv = x|S, A, Iv) = P(Xv = x, v ∈Wu|S, A, Iv)
= P(v ∈Wu|S, A, Iv)P(Xv = x|v ∈Wu,S, A, Iv)

=
|Wu| − 2

|I|
1

|Wu|
≤ 1

|I|
≤ 1

n(1− 3p)
, (8.24)

where I denotes the set of all interior nodes and |I| ≥ n(1− 3p) since each adversary is a neighbor
to at most 2 honest server nodes. Hence we have

E[max
x∈X

P(Xv = x|S, A, Iv)|Iv] ≤
1

n(1− 3p)
, (8.25)

concluding the proof.

8.2.5.4 Proof of Lemma 8.2.4

First let us consider the event Ev(i, 0) in which node v has an adversarial successor, i honest
predecessor nodes and an adversarial i+ 1-th predecessor. Let Yv denote the position of node v in
the line graph. Then

P(Ev(i, 0)) =
n∑

j=i+1

P(Yv = j)P(Ev(i, 0)|Yv = j), (8.26)

since v needs to be at a position on the line graph where at least i + 1 predecessors are feasible.
Now, for i+ 1 ≤ j ≤ n, by a simple counting argument we have

P(Ev(i, 0)|Yv = j) =

(
np

n− 1

)(
np− 1

n− 2

)(
ñ− 1

n− 3

)(
ñ− 2

n− 4

)
. . .

(
ñ− i

n− i− 2

)
≤
(
p+

1

n

)2(
1− p+

2

n

)i
Combining the above inequality with Equation (8.26) we conclude that

P(Ev(i, 0)) ≤
(
p+

1

n

)2(
1− p+

2

n

)i
(8.27)

for i > 0. By essentially a similar counting as above, we can also obtain the remaining Equa-
tions (8.15), (8.16) and (8.17) from the Lemma.

8.3 Acknowledgement

The authors thank S. Bakshi, S. Bhargava, B. Denby, and S. Venkatakrishnan for collaborations on
the design and analysis of Dandelion. This chapter includes material from [34, 70].

Bibliography

[1] Amp: Atomic multi-path payments over lightning. https://lists.linuxfoundation.org/
pipermail/lightning-dev/2018-February/000993.html.

[2] Bitcoin historical fee chart. https://bitinfocharts.com/comparison/bitcoin-median_
transaction_fee.html.

[3] Ethereum Wiki proof of stake faqs: Grinding attacks.
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQs.

[4] Falcon network. https://www.falcon-net.org/.

[5] Internet service provider (isp) topology zoo. http://www.topology-zoo.org/.

[6] Kovri. https://getkovri.org/.

[7] Onion routed micropayments for the lightning network. https://github.com/
lightningnetwork/lightning-onion.

[8] Particl. https://particl.com/.

[9] Qtum. https://qtum.com/.

[10] Raiden network. https://raiden.network/.

[11] Ripplenet. https://ripple.com/.

[12] Speedymurmurs software. https://crysp.uwaterloo.ca/software/speedymurmurs/.

[13] Michael Abd-El-Malek, Gregory R Ganger, Garth R Goodson, Michael K Reiter, and Jay J
Wylie. Fault-scalable byzantine fault-tolerant services. ACM SIGOPS Operating Systems
Review, 39(5):59–74, 2005.

[14] Mohammed Amin Abdullah and Moez Draief. Global majority consensus by local majority
polling on graphs of a given degree sequence. Discrete Applied Mathematics, 180:1–10, 2015.

[15] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegelman. Solidus:
An incentive-compatible cryptocurrency based on permissionless byzantine consensus. CoRR,
abs/1612.02916, 2016.

[16] Atul Adya, William J Bolosky, Miguel Castro, Gerald Cermak, Ronnie Chaiken, John R
Douceur, Jon Howell, Jacob R Lorch, Marvin Theimer, and Roger P Wattenhofer. Farsite:
Federated, available, and reliable storage for an incompletely trusted environment. ACM
SIGOPS Operating Systems Review, 36(SI):1–14, 2002.

155

https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-February/000993.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-February/000993.html
https://bitinfocharts.com/comparison/bitcoin-median_transaction_fee.html
https://bitinfocharts.com/comparison/bitcoin-median_transaction_fee.html
h
https://www.falcon-net.org/
http://www.topology-zoo.org/
https://getkovri.org/
https://github.com/lightningnetwork/lightning-onion
https://github.com/lightningnetwork/lightning-onion
https://particl.com/
https://qtum.com/
https://raiden.network/
https://ripple.com/
https://crysp.uwaterloo.ca/software/speedymurmurs/

156 BIBLIOGRAPHY

[17] Alfred V Aho and John E Hopcroft. The design and analysis of computer algorithms. Pearson
Education India, 1974.

[18] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown, Balaji
Prabhakar, and Scott Shenker. pfabric: Minimal near-optimal datacenter transport. In
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13, pages
435–446, New York, NY, USA, 2013. ACM.

[19] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pages 2087–2104. ACM,
2017.

[20] Gavin Andresen. Weak block thoughts... bitcoin-dev. https://lists.linuxfoundation.org/
pipermail/bitcoin-dev/2015-September/011157.html.

[21] Elli Androulaki, Ghassan O Karame, Marc Roeschlin, Tobias Scherer, and Srdjan Capkun.
Evaluating user privacy in bitcoin. In International Conference on Financial Cryptography
and Data Security, pages 34–51. Springer, 2013.

[22] Lars Backstrom, Cynthia Dwork, and Jon Kleinberg. Wherefore art thou r3579x?: anonymized
social networks, hidden patterns, and structural steganography. In Proceedings of the 16th
international conference on World Wide Web, pages 181–190. ACM, 2007.

[23] Vivek Bagaria, Giulia Fanti, Sreeram Kannan, David Tse, and Pramod Viswanath. Prism++: a
throughput-latency-security-incentive optimal proof of stake blockchain algorithm. In Working
paper, 2018.

[24] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath. Decon-
structing the blockchain to approach physical limits. https://arxiv.org/abs/1810.08092.

[25] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath. De-
constructing the blockchain to approach physical limits. arXiv preprint arXiv:1810.08092,
2018.

[26] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proceedings of the twentieth annual
ACM symposium on Theory of computing, pages 1–10. ACM, 1988.

[27] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. Cryptol. ePrint Arch., Tech. Rep, 46:2018, 2018.

[28] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. Cryptol. ePrint Arch., Tech. Rep, 46:2018, 2018.

[29] Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and Madars Virza. Secure
sampling of public parameters for succinct zero knowledge proofs. In Security and Privacy
(SP), 2015 IEEE Symposium on, pages 287–304. IEEE, 2015.

[30] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive
zero knowledge for a von neumann architecture. In USENIX Security Symposium, pages
781–796, 2014.

https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-September/011157.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-September/011157.html
https://arxiv.org/abs/1810.08092

BIBLIOGRAPHY 157

[31] Alex Biryukov, Dmitry Khovratovich, and Ivan Pustogarov. Deanonymisation of clients in
bitcoin p2p network. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 15–29. ACM, 2014.

[32] Alex Biryukov and Ivan Pustogarov. Bitcoin over tor isn’t a good idea. In 2015 IEEE
Symposium on Security and Privacy, pages 122–134. IEEE, 2015.

[33] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In Proceedings
of the 3rd Innovations in Theoretical Computer Science Conference, pages 326–349. ACM,
2012.

[34] Shaileshh Bojja Venkatakrishnan, Giulia Fanti, and Pramod Viswanath. Dandelion: Redesign-
ing the bitcoin network for anonymity. Proceedings of the ACM on Measurement and Analysis
of Computing Systems, 1(1):22, 2017.

[35] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multiparty computation for zk-snark
parameters in the random beacon model. Technical report, Cryptology ePrint Archive, Report
2017/1050, 2017.

[36] Vitalik Buterin. On slow and fast block times, 2015. https://blog.ethereum.org/2015/09/
14/on-slow-and-fast-block-times/.

[37] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. arXiv preprint
arXiv:1710.09437, 2017.

[38] Jan Camenisch and Markus Stadler. Proof systems for general statements about discrete
logarithms. Technical report/Dept. of Computer Science, ETH Zürich, 260, 1997.

[39] Cardano. Cardano settlement layer documentation. https://cardanodocs.com/technical/.

[40] Miles Carlsten, Harry Kalodner, S Matthew Weinberg, and Arvind Narayanan. On the
instability of bitcoin without the block reward. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 154–167. ACM, 2016.

[41] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems (TOCS), 20(4):398–461, 2002.

[42] Miguel Castro, Barbara Liskov, and et. al. Practical byzantine fault tolerance. In Paul J.
Leach and Margo Seltzer, editors, Proceedings of the Third Symposium on Operating Systems
Design and Implementation, volume 99, pages 173–186, February 1999.

[43] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Chris-
tian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-knowledge and
signatures from symmetric-key primitives. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pages 1825–1842. ACM, 2017.

[44] D. Chaum. The dining cryptographers problem: Unconditional sender and recipient untrace-
ability. Journal of cryptology, 1(1), 1988.

[45] Jing Chen and Silvio Micali. Algorand. arXiv preprint arXiv:1607.01341, 2016.

[46] David D Clark, Van Jacobson, John Romkey, and Howard Salwen. An analysis of tcp processing
overhead. IEEE Communications magazine, 27(6):23–29, 1989.

https://blog.ethereum.org/2015/09/14/on-slow-and-fast-block-times/
https://blog.ethereum.org/2015/09/14/on-slow-and-fast-block-times/
https://cardanodocs.com/technical/

158 BIBLIOGRAPHY

[47] Thomas Clausen and Philippe Jacquet. Optimized link state routing protocol (olsr). Technical
report, 2003.

[48] H. Corrigan-Gibbs and B. Ford. Dissent: accountable anonymous group messaging. In CCS.
ACM, 2010.

[49] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and Liuba Shrira. Hq
replication: A hybrid quorum protocol for byzantine fault tolerance. In Proceedings of the
7th symposium on Operating systems design and implementation, pages 177–190. USENIX
Association, 2006.

[50] James Cruise and Ayalvadi Ganesh. Probabilistic consensus via polling and majority rules.
Queueing Systems, 78(2):99–120, 2014.

[51] Leigh Cuen. 100 merchants can now trial Bitcoin’s lightning network risk free. July 2018.

[52] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable consensus and
applications to provably secure proofs of stake. Technical report, Technical report, 2016.

[53] George Danezis, Claudia Diaz, Emilia Käsper, and Carmela Troncoso. The wisdom of crowds:
attacks and optimal constructions. In European Symposium on Research in Computer Security,
pages 406–423. Springer, 2009.

[54] George Danezis, Claudia Diaz, Carmela Troncoso, and Ben Laurie. Drac: An architecture for
anonymous low-volume communications. In International Symposium on Privacy Enhancing
Technologies Symposium, pages 202–219. Springer, 2010.

[55] Alex de Vries. Bitcoin’s growing energy problem. Joule, 2(5):801–805, 2018.

[56] C. Decker and R. Wattenhofer. Information propagation in the bitcoin network. In IEEE P2P
2013 Proceedings, pages 1–10, Sept 2013.

[57] Christian Decker, Jochen Seidel, and Roger Wattenhofer. Bitcoin meets strong consistency. In
Proceedings of the 17th International Conference on Distributed Computing and Networking,
page 13. ACM, 2016.

[58] Christian Decker and Roger Wattenhofer. Information propagation in the bitcoin network. In
IEEE P2P 2013 Proceedings, pages 1–10. IEEE, 2013.

[59] Christian Decker and Roger Wattenhofer. Information propagation in the bitcoin network. In
Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth International Conference on, pages
1–10. IEEE, 2013.

[60] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation onion router.
Technical report, DTIC Document, 2004.

[61] Jacob Donnelly. What is the ’halving’? a primer to bitcoin’s big mining change. 2016.

[62] Atilla Eryilmaz and R Srikant. Joint congestion control, routing, and mac for stability and
fairness in wireless networks. IEEE Journal on Selected Areas in Communications, 24(8):1514–
1524, 2006.

[63] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. Bitcoin-ng: A
scalable blockchain protocol. In NSDI, pages 45–59, 2016.

BIBLIOGRAPHY 159

[64] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable.
Communications of the ACM, 61(7):95–102, 2018.

[65] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable.
Communications of the ACM, 61(7):95–102, 2018.

[66] G. Fanti, P. Kairouz, S. Oh, and P. Viswanath. Spy vs. spy: Rumor source obfuscation. In
SIGMETRICS Perform. Eval. Rev., volume 43, pages 271–284, 2015.

[67] Giulia Fanti, Jiantao Jiao, Ashok Makkuva, Sewoong Oh, Ranvir Rana, and Pramod Viswanath.
Barracuda: The power of l-polling in proof-of-stake blockchains. arXiv preprint, 2018.

[68] Giulia Fanti, Leonid Kogan, Sewoong Oh, Kathleen Ruan, Pramod Viswanath, and Gerui Wang.
Compounding of wealth in proof-of-stake cryptocurrencies. arXiv preprint arXiv:1809.07468,
2018.

[69] Giulia Fanti, Leonid Kogan, Sewoong Oh, Kathleen Ruan, Pramod Viswanath, and
Gerui Wang. Compounding of wealth in proof-of-stake cryptocurrencies. arXiv preprint
https://arxiv.org/pdf/1809.07468.pdf, 2018.

[70] Giulia Fanti, Shaileshh Bojja Venkatakrishnan, Surya Bakshi, Bradley Denby, Shruti Bhargava,
Andrew Miller, and Pramod Viswanath. Dandelion++: Lightweight cryptocurrency networking
with formal anonymity guarantees. Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 2(2):29, 2018.

[71] Giulia Fanti and Pramod Viswanath. Deanonymization in the bitcoin p2p network. In Advances
in Neural Information Processing Systems, pages 1364–1373, 2017.

[72] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity. Journal of
cryptology, 1(2):77–94, 1988.

[73] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Advances in Cryptology—CRYPTO’86, pages 186–194. Springer, 1986.

[74] V. Fioriti and M. Chinnici. Predicting the sources of an outbreak with a spectral technique.
arXiv:1211.2333, 2012.

[75] MJ Fischer, N Lynch, and MS Paterson. Impossibility of distributed consensus with one faulty
process, 1985.

[76] Lester R Ford and Delbert R Fulkerson. Maximal flow through a network. Canadian journal
of Mathematics, 8(3):399–404, 1956.

[77] Cédric Fournet, Markulf Kohlweiss, George Danezis, Zhengqin Luo, et al. Zql: A compiler for
privacy-preserving data processing. In USENIX Security Symposium, pages 163–178, 2013.

[78] M.J. Freedman and R. Morris. Tarzan: A peer-to-peer anonymizing network layer. In Proc.
CCS. ACM, 2002.

[79] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis
and applications. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 281–310. Springer, 2015.

160 BIBLIOGRAPHY

[80] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing:
Outsourcing computation to untrusted workers. In Annual Cryptology Conference, pages
465–482. Springer, 2010.

[81] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. Zkboo: Faster zero-knowledge for
boolean circuits. In USENIX Security Symposium, pages 1069–1083, 2016.

[82] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 51–68. ACM, 2017.

[83] S. Goel, M. Robson, M. Polte, and E. Sirer. Herbivore: A scalable and efficient protocol for
anonymous communication. Technical report, 2003.

[84] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game. In Proceedings
of the nineteenth annual ACM symposium on Theory of computing, pages 218–229. ACM, 1987.

[85] David Goldschlag, Michael Reed, and Paul Syverson. Onion routing. Communications of the
ACM, 42(2):39–41, 1999.

[86] Shafi Goldwasser. How to play any mental game, or a completeness theorem for protocols with
an honest majority. Proc. the Nineteenth Annual ACM STOC’87, pages 218–229, 1987.

[87] Shafi Goldwasser. Multi party computations: past and present. In Proceedings of the sixteenth
annual ACM symposium on Principles of distributed computing, pages 1–6. ACM, 1997.

[88] P. Golle and A. Juels. Dining cryptographers revisited. In Advances in Cryptology-Eurocrypt
2004, 2004.

[89] Aleksi Grym et al. The great illusion of digital currencies. 2018.

[90] James Hendricks, Gregory R Ganger, and Michael K Reiter. Low-overhead byzantine fault-
tolerant storage. In ACM SIGOPS Operating Systems Review, volume 41, pages 73–86. ACM,
2007.

[91] Alyssa Hertig. Lightning: The Bitcoin scaling tech you really should know. December 2017.

[92] Alyssa Hertig. Bitcoin fees are down big: Why it happened and what it means. February 2018.

[93] Chi-Yao Hong, Matthew Caesar, and P Godfrey. Finishing flows quickly with preemptive
scheduling. In Proceedings of the ACM SIGCOMM 2012 conference on Applications, tech-
nologies, architectures, and protocols for computer communication, pages 127–138. ACM,
2012.

[94] Gur Huberman, Jacob D Leshno, and Ciamac C Moallemi. Monopoly without a monopolist:
An economic analysis of the bitcoin payment system. 2017.

[95] Van Jacobson. Congestion avoidance and control. In ACM SIGCOMM computer communication
review, volume 18, pages 314–329. ACM, 1988.

[96] Richard Karp, Christian Schindelhauer, Scott Shenker, and Berthold Vocking. Randomized
rumor spreading. In Foundations of Computer Science, 2000. Proceedings. 41st Annual
Symposium on, pages 565–574. IEEE, 2000.

BIBLIOGRAPHY 161

[97] Dina Katabi, Mark Handley, and Charlie Rohrs. Congestion control for high bandwidth-delay
product networks. ACM SIGCOMM computer communication review, 32(4):89–102, 2002.

[98] Frank Kelly and Thomas Voice. Stability of end-to-end algorithms for joint routing and rate
control. ACM SIGCOMM Computer Communication Review, 35(2):5–12, 2005.

[99] Justin Khim and Po-Ling Loh. Confidence sets for the source of a diffusion in regular trees.
arXiv preprint arXiv:1510.05461, 2015.

[100] Aggelos Kiayias, Elias Koutsoupias, Mario Larangeira, Lars Brunjes, Dimitris Karakostas, and
Aikaterini Stouka. Incentives and staking in cardano. https://staking.cardano.org/.

[101] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. In Annual International Cryptology
Conference, pages 357–388. Springer, 2017.

[102] Uri Klarman, Soumya Basu, Aleksandar Kuzmanovic, and Emin Gün Sirer. bloxroute: A
scalable trustless blockchain distribution network whitepaper.

[103] Leonid Kogan, Max Orhstrand, Giulia Fanti, and Pramod Viswanath. Economics of proof-of-
stake payment systems. Working paper, 2018.

[104] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser, and
Bryan Ford. Enhancing bitcoin security and performance with strong consistency via collective
signing. In 25th USENIX Security Symposium (USENIX Security 16), pages 279–296, 2016.

[105] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser, and
Bryan Ford. Enhancing bitcoin security and performance with strong consistency via collective
signing. In 25th USENIX Security Symposium (USENIX Security 16), pages 279–296, 2016.

[106] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, and Bryan Ford.
Omniledger: A secure, scale-out, decentralized ledger. IACR Cryptology ePrint Archive,
2017:406, 2017.

[107] Philip Koshy, Diana Koshy, and Patrick McDaniel. An analysis of anonymity in bitcoin using
p2p network traffic. In International Conference on Financial Cryptography and Data Security,
pages 469–485. Springer, 2014.

[108] J Kubiatowicz. An architecture for global-scale persistent store. Proc. ASPLOS’2000, Cam-
bridge, MA, November, 2000.

[109] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Communica-
tions of the ACM, 21(7):558–565, 1978.

[110] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–401, 1982.

[111] Yoad Lewenberg, Yoram Bachrach, Yonatan Sompolinsky, Aviv Zohar, and Jeffrey S Rosen-
schein. Bitcoin mining pools: A cooperative game theoretic analysis. In Proceedings of the
2015 International Conference on Autonomous Agents and Multiagent Systems, pages 919–927.
International Foundation for Autonomous Agents and Multiagent Systems, 2015.

https://staking.cardano.org/

162 BIBLIOGRAPHY

[112] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive block chain protocols.
In International Conference on Financial Cryptography and Data Security, pages 528–547.
Springer, 2015.

[113] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive block chain protocols.
In International Conference on Financial Cryptography and Data Security, pages 528–547.
Springer, 2015.

[114] Chenxing Li, Peilun Li, Wei Xu, Fan Long, and Andrew Chi-chih Yao. Scaling nakamoto
consensus to thousands of transactions per second. arXiv preprint arXiv:1805.03870, 2018.

[115] Songzi Li, Mingchao Yu, Salman Avestimehr, Sreeram Kannan, and Pramod Viswanath.
Polyshard: Coded sharding achieves linearly scaling efficiency and security simultaneously.
arXiv preprint arXiv:1709.05748, 2018.

[116] Wenting Li, Sébastien Andreina, Jens-Matthias Bohli, and Ghassan Karame. Securing proof-
of-stake blockchain protocols. In Data Privacy Management, Cryptocurrencies and Blockchain
Technology, pages 297–315. Springer, 2017.

[117] A. Y. Lokhov, M. Mézard, H. Ohta, and L. Zdeborová. Inferring the origin of an epidemic
with dynamic message-passing algorithm. arXiv preprint arXiv:1303.5315, 2013.

[118] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and Prateek
Saxena. A secure sharding protocol for open blockchains. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 17–30. ACM, 2016.

[119] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. Silentwhispers:
Enforcing security and privacy in decentralized credit networks. IACR Cryptology ePrint
Archive, 2016:1054, 2016.

[120] David Mazieres. The stellar consensus protocol: A federated model for internet-level consensus.
Stellar Development Foundation, 2015.

[121] John Medley. Bitcoin lightning network: Scaling cryptocurrencies for mainstream use. July
2018.

[122] Sarah Meiklejohn, C Christopher Erway, Alptekin Küpçü, Theodora Hinkle, and Anna Lysyan-
skaya. Zkpdl: A language-based system for efficient zero-knowledge proofs and electronic cash.
In USENIX Security Symposium, volume 10, pages 193–206, 2010.

[123] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon McCoy, Geof-
frey M Voelker, and Stefan Savage. A fistful of bitcoins: characterizing payments among men
with no names. In Proceedings of the 2013 conference on Internet measurement conference,
pages 127–140. ACM, 2013.

[124] Silvio Micali. Algorand: the efficient and democratic ledger. CoRR, abs/1607.01341, 2016.

[125] Chris Milling, Constantine Caramanis, Shie Mannor, and Sanjay Shakkottai. Network forensics:
random infection vs spreading epidemic. ACM SIGMETRICS Performance Evaluation Review,
40(1):223–234, 2012.

[126] Prateek Mittal, Matthew Wright, and Nikita Borisov. Pisces: Anonymous communication
using social networks. arXiv preprint arXiv:1208.6326, 2012.

BIBLIOGRAPHY 163

[127] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomized algorithms and
probabilistic analysis. Cambridge university press, 2005.

[128] Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Kim Pecina. Privacy preserving
payments in credit networks. In Network and Distributed Security Symposium, 2015.

[129] Malte Möser and Rainer Böhme. Trends, tips, tolls: A longitudinal study of bitcoin transaction
fees. In International Conference on Financial Cryptography and Data Security, pages 19–33.
Springer, 2015.

[130] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[131] A. Narayanan and V. Shmatikov. De-anonymizing social networks. In Security and Privacy,
Symposium on, pages 173–187. IEEE, 2009.

[132] Christopher Natoli and Vincent Gramoli. The balance attack against proof-of-work blockchains:
The r3 testbed as an example. arXiv preprint arXiv:1612.09426, 2016.

[133] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stubborn mining: Generalizing
selfish mining and combining with an eclipse attack. In Security and Privacy (EuroS&P), 2016
IEEE European Symposium on, pages 305–320. IEEE, 2016.

[134] Micha Ober, Stefan Katzenbeisser, and Kay Hamacher. Structure and anonymity of the bitcoin
transaction graph. Future internet, 5(2):237–250, 2013.

[135] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. Communications of the ACM, 59(2):103–112, 2016.

[136] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous
networks. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 643–673. Springer, 2017.

[137] Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In Proceedings of the ACM
Symposium on Principles of Distributed Computing, pages 315–324. ACM, 2017.

[138] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless model.
In LIPIcs-Leibniz International Proceedings in Informatics, volume 91. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2017.

[139] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless model.
In LIPIcs-Leibniz International Proceedings in Informatics, volume 91. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2017.

[140] Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant confirmation. In
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 3–33. Springer, 2018.

[141] Robin Pemantle. A time-dependent version of pólya’s urn. Journal of Theoretical Probability,
3(4):627–637, 1990.

[142] P. C. Pinto, P. Thiran, and M. Vetterli. Locating the source of diffusion in large-scale networks.
Physical review letters, 109(6):068702, 2012.

164 BIBLIOGRAPHY

[143] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain instant
payments. draft version 0.5, 9:14, 2016.

[144] B. A. Prakash, J. Vreeken, and C. Faloutsos. Spotting culprits in epidemics: How many and
which ones? In ICDM, volume 12, pages 11–20, 2012.

[145] Pavel Prihodko, Slava Zhigulin, Mykola Sahno, Aleksei Ostrovskiy, and Olaoluwa Osuntokun.
Flare: An approach to routing in lightning network. White Paper (bitfury. com/content/5-
white-papers-research/whitepaper_flare_an_approach_to_routing_in_lightning_n et-
work_7_7_2016. pdf), 2016.

[146] Dongyu Qiu and Rayadurgam Srikant. Modeling and performance analysis of bittorrent-like
peer-to-peer networks. In ACM SIGCOMM computer communication review, volume 34, pages
367–378. ACM, 2004.

[147] Michael K Reiter, Matthew K Franklin, John B Lacy, and Rebecca N Wright. The ω
key management service. In Proceedings of the 3rd ACM conference on Computer and
communications security, pages 38–47. ACM, 1996.

[148] Michael K Reiter and Aviel D Rubin. Crowds: Anonymity for web transactions. ACM
Transactions on Information and System Security (TISSEC), 1(1):66–92, 1998.

[149] Peter R Rizun. Subchains: A technique to scale bitcoin and improve the user experience.
Ledger, 1:38–52, 2016.

[150] Team Rocket. Snowflake to avalanche: A novel metastable consensus protocol family for
cryptocurrencies,?, 2018.

[151] Rodrigo Rodrigues, Miguel Castro, and Barbara Liskov. Base: Using abstraction to improve
fault tolerance. In ACM SIGOPS Operating Systems Review, volume 35, pages 15–28. ACM,
2001.

[152] Stefanie Roos, Martin Beck, and Thorsten Strufe. Anonymous addresses for efficient and
resilient routing in f2f overlays. In Computer Communications, IEEE INFOCOM 2016-The
35th Annual IEEE International Conference on, pages 1–9. IEEE, 2016.

[153] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg. Settling payments
fast and private: Efficient decentralized routing for path-based transactions. arXiv preprint
https://arxiv.org/pdf/1809.10361, 2017.

[154] Ron Roth. Introduction to coding theory. Cambridge University Press, 2006.

[155] Tomas Sander and Amnon Ta-Shma. Auditable, anonymous electronic cash. In Annual
International Cryptology Conference, pages 555–572. Springer, 1999.

[156] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal selfish mining strategies
in bitcoin. In International Conference on Financial Cryptography and Data Security, pages
515–532. Springer, 2016.

[157] Fred B Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

[158] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Conference on
the Theory and Application of Cryptology, pages 239–252. Springer, 1989.

BIBLIOGRAPHY 165

[159] Fabrizio Sebastiani. Machine learning in automated text categorization. ACM computing
surveys (CSUR), 34(1):1–47, 2002.

[160] D. Shah and T. Zaman. Detecting sources of computer viruses in networks: theory and
experiment. In ACM SIGMETRICS Performance Evaluation Review, volume 38, pages
203–214. ACM, 2010.

[161] D. Shah and T. Zaman. Rumor centrality: a universal source detector. In ACM SIGMETRICS
Performance Evaluation Review, volume 40, pages 199–210. ACM, 2012.

[162] Claude Elwood Shannon. A mathematical theory of communication. Bell system technical
journal, 27(3):379–423, 1948.

[163] Rob Sherwood, Bobby Bhattacharjee, and Aravind Srinivasan. P5: A protocol for scalable
anonymous communication. Journal of Computer Security, 13(6):839–876, 2005.

[164] Hyun Song Shin. Cryptocurrencies and the economics of money, Jun 2018.

[165] Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakrishnan, Mohammad Alizadeh, Giulia
Fanti, and Pramod Viswanath. Routing cryptocurrency with the spider network. In Proceedings
of the ACM Hotnets 2018.

[166] Y Sompolinsky and A Zohar. Phantom: A scalable blockdag protocol, 2018.

[167] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. Spectre: A fast and scalable
cryptocurrency protocol. IACR Cryptology ePrint Archive, 2016:1159, 2016.

[168] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in bitcoin.
In International Conference on Financial Cryptography and Data Security, pages 507–527.
Springer, 2015.

[169] Rayadurgam Srikant and Lei Ying. Communication networks: an optimization, control, and
stochastic networks perspective. Cambridge University Press, 2013.

[170] Statoshi. Bandwidth usage. https://statoshi.info/dashboard/db/bandwidth-usage.

[171] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp Jovanovic, Linus Gasser,
Nicolas Gailly, Ismail Khoffi, and Bryan Ford. Keeping authorities" honest or bust" with
decentralized witness cosigning. In Security and Privacy (SP), 2016 IEEE Symposium on,
pages 526–545. IEEE, 2016.

[172] TierNolan. Decoupling transactions and pow. Bitcoin Forum. https://bitcointalk.org/
index.php?topic=179598.0.

[173] Kyle Torpey. Greg maxwell: Lightning network better than sidechains
for scaling bitcoin, 2016. https://bitcoinmagazine.com/articles/
greg-maxwell-lightning-network-better-than-sidechains-for-scaling-bitcoin-1461077424/.

[174] Paul F Tsuchiya. The landmark hierarchy: a new hierarchy for routing in very large networks.
In ACM SIGCOMM Computer Communication Review, volume 18, pages 35–42. ACM, 1988.

[175] Balajee Vamanan, Jahangir Hasan, and T.N. Vijaykumar. Deadline-aware datacenter tcp
(d2tcp). In Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, SIGCOMM ’12, pages 115–126,
New York, NY, USA, 2012. ACM.

https://statoshi.info/dashboard/db/bandwidth-usage
https://bitcointalk.org/index.php?topic=179598.0
https://bitcointalk.org/index.php?topic=179598.0
https://bitcoinmagazine.com/articles/greg-maxwell-lightning-network-better-than-sidechains-for-scaling-bitcoin-1461077424/
https://bitcoinmagazine.com/articles/greg-maxwell-lightning-network-better-than-sidechains-for-scaling-bitcoin-1461077424/

166 BIBLIOGRAPHY

[176] Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. Scalable private
messaging resistant to traffic analysis.

[177] Nicolas Van Saberhagen. Cryptonote v 2.0, 2013.

[178] Jan Vermeulen. Bitcoin and ethereum vs visa and paypal ? transactions per second. April
2017.

[179] Visa. Visa acceptance for retailers. https://usa.visa.com/run-your-business/
small-business-tools/retail.html.

[180] Joachim Von Zur Gathen and Jürgen Gerhard. Modern computer algebra. Cambridge university
press, 2013.

[181] Dan S Wallach, Peter Druschel, et al. Enforcing fair sharing of peer-to-peer resources. In
International Workshop on Peer-to-Peer Systems, pages 149–159. Springer, 2003.

[182] Z. Wang, W. Dong, W. Zhang, and C.W. Tan. Rumor source detection with multiple
observations: Fundamental limits and algorithms. In ACM SIGMETRICS, 2014.

[183] Ethereum Wiki. Sharding roadmap. https://github.com/ethereum/wiki/wiki/
Sharding-roadmap.

[184] Herbert S Wilf. Algorithms and complexity. AK Peters/CRC Press, 2002.

[185] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson. Dissent in
numbers: Making strong anonymity scale. In OSDI, pages 179–182, 2012.

[186] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151:1–32, 2014.

[187] Qian Yu, Netanel Raviv, Jinhyun So, and A Salman Avestimehr. Lagrange coded computing:
Optimal design for resiliency, security and privacy. arXiv preprint arXiv:1806.00939, 2018.

[188] M. Zamani, J. Saia, M. Movahedi, and J. Khoury. Towards provably-secure scalable anonymous
broadcast. In USENIX FOCI, 2013.

[189] Bassam Zantout and Ramzi Haraty. I2p data communication system. In Proceedings of ICN,
pages 401–409. Citeseer, 2011.

[190] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos
Papamanthou. vsql: Verifying arbitrary sql queries over dynamic outsourced databases. In
Security and Privacy (SP), 2017 IEEE Symposium on, pages 863–880. IEEE, 2017.

[191] Lidong Zhou, Fred B Schneider, and Robbert Van Renesse. Coca: A secure distributed online
certification authority. ACM Transactions on Computer Systems (TOCS), 20(4):329–368, 2002.

[192] K. Zhu and L. Ying. A robust information source estimator with sparse observations. arXiv
preprint arXiv:1309.4846, 2013.

[193] Yi Ming Zou. Representing boolean functions using polynomials: more can offer less. In
International Symposium on Neural Networks, pages 290–296. Springer, 2011.

https://usa.visa.com/run-your-business/small-business-tools/retail.html
https://usa.visa.com/run-your-business/small-business-tools/retail.html
https://github.com/ethereum/wiki/wiki/Sharding-roadmap
https://github.com/ethereum/wiki/wiki/Sharding-roadmap

	Introduction
	Requirements
	Outline

	Unit-e: Summary of Design
	The Architecture of Cryptocurrencies
	Unit-e's design

	Prism: Consensus near Physical Limits
	Introduction
	Performance measures
	Physical limits
	Main contribution
	Approach
	Outline of paper

	Related work
	High-forking protocols
	Decoupled consensus
	Hybrid blockchain-BFT consensus

	Model
	Mining and communication model
	Network model

	Approaching physical limits: throughput
	Baselines: Bitcoin and GHOST
	Prism 1.0: throughput-optimal protocol
	Analysis
	Transaction scheduling
	Throughput-Latency tradeoff
	Discussions

	Near physical limits: latency and throughput
	Bitcoin latency
	Prism
	Prism : model
	Total transaction ordering at optimal throughput
	Fast confirmation of ledger list and honest transactions

	Discussions
	Prism: incentives
	Prism: smart contracts
	Prism: Proof-of-Stake

	Acknowledgement

	Barracuda: Consensus-Aware P2P Networking
	Primer
	Contributions

	Related Work
	Model
	Modeling block generation
	Network model and fork choice rule

	Block Throughput Analysis
	-Barracuda
	Main result
	Connections to balls-in-bins example

	System and implementation issues
	Effect of polling delay
	Heterogeneous networks
	Polling partial blocktrees
	Incentive Structure
	Security Implications

	Relation to Prism
	Proofs of the main results
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Theorem 8

	Acknowledgement

	Polyshard: Scalable Storage and Computation
	Sharding: benefits and limitations
	Coding vs. Replication
	Coded Sharding
	System Model

	PolyShard
	Storage encoding in PolyShard
	Coded verification in PolyShard
	Optimality of PolyShard

	Simulation Results
	Discussion
	 Integration into blockchain systems
	 Modelling cross-shard transactions
	 Relationship to verifiable computing
	 Future research directions

	Acknowledgement

	Spider: Efficient Routing for Payment Channel Networks
	Background
	Payment Channels
	Payment Channel Networks

	Related Work
	Imbalance-Aware Routing
	A Motivating Example
	Limits on Throughput
	Algorithms

	The Spider Network
	Spider Hosts
	Spider Routers

	Preliminary Evaluation
	Setup
	Results

	Discussion and Future Work
	Acknowledgement

	Economics
	Valuation
	A Simple Model with Fee-Based Rewards
	An Extended Model with Increasing Token Supply

	Block Rewards
	The economic implications of block rewards
	Block Reward Schedule: Design Considerations
	Equitability in PoS block reward schemes

	Transaction Fees
	Fee management today
	Design considerations

	Acknowledgement

	Privacy and Identity Management
	Blockchain-Level Privacy
	Zero Knowledge Schemes
	Classes of Proof Schemes

	Network-Level Privacy
	Models
	Related Work
	Lower Bounds
	Dandelion
	Proofs

	Acknowledgement

